
Multi-Level Verification of Clinical Protocols

Georg Duftschmid 1), Silvia Miksch 2), Yuval Shahar 3) and Peter Johnson 4)

1) University of Vienna, Department of Medical Computer Sciences,
Spitalgasse 23, A-1090 Vienna, Austria,

Email: georg.duftschmid@akh-wien.ac.at
2) Vienna University of Technology, Institute of Software Technology (IFS),

Resselgasse 3/188, A-1040 Vienna, Austria,
Email: silvia@ifs.tuwien.ac.at

3) Stanford University, Section on Medical Informatics,
Medical School Office Building, Stanford, CA 94 305 - 5479, USA,

Email: shahar@smi.stanford.edu
4) The Sowerby Center for Primary Health Care Informatics,

University of Newcastle, Newcastle upon Tyne, NE4 6BE, UK
Email: pete@mimir.demon.co.uk

Abstract. In the medical domain, clinical practice guidelines and
protocols build a commonly accepted way to improve patient
health care. During the last years various approaches have been
presented to support the computerization of such guidelines and
protocols. However, the verification of clinical protocols has not
become an extensive research topic yet. In this paper we will
present a partial and domain-specific verification approach to
identify particular anomalies in protocols. Our approach is
oriented on a plan-representation language of clinical protocols
given as temporal, skeletal plans, called Asbru. Asbru provides
the necessary hierarchical structure and task-specific knowledge
roles, which are needed to divide the whole verification process in
subtasks. Our verification approach examines three levels of a
plan: the plan itself, all its knowledge roles and all its subplans.
The final aim is to arrive at legal or meaningful plans, instead of
complete or totally correct plans.

1 INTRODUCTION AND MOTIVATION

The rationalization and optimization efforts, which gained
more and more importance in most market sectors during
the last years, have not excluded the medical domain:
medical organizations have been confronted with the fact
that they are urged to increase productivity and
simultaneously reduce costs without adversely affecting the
quality of patient care.

One step towards this aim is the employment of
commonly accepted, standardized health care procedures.
Such treatment procedures are called clinical practice
guidelines and protocols. In 1990, the Institute of Medicine
(IOM) defined practice guidelines as “systematically
developed statements to assist practitioner and patient
decisions about appropriate health care for specific
clinical circumstances” [Field & Lohr, 1990]. A clinical
protocol is a more detailed version of a clinical practice
guideline and refers to a class of therapeutic interventions.

Protocols are used for utilization review, for improving
quality assurance, for reducing variation in clinical
practice, for guiding data collection, for better
interpretation and management of the patient's status, for
activating alerts and reminders, and for improving decision
support [Pattison-Gordon et al., 1996].

1.1 Automation of clinical protocols: current
approaches

The computerization of protocol-based care has been the
goal of various efforts within the last years. A strategy
chosen by several groups is the so called prescriptive
approach, where the system provides active interpretation of
the protocols given. Examples are ONCOCIN [Tu et al.,
1989] in the oncology domain, T-HELPER [Musen et al.,
1992] in the AIDS domain, as well as DILEMMA [Herbert
et al., 1995], EON [Tu & Musen, 1996] and the European
PRESTIGE Health-Telematics project as general
architectures.

The critiquing approach on the other hand follows a
different strategy: Here the system critiques the physician’s
plan rather than recommending a complete one of its own.
A task-specific architecture implementing the critiquing
process has been generalized in the HyperCritic system
[Van der Lei & Musen, 1994].

There have been efforts to use the Arden Syntax in
combination with intermediate states in order to support
clinical protocols [Sherman et al., 1995]. In the GEODE-
CM model [Stoufflet et al., 1995] a protocol is implemented
as a set of actions that are associated with the nodes of a
finite-state machine. In the SPIN-approach [Uckun, 1994],
protocols are represented as hierarchical skeletal plans. In
[Quaglini et al., 1997] and [Fox et al., 1997] generic

2

frameworks are suggested to support implementation of
clinical protocols. Finally, several approaches are based on
the hypertext browsing of protocols via the World Wide
Web [Barnes & Barnett, 1995; Liem et al., 1995].

None of the current protocol-based-care systems have a
sharable representation of protocols that has knowledge
roles specific to the protocol-based-care tasks and is
machine and human readable.

1.2 Verification of clinical protocols: why and
what kind do we need?

Our aim is to support the design of clinical protocols.
Ensuring reliability and enhancing quality of protocols are
critical factors for their successful use in real-world
applications. One way to achieve this goal is to provide an
efficient verification and validation mechanism.
Verification is often referred to as “building the system
right”, whereas validation is seen as “building the right
system” [O'Keefe et al., 1987].

[Laurent, 1992] proposed a more precise definition: The
verification is the sum of all processes, which attempt to
determine whether a knowledge-based system (KBS) does
or does not satisfy its purely formal specifications.
Validation is the sum of verification and evaluation, the
latter being the sum of all processes, which attempt to
determine whether a KBS does or does not satisfy its
pseudo-formal specifications. We are concerned with
specifications derived from formalizable concepts.
Accordingly, the focus of this paper is to present an
approach for the verification of clinical protocols.

An essential step towards successful verification of
clinical protocols is the extraction and formulation of the
underlying knowledge structure. Conventional protocols are
mostly expressed in free text, a representation that can not
easily be verified. Additionally, they implicitly assume
certain context, which must be made explicit. Clinical
protocols embody different kinds of errors caused by the
complex structure of protocols. Most protocols are partly
vague and incomplete concerning their intentions and their
temporal, context-dependent representation. The variability
of clinical protocols (a medical goal can be achieved by
different therapeutic actions) presents an additional
challenge.

Considering all these shortcomings of traditional clinical
protocols, we formulate the requirements for a protocol-
specification language: It needs to be expressive with
respect to temporal annotations and needs to have a rich set
of sequential, concurrent, and cyclical operators. The
language, however, also requires well-defined semantics for
both the prescribed actions and the task-specific
annotations, such as the plan’s intentions and effects, and
the preferences underlying them. These task-specific
knowledge roles also facilitate protocol acquisition and
verification.

Within the Asgaard project [Shahar et al., 1998], a
temporal, intention-based, and sharable language called

Asbru [Miksch et al., 1997] has been developed, which
incorporates all of the above requirements. One of the
Asgaard tasks is the verification of protocols, coded in
Asbru.

Approaches concerning the verification of clinical
protocols are still rather rare: [Shiffman & Greenes, 1994]
are using logical analysis and application of decision-table
techniques to verify and simplify clinical practice
guidelines. Verification here is limited to two issues: (1)
completeness and (2) unambiguousness of a guideline. A
guideline is considered incomplete, if it does not provide an
action for each possible value-combination of parameters,
used within the guideline. Whether this assumption is
realistic remains questionable: First, it seems quite
probable, that some value-combinations may simply not be
relevant in a certain context and therefore do not require a
corresponding action. Second, this approach presumes a
small number of possible discrete value-combinations, and
can therefore not be used in case of parameters having
infinite value domains. A guideline is considered
ambiguous, if it prescribes different actions for identical
value-combination of parameters. This assumption is not
completely convincing either: As a simple counter-example
one might imagine a guideline, which allows several,
alternative therapeutic treatments to reach a certain goal.
All these actions had identical activation conditions, and
would such be considered ambiguous, according to
[Shiffman & Greenes, 1994]. Another example that
contradicts the above assumption would be a guideline,
which recommends several simultaneous and
complementary treatments (having identical activation
conditions) for a certain situation.

[Quaglini et al., 1997] described how a guideline may be
examined for logical correctness. In their approach
completeness and coherency are considered as relevant
proofs. Whereas completeness is defined equivalently to
[Shiffman & Greenes, 1994], coherency requires
compatible activation conditions for a set of conjunctive
tasks (and-relation): A guideline is composed of
hierarchical subtasks, which may be connected with an and-
relation. Checking a guideline for coherency means to look
for conjunctive subtasks, which exclude each other because
of incompatible activation conditions. Whereas the
completeness checking again is lacking a practical
foundation (see arguments above), the coherency checking
proposed in [Quaglini et al., 1997] seems to be useful.
Several of our specifications, presented in Section 3.1.1.3
are based on the same concept of mutual exclusion.

We analyzed the applicability and usefulness of general
verification methods in Software Engineering [Adrion et
al., 1982] and of KBSs [Preece et al., 1992; Preece &
Shinghal, 1994; van Harmelen & ten Teije, 1997] to check
the correctness of clinical protocols. Our usability study
showed that although some available techniques may be
helpful, they are not sufficient to verify clinical protocols:
The main reason is that clinical protocols incorporate
several domain-specific properties, which are essential for
our verification processes (see Section 3.1.1). These
features are understandably not part of the verification
methods, described in [Adrion et al., 1982; Preece et al.,

3

1992; Preece & Shinghal, 1994]. Close to our approach is
the task-specific validation and verification approach
proposed by [van Harmelen & ten Teije, 1997] and the
compositional verification designed by [Cornelissen et al.,
1997]. However, their work aims towards diagnosis and we
are concentrating on the verification of plans with temporal
embedded actions and states. [Cornelissen et al., 1997]’s
approach also covers dynamic properties of diagnosis.

We therefore propose to make use of the general
verification methods (e.g. [Preece et al., 1992]) for the non-
domain-specific parts of clinical protocols, and to design
additional verification methods for the domain-specific
parts.

Section 2 gives a brief overview about the Asgaard
project and the various components of the temporal and
intention-based language Asbru, which builds the basis of
our verification work. Section 3 describes the verification
methods we propose. In Section 4 we finally name the
benefits and limitations of our approach.

2 THE ASGAARD/ASBRU PROJECT

In the Asgaard project [Shahar et al., 1998] a set of tasks
and computational models are investigated, which support
the execution of clinical guidelines and protocols by a care
provider other than the designer of the guideline.

Within the Asgaard project, a temporal, skeletal plan-
specification language, called Asbru [Miksch et al., 1997]
has been developed to uniformly represent clinical
protocols. Clinical protocols coded in the Asbru language
are then organized within a plan-specification library. In
the following the term plan is used to designate a clinical
protocol, coded in the Asbru language.

Essential tasks within the Asgaard project are: (1) plan
validation, including (2) plan verification during design
time of a plan. During execution time the relevant tasks are
(1) checking the applicability of a plan to a particular state

of the world, (2) guidance in proper execution of that plan,
(3) monitoring of the execution process, (4) assessment of
the results of the plan, (5) critiquing the execution process
and its results, and (6) assistance in modifying the original
plan.

2.1 Components of Asbru

A plan consists of a name, a set of arguments, including a
time annotation (representing the temporal scope of a plan),
and five components: preferences, intentions, conditions,
effects, and a plan body, which describes the actions to be
executed. The general arguments, the time annotation, and
all components are optional. Intentions, world states,
actions/plans, and effects are durative. Therefore, we need
plan states and their transition criteria to cope with the
time-oriented environment. In this paper we will
concentrate on the component “condition”.

2.2 Plan states and state-transition criteria

A set of eight different plan states is used to describe the
actual state of a plan during plan selection and plan
execution. Seven different conditions build the state-
transition criteria, controlling transitions between
neighboring plan states. Figure 1 illustrates the different
plan states and their corresponding conditions shown above
the arrows. We distinguish between plan states during the
plan-selection phase (left-hand side of Fig. 1) and between
plan states during the execution phase (right-hand side of
Fig. 1).

 (1) Filter-preconditions need to hold initially if the plan is
applicable, but can not be achieved. They are
necessary for a plan to become possible;

(2) Setup-preconditions need to be achieved to enable a
plan to start and allow a transition from a possible
plan to a ready plan;

 manual/automaticrejected

possible

considered

setup

wrong filter

filter

wrong filter

wrong filter

ready

wrong setup

aborted

suspended

completed

activated

suspend

abort

abort

complete

reactive (cont.)

plan-selection states plan-execution states

Figure 1. Plan-state model: plan states and state-transition criteria.

4

(3) Activate-condition determines if the plan should be
started manually or automatically;

(4) Suspend-conditions determine when an activated
plan has to be interrupted – certain conditions
(protection intervals) need to hold;

(5) Abort-conditions determine when an activated or
suspended plan has to be aborted;

(6) Complete-conditions determine when an activated
plan has to be completed successfully;

(7) Reactivate-conditions determine when a suspended
plan has to be continued.

2.3 Decomposition of plans

Each plan in the plan-specification library may be
composed hierarchically of a set of subplans. The execution
interpreter always attempts a decomposition of a plan into
its subplans, unless the plan is not found in the plan-
specification library, thus representing a nondecomposable
plan (informally, an action). This can be viewed as a
"semantic" stop-condition. Such a plan is handed over to
the agent for execution.

2.4 Propagation of plan states

The plan states, which are stopping the execution of a plan
(successfully or unsuccessfully: rejected, completed,
aborted, and suspended states), may be propagated in
both directions: the parent plan propagates its plan states to
its children; a child plan propagates its plan state to its
parent plan only if it is relevant for the parent's completion.
A plan can be made relevant either implicitely or
explicitely. In case of a sequential execution of subplans, all
subplans have to complete as a prerequisite of their parent
plan’s completion and are such implicitely relevant. In case
of a parallel execution of subplans, a subplan can be made
relevant by explicitely naming it in the continuation-
conditions, which are part of the Asbru language.

3 MULTI-LEVEL PLAN VERIFICATION

Our usability study of the existing verification techniques
indicated that they are not sufficient for the analysis of
clinical protocols (see Section 1). Therefore, we designed
and developed verification methods according to our Asbru
plan-representation language (see Section 2). Hereby, we
concentrated on a partial, domain-specific approach, which
can be seen as an extension of existing verification work.
The required domain-specific knowledge is assumed to be
available in a suitable knowledge-base component (see
Section 3.1.3).

Our verification approach examines the components of
every plan and all its subplans for the existence of several
anomalies. Comparably to [Preece & Shinghal, 1994],
anomalies are defined as symptoms of probable errors in
plans. The goal is to arrive at legal or meaningful plans,
instead of complete or totally correct plans. A plan is called
meaningful, if it does not violate any of its specifications
(see Section 3.1.1). In the first step we enumerate all

specifications, which exist for any single Asbru component
or for a combination of Asbru components. We examine
under which circumstances each of them can be violated,
and hereby make the following distinction according to the
locality of the anomaly (Table 1 illustrates these three
different levels):

• Level 1: anomaly within a single Asbru component;

• Level 2: anomaly within a single plan;

• Level 3: anomaly within a plan hierarchy.

In the following, we will illustrate the verification of
conditions.

Table 1. Three different levels of the plan-verification.

3.1 Verification of plan conditions

Any kind of protocol or plan, regardless of how it is
modeled, needs a mechanism to control the sequence of its
proposed actions. This mechanism is usually implemented
through conditions. Our verification method of conditions
is based on the following three features of the Asbru
language:

• the plan state model;

• the hierarchical structure of plans;

• the conditions to control state transitions.

These components are basic elements of protocol
automation and are also partly incorporated in most other
approaches ([Fox et al., 1997], [Herbert et al., 1995],
[Quaglini et al., 1997], [Sherman et al., 1995], [Tu &
Musen, 1996], [Uckun, 1994]). Consequently, the
verification approach we propose may not only be useful for
plans, expressed in the Asbru language, instead it may be
applicable to a wide scope of protocol models.

In the following, we will define the specifications
concerning Asbru conditions both informally and formally,
discuss the relevant concepts, and show the circumstances
under which the specifications can be violated. We will
hereby distinguish the resulting anomalies according to

Decomposition Level 1 Level 2 Level 3
Plan A

Plan Aa

 Cond. A1 üü
 Cond. A2 üü
 … üü
 Cond. an üü

…
Plan Ax

 Cond. X1 üü
 Cond. X2 üü
 … üü
 Cond. Xo üü

Plan Ba

…
…

üü

üü

üü

Level of Checking

5

their scope (compare Table 1). Finally, the order of the "3-
level checking” is illustrated in pseudo-code.

3.1.1 Mapping plans to rule bases

[Preece et al., 1992] gave a detailed summary of anomalies,
that can occur in rule bases. For each anomaly a strict and
unambiguous definition is provided.

In the following we will show, how the Asbru plan-state
model and every single plan can be transformed to a rule
base. We can then refer to [Preece et al., 1992] in
formulating the specifications for plan conditions. Some of
the anomalies we address, especially those which are more
general in nature, are directly derived from [Preece et al.,
1992]. These existing anomalies have been complemented
with additional ones, which result from specifics of the
Asbru language and do not have an equivalent in [Preece et
al., 1992]. Within the following specifications we will
indicate at each case the origin of the anomaly.

After some definitions, we will first outline the complete
and generic rule base “MPS” for the Asbru Model of Plan
States (see Figure 1). Its rules specify in which sequence the
conditions of a plan are considered. The rule base MPS is
preset by the Asbru language, assumed to be initially
verified and cannot be changed by the user. Therefore, it
does not have to be verified further.

The second rule base we present is called “PC”, and
contains the Plan Conditions of all Asbru plans. It can be
divided into rule bases PCi for each plan, thus PC = PC1 ∪
... ∪ PCn. In each PCi we should have exactly one rule with
a consequence, which is an element of ConditionSet. As the
rule bases PCi are to be implemented by the user, they will
be the source of our verification methods.

3.1.1.1 Relevant Definitions

Assume pl and pa are parameters for entities “plan” and
“patient”.

PlanSet = Set of all plans in the Asbru library

PatientSet = Set of all patients, to whom a plan may be
applied

ConditionSet = {filter(pl,pa), setup(pl,pa), activate(pl,pa),
suspend(pl,pa), reactivate(pl,pa), abort(pl,pa),
complete(pl,pa)}

StartingStateSet = {considered(pl,pa)}

IntermediateStateSet = {possible(pl, pa),
ready(pl, pa), activated(pl, pa),
suspended(pl, pa)}

FinalStateSet = {rejected(pl, pa), aborted(pl, pa),
completed(pl, pa)}

StateSet = StartingStateSet ∪ IntermediateStateSet ∪
FinalStateSet

Note that the ConditionSet correlates to the arrows in
Figure 1 and the StateSet correlates to the boxes in Figure
1.

Rule R = L1 ∧ ... ∧ Ln → M
antec(R) = {L1, ... , Ln}
conseq(R) = M

SSi = Set of all subplans of plan i

RSi = Subset of SSi, containing all subplans, relevant for the
completion of plan i: If a plan has subplans, some of them
may need to complete as a prerequisite for the completion
of plan i itself. The set of relevant subplans is defined in
their parent plan, either explicitely or implicitely.

A hypotheses H is inferable from a rule base RB if there
is some environment E such that H is a logical consequence
of supplying E as input to RB. In our case E is represented
by a patient, incorporating certain characteristics. The
patient’s characteristics may be queried by means of
suitable predicates, such as female(pa) or insulin-
indicator(pa).

Formally: inferable(H,RB,E)
 iff (RB ∪ E) � H , E ∈ PatientSet

A rule R∈ RB is fireable if there is some environment E
such that the antecedent of R is a logical consequence of
supplying E as input to RB.

Formally: fireable(R,RB,E)
 iff (∃ Substitution σ) (RB ∪ E) � antec(R)σ ,
 E ∈ PatientSet

3.1.1.2 Rule Bases MPS and PC

Table 2 shows the rule base MPS. The order of the rules is
important to determine which and when rules will be fired.
The choice of rule ordering is oriented towards the state-
transition criteria (compare Figure 1).

Table 2. Rule Base MPS: generic Model of Plan States.

R1: considered(pl,pa) /* starting state for each plan */

R2: considered(pl,pa) ∧ filter(pl,pa) → possible(pl, pa)

R3: considered(pl,pa) ∧ ¬filter(pl,pa) → rejected(pl, pa)

R4: possible(pl,pa) ∧ setup(pl,pa) → ready(pl, pa)

R5: possible(pl,pa) ∧ ¬filter(pl,pa) → rejected(pl, pa)

R6: ready(pl,pa) ∧ ¬filter(pl,pa) → rejected(pl, pa)

R7: ready(pl,pa) ∧ ¬setup(pl,pa) → possible(pl, pa)

R8: ready(pl,pa) ∧ activate(pl,pa) → activated(pl, pa)

R9: activated(pl,pa) ∧ abort(pl,pa) → aborted(pl, pa)

R10: activated(pl,pa) ∧ complete(pl,pa) → completed(pl, pa)

R11: activated(pl,pa) ∧ suspend(pl,pa) → suspended(pl, pa)

6

R12: suspended(pl,pa) ∧ reactivate(pl,pa) → activated(pl,pa)

R13: suspended(pl,pa) ∧ abort(pl,pa) → aborted(pl, pa)

A simplified version of a certain PCk, a rule base for all
conditions of the plan to treat noninsulin-dependent
gestational diabetes mellitus (“GDM-TYPE II”) may for
example look like:

Table 3. Rule Base PCk: conditions of plan GDM-TYPE II.

female(pa) ∧ pregnant(pa) → filter(GDM-TYPE II, pa)

test_available(glucose-toler., pa) → setup(GDM-TYPE II, pa)

activate(GDM-TYPE II, pa) /* automatic activation */

delivered(pa) → complete(GDM-TYPE II, pa)

state(blood-glucose, high, pa) → suspend(GDM-TYPE II, pa)

state(blood-glucose, normal, pa) → reactivate(GDM-TYPE II, pa)

insulin-indicator(pa) → abort(GDM-TYPE II, pa)

In order to get a complete model for the execution control
of a certain plan i, we have to unify its conditions base PCi

with the generic rule base for the Asbru plan state model,
formally MPS ∪ PCi.

To handle the anomalies, which may occur within a rule
base MPS ∪ PCi, it is first necessary to stress the specific
properties of this rule base, which distinguish it from a
“general“ rule base:

• The set of possible consequences of rules we have to con-
sider is very small: As we mentioned before, only the
rule bases PCi are modifiable by the user and for each
C ∈ ConditionSet there should exist exactly one rule R
in each PCi with conseq(R) = C. Hence, each PCi

should contain at most seven rules, each with a
different consequence. Evidently, it will be possible to
enforce this demand without much effort: This might
be done by providing some sort of input support to the
user or even by manual verification due to the small
number of rules. As we can more or less rule out the
possibility of a PCi containing several rules with
identical consequences, a major part of the anomalies
presented in [Preece et al., 1992] become obsolete in
our case.

• The amount of rules we have to consider when checking
anomalies within one plan is limited to the scope of the
plan’s hierarchy at maximum: Plans of different hierar-
chies are completely independent, hence no anomaly
may result from relationships between their rules.

• The possible sequences (rule ordering), in which the
rules of any PCi are considered, is preset by the rule
base MPS: In contrary to [Preece et al., 1992], which
refers to “general” rule bases, we can therefore include
the order of inference into our considerations.

3.1.1.3 Specifications for MPS ∪∪ PC

Now we will list all specifications, which must hold for a
plan. Each specification will first be presented informally,
then a formal definition will be given.

We must consider the case that a specification can be
relevant in multiple levels of plan verification (see Section
3). Therefore, the specifications in this section will be given
in a general way, ignoring any affiliation to one of the three
levels of plan verification. In Section 3.1.4 we will examine
the anomalies within the particular levels of plan
verification.

• Every condition must have a chance to be satisfied

Clearly, any single condition being part of a plan must have
a chance to be satisfied during execution of the plan.

Returning to the knowledge base vocabulary, we equiva-
lently specify that each rule of PC must be fireable. This is
equivalent to [Preece et al., 1992], who treat the violation of
this request as a special case of a redundant rule.

Formally: (∃ E) fireable(R,PC,E) ∀ R ∈ PC

7

• Every valid sequence of plan states must be
reachable

Any sequence of plan states, which defines a valid path
according to the Asbru plan-state model (see Figure 1),
must also statically be possible within a single plan.
However, we do not demand that every plan state is actually
reached during execution time. This request concerns the
Asbru plan-state model and it is not discussed in [Preece et
al., 1992].

For every rule contained in every PCi we demand that
there must exist a patient, for whom the rule is fireable,
considering all rules of the same patient in PCi, which have
fired before. For each rule R in PCi, the set of rules, which
must fire before considering R is defined through MPS. For
example, the activate-conditions of a plan is not
considered, before its filter- and setup-
conditions have been satisfied, as R8 cannot fire in
MPS before rules R2 and R4 have fired.

As we are talking about valid sequences of plan states
that must be reachable, it is more intuitive to refer directly
to MPS: The consequences of the rules in MPS build the set
of all possible plan states, and the rules themselves define
the valid sequences of plan states. Informally we can
therefore specify, that for each plan i there must exist an
environment E, such that each consequence in MPS is
inferable by supplying E as input to MPS ∪ PCi.

Formally our specification will then look like:

(∃ E, σ) inferable(conseq(R)σ, MPS ∪ PCi, E)
 ∀ R ∈ MPS, 1 ≤ i ≤ n

• Every plan must be able to complete

Obviously, a plan will only be able to complete, if its
complete-conditions and all preceding conditions
can be satisfied. This is a specialization of the above
specification and it is also not handled in [Preece et al.,
1992].

Equivalently we can demand that conseq(R10) must be
inferable in every MPS ∪ PCi. Nevertheless this is not
sufficient: Each plan may have one or more subplans, that
are executed either sequentially, concurrently, or cyclically.
In case of a sequential execution, all subplans have to
complete as a prerequisite for their parent’s completion. In
case of a parallel execution, it is possible to explicitly
specify which subplans have to complete. Consequently, an
additional prerequisite for a plan’s completion is that the
complete-conditions and all predecessor conditions
can be satisfied for all subplans that are relevant for its
completion.

Using RSi as the set of all subplans, relevant for the
completion of plan i, we informally specify: As mentioned
above, for each plan i there must exist an environment E
such that the consequence of rule R10 ∈ MPS is inferable
by supplying E as input to MPS ∪ PCi. Additionally the
consequence of rule R10 ∈ MPS must be inferable by
supplying the same E as input to MPS ∪ PCk for all k ∈
RSi.

Formally:

(∃ E,σ) [inferable(conseq(R10)σ, MPS ∪ PCi, E) ∧
 inferable(conseq(R10)σ, MPS ∪ PCk, E)]
∀ (1 ≤ i ≤ n, k ∈ RSi), R10 ∈ MPS

• A subplan should not be stopped by its parent plan

We mentioned in Section 2.4 that the final plan states
{rejected, aborted, and completed} and the state
suspended may be propagated from a plan to its
subplans, thereby stopping the latter. This kind of over-
ruling a plan’s actual state should not be the ordinary case,
and it should therefore be assured, that the relevant
conditions avoid such a situation. As state propagation
might be deliberately applied in some cases, the violation of
this specification is not considered as an error, but a
warning. This request is related to specific plan states of the
Asbru plan-state model and has no equivalent in [Preece et
al., 1992].

In terms of our knowledge base we informally specify:

SSi = set of all subplans of plan i

FSR = {R3, R5, R6, R9, R10, R13} ⊆ MPS : set of
 all rules with a consequence ∈ FinalStateSet

R11∈ MPS : rule with consequence suspended(pl, pa)

Then we demand for each plan i: For each rule R in FSR
the base PCi must ensure that whenever R fires, there is
also a rule R’ in FSR that fires, for each of plan i’s
subplans.

Equivalently, we specify for the suspend-
conditions: Whenever R11 fires for plan i, rule R11
must also fire for each of plan i’s subplans.

Formally:

(∃ σ) antec(R) → antec(R’)σ ,
 ∀ (R ∈ FSR ∪ PCi , i = 1..n, R’ ∈ FSR ∪ PCk , k ∈ SSi)

(∃ σ) antec(R11) → antec(R11’)σ ,
 ∀ (R11 ∪ PCi , i = 1..n, R11’ ∈ R11 ∪ PCk , k ∈ SSi)

• No state of a plan should be skipped

If the condition of a plan state is unconditionally true as
soon as it is checked, because of one or more poorly
designed conditions, the plan state at which the condition is
checked is "skipped" and thus unnecessary. Hence our first
request will be that there must not be any single condition,
which is inherently true.

Accordingly, we specify informally that there must not be
any rule in PC, which is fireable for every possible
environment E. In particular, PC must not contain facts,
except for the case of an automatic activation-
conditions. As this is not considered an anomaly in
general, it is clearly not referred to in [Preece et al., 1992].

Formally:

¬ ((∃ R∈ PC) fireable(R,PC,E) (∀ E ∈ PatientSet))

Our second request concerns the order in which
conditions are considered, enforced by MPS (see above).

8

We demand for every pair of conditions within the same
plan: The firing of the preceding condition in the inference
chain, induced by MPS, must not entail the firing of a
condition, considered later in the inference chain. Instead
every condition in the chain should check additional
information in order to make sense.

Formally:

¬ ((∃ σ) antec(R) → antec(R’)σ ,
 ∀ (R, R’ ∈ MPS ∪ PCi , i = 1..n, R � R’))

 R � R’ means R is considered first in the inference chain.

This request somehow resembles the subsumed rule
anomaly in [Preece et al., 1992]. However it differs from
[Preece et al., 1992] in the following two points:
First, we do not presume identical consequents for R and
R’. Second, the sequence of R and R’ within the inference
chain is relevant for us.

• No plan must loop eternally

There must not be any plan in the library, which allows
looping within its states. Otherwise a circularity would be
present, according to [Preece et al., 1992]. Looking at the
Asbru plan state model, the most obvious potential loops
may occur between states possible ↔ ready, and
activated ↔ suspended. Looping between
possible and ready is not possible as conditions
setup and ¬setup cannot be satisfied concurrently.
Anyway, looping between activated and suspended
is possible, if the suspend- and reactivate-
conditions might be satisfied at the same time.

Therefore, we informally specify that the firing of R11 in
MPS ∪ PCi must not infer the firing of R12 in MPS ∪ PCi

for any plan i. This can be reduced to the demand that for
any PCi, the firing of the rule having suspend(pl,pa) as its
consequence, must not entail the firing of the rule having
reactivate(pl,pa) as its consequence. Actually this is a spe-
cial case of the request that no plan state must be skipped.

Formally:

¬ ((∀ R, R’ ∈ PCi) (conseq(R) = suspend(plan i,pa)) ∧
(conseq(R’) = reactivate(plan i,pa))∧ (antec(R)→
antec(R’)σ) (∀ i = 1..n))

3.1.2 Relevant concepts

The following concepts are relevant in order to examine
whether a plan complies to the above specifications.

Semantic constraint expression: This is an expression {L1,
..., Ln}, which is interpreted as meaning that the
simultaneous truth of L1 ∧ ... ∧ Ln would not make semantic
sense. For example, the set {male(x), pregnant(x)} says that,
for all x, x cannot be both a male and pregnant. This
concept is equivalent to the impermissible set or semantic
constraint expression, used in [Preece et al., 1992], [Preece
& Shinghal, 1994].

ConstraintSet = Set of all semantic constraint expressions

Mutual exclusiveness: Two conditions corresponding to
rules Ri and Rj ∈ PC are mutually exclusive, if their
simultaneous firing infers a semantic constraint expression
C ∈ ConstraintSet.

Note that in our case mutual exclusiveness of conditions
can only result from incompatibility between the
antecedents of their corresponding rules: As mentioned
before, the consequences of all rules in PC originate from
ConditionSet, and there is no semantic constraint
expression defined in ConstraintSet concerning elements of
ConditionSet.

Entailment: A condition corresponding to rule Ri ∈ PC
entails another condition corresponding to rule Rj ∈ PC, if
Ri → Rj.

Entailment is not only restricted to conditions concerning
the same parameters. In the medical domain there is a high
number of dependencies between different parameters, that
may be the source of non-trivial entailment (e.g., parameter
"gender" and pregnancy-related parameters).

3.1.3 Domain-specific assumptions

We assume that the verification methods have access to a
domain-specific knowledge-base, which contains the types
and domains of all condition parameters. It also includes
the set of all semantic constraint expressions, and can such
provide information about the mutual exclusiveness of
conditions. Finally, it allows to query entailments between
conditions.

3.1.4 Anomalies

Level 1: Within a single condition

• Every condition must have a chance to be satisfied

This specification can for example be violated in case of
medically implausible conditions (e.g. domain or type
violations). Another possibility would be a condition
defined by a rule, the antecedent of which contains a
semantic constraint expression.

Level 2: Within a single plan

• Every valid sequence of plan states must be
reachable

If any two conditions, which belong to a plan-state pair of a
valid path, are mutually exclusive, the plan-state of the
condition checked later could never be satisfied and thus a
plan-state transition is never reachable. The possible
mutually exclusive parameters are domain-specific and are
defined in the knowledge-base component (compare Section
3.1.3)

Example:

male(pa) → filter(PlanX, pa)
pregnant(pa) → setup(PlanX, pa)

Explanation: plan state ready can never be reached.

9

• Every plan must be able to complete

This is a specialization of the above anomaly: If the
complete-conditions and any other condition of a
plan within the same path of plan states, are mutually
exclusive, the plan will not be able to complete.

Example:

blood-group-A(pa) → filter(PlanX, pa)
blood-group-B(pa) → complete(PlanX, pa)

Explanation: plan state complete can never be reached.

• No state of a plan should be skipped

This constraint may be violated, if two conditions are
defined in a way, that condition checked first entails the
condition checked second. The plan state at which the
second condition is checked, would be "skipped" in any
case.

Example:

older(pa, 20) → filter(PlanX, pa)
older(pa, 15) → setup(PlanX, pa)

Explanation: plan state possible would be skipped.

• No plan must loop eternally

A plan might loop eternally, if its suspend-
conditions entails its reactivate-conditions.

Example:

value_higher(pa, cholesterol, 250)
→ suspend (PlanX, pa)

value_higher(pa, cholesterol, 200)
→ reactivate (PlanX, pa)

Explanation: PlanX would loop for each patient with a
cholesterol-level higher 250.

Level 3: Between several plans of a hierarchy

• Every plan must be able to complete

In order to complete, a plan must pass the filter-,
setup- and complete-conditions (we omit the
activate-condition here, as it does not refer to
patient data). Plan A will not complete, if there is a
mutually exclusive pair of the above conditions within one
plan relevant for plan A’s completion, or within any two
plans relevant for plan A’s completion (see Figure 2).

Example:

/* SubplanAa is a relevant subplan of PlanA */

blood-group(pa, A) → filter(PlanA, pa)
blood-group(pa, B) → setup(SubplanAa, pa)

Explanation: PlanA will not be able to complete.

• A subplan should not be stopped by its parent plan

The only way to ensure that this specification holds is, that
each plan’s reject-, abort- and complete-
conditions entails one of these conditions for all its
subplans. The same must hold for each plan’s suspend-
condition.

Example:

/* PlanA has subplans SubplanAa and SubplanAb */

value_higher(pa, bilirubin, 5) ∧
 value_higher(pa, GOT, 22) → complete(PlanA, pa)
value_higher(pa, bilirubin, 5)
 → complete(SubplanAa, pa)
value_higher(pa, GOT, 22)
 → complete(SubplanAb, pa)

Explanation: PlanA will not stop its subplans.

Filter-
PreconditionPlanA

SubplanAa

Setup-
Precondition

Complete-
Condition

Filter-
Precondition

Setup-
Precondition

Complete-
Condition

Filter-
Precondition

Setup-
Precondition

Complete-
Condition

No pairs of
mutually
exclusive
conditions
are allowed

time

SubplanAn

Figure 2. Example of a plan with its relevant subplans and the corresponding pairs of mutually exclusive conditions.

10

3.2.5 Pseudo-code "3-level checking" of
conditions

The method "checkConditions" at class “Plan” could look
like:

/*"self" refers to receiving plan instance
*/

checkConditions /* method-name */

self subplans iterate:
[subplan checkConditions]./* recursive call */

self conditions iterate:
 [condition checkLocally]. /* level 1 */

self checkLocally. /* level 2 */

self checkHierarchy. /* level 3 */

Note that it will usually not be necessary to recheck all 3
levels, in case of a modification of a meaningful plan
hierarchy: if a new plan is added to a meaningful plan
hierarchy for example, level 1 and 2 checks have to be
made only for the new plan, whereas the complete
hierarchy can be rechecked with one level 3 check.

4 CONCLUSIONS

In this paper we have presented a domain-specific, partial
verification approach to identify violations of particular
anomalies, which may occur in clinical protocols. The
outcome of our verification process is to arrive at legal or
meaningful plans, instead of complete or totally correct
plans. The approach is used to check the correctness of
protocols, coded in the temporal, skeletal plan-specification
language Asbru. We utilized three anomalies defined by
[Preece et al., 1992]. Two of them were directly usable
(namely, circular dependency and redundant rule), the third
one (subsumed rule) was adapted for our specific plan
representation. Additionally, we enhanced [Preece et al.,
1992]'s approach, applying our hierarchical structure and
our particular knowledge roles.

The advantages of our verification approach are that (1)
partial checks are not computationally expensive; (2)
domain-specific knowledge is considered; (3) incremental
verification can be used to further reduce computational
efforts: Moving a meaningful plan to a new hierarchy only
requires level 3 checking, for example; (4) we utilize
elements, which are essential for clinical protocols in
general and therefore our verification approach should be
applicable to a wide scope of protocol representations.

The limitations are that (1) partial checks do not
guarantee a completely correct plan, (2) we ignored
dynamic properties.

[van Harmelen, 1998] showed how the usefulness of the
anomalies described in [Preece et al., 1992] and [Preece et
al., 1994] can be improved by reformulating them in terms
of conceptual models, in particular KADS inference
structures. This allows applying the anomalies to a much
wider class of KBS. Whether this approach can also be
helpful in our case of clinical protocol verification, will be a
subject of our future work.

REFERENCES

W. R. Adrion, M. A. Branstad, and J. C. Cherniavsky,
'Validation, Verification, and Testing of Computer
Software', Computing Review, 14(2), 159-192, (1982).

M. Barnes, G. O. Barnett, 'An Architecture for a
Distributed Guideline Server', in Proceedings of the
Annual Symposium on Computer Applications in
Medical Care (SCAMC-95), New Orleans, Louisiana,
233-7, (1995).

F. Cornelissen, C. M. Jonker, J. Treur, 'Compositional
Verification of Knowledge-Based Systems: a Case Study
for Diagnostic Reasoning', in Proceedings of the 4th

European Symposium on the Validation and
Verification of Knowledge Based Systems
(EUROVAV'97), (1997).

M. J. Field, K. H. Lohr (eds), 'Clinical Practice Guidelines:
Directions for a New Program', Institute of Medicine,
Washington DC: National Academy Press, (1990).

J. Fox, N. Johns, and A. Rahmanzadeh, 'Protocols for
Medical Procedures and Therapies: A Provisional
Description of the PROforma Language and Tools', in
Artificial Intelligence in Medicine, 6th Conference on
Artificial Intelligence in Medicine Europe (AIME-97),
Grenoble, France, March 23-26, 21-38, (1997).

S. I. Herbert, C. J. Gordon, A. Jackson-Smale, and J.-L.
Renaud Salis, 'Protocols for Clinical Care', Computer
Methods and Programs in Biomedicine, 48, 21-26,
(1995).

J.-P. Laurent, 'Proposals for a Valid Terminology in KBS
Validation', in Proceedings of the 10th European
Conference on Artificial Intelligence (ECAI’92), 829-
834, (1992).

E. B. Liem, J. S. Obeid, P. E. Shareck, L. Sato, R. A.
Greenes, 'Representation of Clinical Practice Guidelines
Through an Interactive World-Wide-Web Interface', in
Proceedings of the Annual Symposium on Computer
Applications in Medical Care (SCAMC-95), New
Orleans, Louisiana, 223-7, (1995).

S. Miksch, Y. Shahar, and P. Johnson, 'Asbru: A Task-
Specific, Intention-Based, and Time-Oriented Language
for Representing Skeletal Plans', in 7th Workshop on
Knowledge Engineering: Methods & Languages
(KEML-97), Milton Keynes, UK, (1997).

M. A. Musen, C. W. Carlson, L. M. Fagan, S. C.
Deresinskim, E. H. Shortliffe, 'T-HELPER: Automated
Support for Community-Based Clinical Research', in
Proceedings of the 16th Annual Symposium on
Computer Applications in Medical Care (SCAMC-92),
719-23, (1992).

R. M. O'Keefe, O. Balci and E. P. Smith, 'Validating
Expert System Performance', in IEEE Expert, 2(4), 81-
90, (1987).

E. Pattison-Gordon, J. J. Cimino, G. Hripcsak, S. W. Tu, J.
H. Gennari, N. L. Jain, and R. A. Greenes,
'Requirements of a Sharable Guideline Representation
for Computer Applications', Stanford University, Report
No. SMI-96-0628, (1996).

11

A Preece, R Shinghal, and A Batarekh. 'Principles and
Practice in Verifying Rule-Based Systems', in
Knowledge Engineering Review, 7(2), 115-141, (1992).

A. Preece and R. Shinghal, 'Foundation and Application of
Knowledge Base Verification', in International Journal
of Intelligent Systems, 9(8), 683-702, (1994).

S. Quaglini, R. Saracco, M. Stefanelli, and C. Fassino,
'Supporting Tools for Guideline Development and
Dissemination', in Artificial Intelligence in Medicine,
6th Conference on Artificial Intelligence in Medicine
Europe (AIME-97), Grenoble, France, 39-50, (1997).

Y. Shahar, S. Miksch, and P. Johnson, 'The Asgaard
Project: A Task-Specific Framework for the Application
and Critiquing of Time-Oriented Clinical Guidelines',
Artificial Intelligence in Medicine, to appear, (1998).

E. H. Sherman, G. Hripcsak, J. Starren, R. A. Jender, and
P. Clayton, 'Using Intermediate States to Improve the
Ability of the Arden Syntax to Implement Care Plans
and Reuse Knowledge', in Annual Symposium on
Computer Applications in Medical Care (SCAMC-95),
New Orleans, Louisiana, 238-242, (1995).

R. N. Shiffman, and R. A. Greenes, 'Improving Clinical
Guidelines with Logic and Decision-Table Techniques',
in Medical Decision Making 1994, 245-254, (1994).

P. E. Stoufflet, S. R. A. Deibel, J. H. Traum, R. A. Greenes
'A State-Transition Method of Modeling Clinical
Encounters', Proceedings of the AMIA Spring Congress
1995, (1995)

S. W. Tu and M. A. Musen, 'The EON Model of
Intervention Protocols and Guidelines', in 1996 AMIA
Annual Fall Symposium (formerly SCAMC),
Washington, DC., 587-591, (1996).

S. W. Tu, M. G. Kahn, M. A. Musen, J. C. Ferguson, E. H.
Shortliffe, L. M. Fagan 'Episodic Skeletal-Plan
Refinement on Temporal Data', in Communications of
the ACM, 32 , 1439-55, (1989).

S. Uckun, Instantiating and Monitoring Skeletal Treatment
Plans, Knowledge Systems Laboratory, Stanford
University, Stanford, CA 94305, USA KSL 94-49,
(1994).

J. Van der Lei, M. A. Musen, 'A Model for Critiquing
based on Automated Medical Records', Computers and
Biomedical Research, 24(2) , 344-78, (1994).

F. van Harmelen and A. ten Teije, 'Validation and
Verification of Conceptual Models of Diagnosis', in
Proceedings of the 4th European Symposium on the
Validation and Verification of Knowledge Based
Systems (EUROVAV'97), 117-128, (1997).

F. van Harmelen, 'Applying Rule-Base Anomalies to KADS
Inference Structures', in Decision Support Systems,
21(4), 271-280, (1998).

