
A Method for Ontology Modeling in the Business 
Domain1

Michele Missikoff, Federica Schiappelli 

* LEKS, IASI-CNR 
Viale Manzoni, 30 – 00185 – Rome, Italy 

{missikoff, schiappelli}@iasi.cnr.it

Abstract. Today ontology languages present a syntax which looks not “natural” 
and are lacking of built-in primitives (i.e., modeling notions) domain experts 
are familiar with. In this paper we present an ontology representation method , 
OPAL, based on Object, Process and Actor primary concept categories. OPAL 
offers a number of modeling notions useful in the e-Business domain, but 
general enough to be used in diverse business sectors (such as automotive, 
tourism or banking). The domain expert, during the ontology modeling process, 
is required to identify the relevant concepts of the domain and to classify them 
according to OPAL categories. Furthermore, a set of semantic relations (such as 
is-a, part-of, relatedness) and some domain specific relations (generated-by, 
updated-by, roles, skills, etc.) can be used to describe the relationships among 
these concepts. 

1.  Introduction 

Today ontology languages present a syntax which looks not “natural” and are lacking 
of built-in primitives (i.e., modeling notions) domain experts are familiar with. For 
instance OWL[1], currently a standard language for ontology representation, has a 
strong rooting in mathematical logic (in particular, DL:  Description Logics [11]) and 
is well suited to be processed by inference engines. But OWL is inherently domain 
generic, i.e., it is not conceived for modeling one specific domain. 

In this paper we present an ontology representation method that offers a number of 
modeling notions useful in the e-Business domain, but general enough to be used in 
diverse business sectors (such as automotive, tourism or banking). We believe that 
enhancing domain specificity of the ontology modeling language will support domain 
experts in their challenging task. 

The proposed method includes an ontology representation paradigm, built on top of 
OWL, enriching its constructs to enhance domain specificity. To this end, we identify 
a number of conceptual categories (referred to as concept kinds) aimed at supporting 
the construction of ontologies in the business domain. In the conceptualization 
process, the domain expert can categorize the concepts identified observing the reality 

                                                           
1 This work has been partially supported by the Athena Integrated Project, IST-507849, and the 

INTEROP Network of Excellence, IST-508011. 

mailto:schiappelli}@iasi.cnr.it


according to the given concept kinds. In essence, a concept kind represents a meta-
concept that becomes a new modelling notion of the language.  

The first concept categories proposed for the business domain are: Business 
Object, Business Process, Business Actor, Business Event, Business Message, 
Business Goal (for sake of conciseness, we will drop the term “business” in the rest of 
the document). Taking the first three conceptual categories, we refer to our approach 
as OPAL (Object, Process, Actor modelling Language). 

The indicated categories have been selected after an analysis of the most relevant 
business modeling languages, such as PSL[12], Rosettanet[6], OAGIS[9], ebXML[8], 
BPML[7], and UML[5]. Particular attention has been paid to the latter that, even if 
originally conceived for software development, is progressively gaining popularity in 
business and enterprise modelling. 

With OPAL we intended to get from UML and OWL the features that are best 
suited to model an e-Business application ontology. In particular we intend to keep 
the possibility of building complex enterprise models starting from a few basic 
categories (e.g., Object, Process, Actor, taken from UML. At the same time, we 
wanted to use the advanced reasoning and query services typical of DL and OWL. In 
summary, with OPAL we intend to propose an ontology representation method able to 
leverage on the positive features of the two, minimizing the negative aspects. 

 
The rest of the paper is organized as follows: Sections 2 and 3 introduce the OPAL 
ontological framework, while Section 4 describes the OPAL templates. In Section 5 
we give a first formalization of OPAL, by means of an abstract syntax. Section 6 
concludes the paper. 

 

2.  Business Meta-Concepts2 in OPAL 

In this section, we introduce a first set of concept categories (meta-concepts) useful in 
modeling a business domain that are at the basis of the proposed ontology 
representation method. 
Object (O) : gathers passive entities involved in one or more business processes. 
Process (P): gathers business activities. A Process aims at accomplishing one or more 
business goals, operating on a set of Business Objects.  
Actor(Ar): an active element of a business domain (e.g. Buyer, Supplier).  
Operation (Op), represents an activity that is not further decomposable.  
Complex Attribute and Atomic Attribute: in modeling the properties of a concept, we 
distinguish between structured information, such as “address”, and elementary 
information, such as “street name”. Essentially, a (structured) Complex Attribute (CA) 
is defined as an aggregation of lower level CA and/or Atomic Attributes (AA). 

 
                                                           

2 We experimented already a preliminary version of the proposed method in two EU Projects: 
Fetish and Harmonise, where an interoperability platform, based on a tourism ontology, has 
been built. The proposed approach has been further elaborated within IDEAS and is currently 
at the base of the ontology research in two 6FP European Projects: INTEROP Noe and the 
Athena IP. 

  



Actors, as Objects and Processes, can be organized according to specialization and 
decomposition hierarchies, in order to obtain a more structured view of the business 
domain. Processes can be recursively decomposed into Processes and, finally, into 
Operations, the latter being not further decomposable. 

3.  Semantic Relations in OPAL 

Besides the concept categories, the OPAL model includes semantic relations defined 
among categories. The OPAL semantic relations represent well known modeling 
notions common to (the meta-model of) the majority of Knowledge Representation 
Languages: 
ISA (generalization) relation  among concepts. E.g., an Invoice ISA Accounting 
Document; 
Predication: relating attributes to a concept. E.g., Invoice is in Predication with Date, 
Amount, Recipient, …; 
Decomposition: part-of relationship among concepts. E.g., Department is in 
Decomposition with Enterprise; 
Relatedness: domain specific relationships (named or unnamed) among concepts. 
E.g., the invoice is related to the customer (unnamed), the customer buys the product 
(named). 

The above relations will be further elaborated in the sequel, when OPAL templates 
will be described. 

 
To concretely illustrate how the OPAL method is used in building a business 
ontology, we introduce an example drawn from an e-Procurement process, focusing 
on the Order Processing phase. 

In this process we identified two actors, the Buyer and the Supplier, some business 
documents that can be modeled as Objects, such as the Request for Quotation (RFQ), 
the Purchase Order (PO), the Invoice, and some sub-processes, such as the sending 
and processing of the RFQ, or the Purchase Order issuing.  

4.  The OPAL templates 

In OPAL, a concept is specified according to a traditional Frame-Slot-Facet modeling 
paradigm[2]. In particular, there is a frame structure (template) for each concept 
category (kind, in OPAL), such templates are used in the interface of Athos to allow 
the user to introduce domain concepts in the ontology.  

All the templates are characterized by three sections: 
1. Identification Section, that essentially contains traditional metadata, such as the 

concept label, description, and other information (such as creation date, author) 
with an administrative flavour; 

2. Structural Section, that contains the slots corresponding to the attributes (simple or 
complex) that will be instantiated in the corresponding object; it also contains the 
semantic relations (such as ISA, decomposition, etc.) with other concepts; 



3. Specific Section, that contains information and references to other entities that play 
a specific role (predefined) in the correct definition of the concept.  

The first two sections are the same for all the kinds, while the third section is designed 
specifically for each kind, with the aim to represent domain specific links and 
dependencies.  

Below we briefly describe the first two common sections; furthermore, we present 
the specific section of the Object, Actor, Process, Operation, Complex and Atomic 
Attributes templates.  
Identification Section 
The Identification Section allows descriptive information about the concept to be 
specified. It contains 
− Label: the preferred term to refer the concept; 
− Identifier: the unique identifier for the concept; 
− Kind: the concept category the concept belongs to; 
− XMLtag: a tag that can be used to refer the concept in an XML document; 
− Description: a natural language description of the concept; 
− References: documental source used for the definition of the concept; 
− Terminology: a set of terms that can be considered synonyms of the preferred term 

used as label 
− Author: the person that entered the concept specification in the ontology; 
− Defined/Updated: the date when the concept was first defined, and then updated. 
Structural Section 
A Structural Section is built by using a set of modeling notions derived from the 
OWL constructors, plus the PartOf relation (Decomposition).  

Attributes and semantic relations have been introduced earlier, here a few 
additional issues are reported. 
− Concept constructors: allow the new concepts to be defined, by using logical 

operators: 
− Intersection (∩), Union (∪), Negation (¬): it is possible to introduce a concept by 

defining it as the intersection (union/complement) of already existing concepts; 
− Concept Axioms: formulas asserting specific constraints on concepts. These 

axioms, introduced in the Structural Section of the concept template, represent 
global constraints, valid every time we refer to the concept. The constraints that 
can be specified are: 
− Disjontness,  
− Equivalence; 

− Property Axioms: formulas asserting specific constraints or describing particular 
characteristics of the properties. These axioms, introduced in the Structural Section 
of the template, represent local constraints applied to an instance of the concept. 
The constraints that can be specified are: 
− Cardinality constraints: allow to specify the cardinality of attributes and 

relations concerning the concept; 
− Explicit constraints: axioms expressed by using the OCL language. (Please 

note that in this phase, OCL constraints are not yet deployed.); 
− Property characteristics: Functional, InverseFunctional, Symmetric, Transitive; 

− Relatedness additional features: as introduced in the previous section, the 
Relatedness relation allows to model domain specific relationships; these 

  



relationships can be named or unnamed. In case of named Relatedness, a property 
Rel_name can be valued with the label of the relation. Furthermore the 
Inv_rel_name can be specified as the inverse name of the relation. 
 

Having OWL as a formal rooting of OPAL, we had to cope with a number of 
misalignments caused by the different nature of the two modeling methods: logic-
oriented and frame-oriented, respectively.  

For instance, in OPAL we assume that the definition of a relation in the Structural 
Section is local with respect to the concept. In the OWL perspective, a relation 
defined in this section of the template corresponds to a property. We must guarantee 
that the domain of this property is a superset of the considered concept; furthermore, 
in the definition of this concept, a Restriction on the range of the property must be 
added. In the next sections we will see how these constraints are expressed. 

 
An OPAL template is completed by the Specific Section, which is different for each 
concept category. The Specific Section gathers a number of domain-oriented relations 
and axioms, aimed at capturing additional semantics. 
Object Specific Section  
− GeneratedBy, UpdatedBy, UsedBy, ArchivedBy: the Processes that create, 

manipulate, archive the Object; 
− ObjOwner: the Actors that have the responsibility of the whole lifecycle of the 

object; 
− States, labelled boolean expressions over the Object attributes or those of related 

concepts; 
− Invariants: specific constraints that must be always satisfied by the Object 

instances. 
The last two items are currently treated informally. Their formal representation need 
further analysis of OCL. 
Actor Specific Section 
− Goals: objectives that must be accomplished by the Actor, in the form of an OCL 

expression (e.g., salaries should be less that 60% of department budget); 
− Skills: indicating the actions that the Actor is able to perform or monitor (i.e., list 

of processes and/or operations); 
− Responsibilities: the processes in which the Actor is involved, in achieving a Goal 

(as above), with his/her/its respective role (i.e., performer, controller, stakeholder, 
supporter), and the Objects he/she/it can manage;  

− Collaborations: the other actors involved in the performed activities. 
Process Specific Section  
− Creates, Updates, Enquires and Archives Business Objects: here the business 

objects that are directly accessed or manipulated by the Process are indicated; 
− In, Out and Fault Messages: the incoming, outgoing messages of the Process. The 

Fault messages allow to model the exceptions handling; 
− Actors: the actors that are requested for the accomplishment of the Process (inverse 

of Actor Skills); 
− EstimatedTime: the estimation of the Process execution time. 



Operation Specific Section  
The Specific Section of Operation is exactly the same of the Process. What 
differentiates the Operation from the Process is the fact that the former is not further 
decomposable.  
Atomic Attribute Specific Section  
− Domain, the set of concepts for which a predication with the Attribute can be 

established. Please, note that, if this property is valued with a list of concepts, the 
domain must be interpreted as the union of the set of instances of the specified 
concepts; 

− Range, the basic type of the attribute. It assumes its values in the following set of 
values: string, integer, real and boolean; 

− Functional, boolean value that says if for each instance of the Domain there is at 
most one instance of the Attribute (if more than one, then they represent the same 
object);  

− InverseFunctional boolean value that says if for each instance of the Range there is 
at most one instance of the Domain. 

Please, note that in the Specific Section of the Atomic Attribute the range of the 
Attribute can be specified. This assertion has a global impact: it means that the 
concept indicated as range must be considered as the superset of the ranges declared 
elsewhere for this attribute. 

In the Structural Section of a concept ci it is also possible to specify the type of the 
Attribute when it is related via a Predication (or Decomposition) to ci. In this case, 
that specification must be considered as a further restriction imposed over the range of 
the Attribute; this restriction is local to the definition of ci. 

Similarly to the Range, also the Property Characteristics (e.g. Functional) can be 
specified in the Specific Section of the Attribute. In this case, every time the Attribute 
is related to a concept, the constraint must be satisfied. Otherwise, the constraint can 
be specified in the Structural Section of a given ci; in this case the constraint will be 
local to the definition of the ci Predication (or Decomposition). 

All the costraints specified in the Specific Section must be considered as global, 
while the constraints specified in the Structural Section are local. 
Complex Attribute Specific Section  
− Domain, the set of concepts for which a predication with the Attribute can be 

established; 
− Functional, boolean value that says if for each instance of the Domain there is at 

most one instance of the Attribute (if more than one they represent the same 
object);  

− InverseFunctional boolean value that says if for each instance of the Range there is 
at most one instance of the Domain.  

As well as the Atomic Attribute, the constraints specified in the Specific Section of 
the Complex Attribute must be interpreted as global constraints over the Attribute. 
 
In the remaining part of the paper we will present a first formalization of the OPAL 
Ontology meta-model. This formalization includes the abstract syntax of the OPAL 
templates. 

  



5.  Formalization of the OPAL Meta-Model 

In this section we illustrate, with an algebraic approach, the formal structures that 
compose the definition of a concept. It can be seen as the abstract syntax of the 
representation language. 

5.1 OPAL Abstract Syntax 
Let O be an OPAL ontology , O = (C, R) 

C = {ci, i ∈ N} is a finite set of concepts  
R = {(ci, ck) i, k ∈ N} is a finite set of relations established among concepts in C.  

 
In particular we have 
− ISA the set of Generalization relations defined in O; 
− D the set of Decomposition relations defined O; 
− Pr the set of Predication relations defined in O; 
− R the set of Relatedness relations defined in O; 
Furthermore, R includes also the set of relations in the Specific Section of each 
template (Sp). 

R  =  ISA ∪ D ∪ Pr ∪ R ∪ Sp 
 

A concept ci ∈ C, is defined as a triple 
ci  = (IdentSecti, StructSecti, SpecSecti) 

where each element is a set of functions: 
 

IdentSecti= [label(ci), id(ci), kind(ci), XMLtag(ci), descr(ci), ref(ci), 
terminology(ci), author(ci), def(ci)] 
− label(ci) ∈ String; the label of the concept (the label is mandatory); 
− id(ci) ∈ String; the unique identifier of the concept; 
− kind(ci) ∈ {Ar,O,P,AA,CA,Op,M, BOD}; the concept category the concept belongs 

to (the kind is mandatory. The pair (label(ci), kind(ci)) must be unique); 
− XMLTag(ci) ∈ String; an XML tag that can be used to refer the concept in an XML 

document; 
− descr(ci) ∈ String; a natural language description of the concept; 
− ref(ci) ∈ String; sources for the concept definition; 
− terminology(ci) ∈ String; a set of terms that are considered synonyms of the 

concept; 
− author(ci) ∈ String; the name of the author; 
− def(ci) ∈ Date; the date of the concept definition. 

 
In the Purchase Order (PO) example, we will have: 
IdentSect (PO) = [ 

label(ci)= Purchase Order,  
id(ci)  = “PO” 
kind(ci) = “O”, 
XMLTag(ci) = “<po>” 



descr(ci) = “A printed or typed document, issued by the Buyer Purchasing FU as 
a firm and formal request to a specific Manufacturer/Supplier to produce and 
supply goods/services according to Price, Terms and Conditions previously 
agreed and approved.” 
ref(ci) =  “ebXML” 
terminology(ci) = {Order, Product Order, Service Order}  
author(ci) = Federica 
def(ci) =  02-04-04]. 

 
StructSecti= [ISA(ci), Pr(ci), D(ci), R(ci), intersectionOf(ci), unionOf(ci), not(ci)]  
− ISA(ci) = {ck | (ci,ck) ∈ ISA , k ∈ {1,…,n}}; it gathers the set of superconcepts of ci; 
− Pr(ci) = {ck | (ci,ck) ∈ Pr , k ∈ {1,…,n}}; it gathers the set of ci attributes; 
− D(ci) = {ck | (ci,ck) ∈ D , k ∈ {1,…,n}}; it gathers the components of ci; 
− R(ci) = {ck | (ci,ck) ∈ R , k ∈ {1,…,n}}; it gathers the set of concepts related to ci; 
− intersectionOf (ci) = { c1 ,.., ck }; it indicates that the concept ci is defined as the 

intersection of the concepts c1, .. , ck; 
− unionOf (ci) = { c1 ,.., ck }; it indicates that the concept ci is defined as the union of 

the concepts c1, .. , ck; 
− not (ci) = { ck , k ∈ {1,…,n}}; it indicates that the concept ci is defined as the 

complement of the concept ck. 
 
For the Purchase Order, in the Structural Section we will have: 
− ISA(PO) = {AccountingDocument}; 
− Pr(PO)={PONumber, OrderLine, OrderDate, Charge, PaymentTerms, 

TransportTerms, DeliveryDate}; 
− D(PO) = {BusinessDocumentArchive}; 
− R(PO) = {DeliveryNote, Invoice, Payment, Product, Shipping List}. 
 
These relations will be further detailed in the next section. 
 
For what concerns the disjointness and equivalence Concept Axioms, they are 
represented by functions 
− disjoint: P(C)  {‘true’, ‘false’}, where P(C) is the power set of C ; 
− equivalent: P(C)  {‘true’, ‘false’}, where P(C) is the power set of C 

The assertion disjoint( c1 ,.., ck) means that { c1 ,.., ck } is a set of pair wise disjoint 
concepts. 

The assertion equivalent( c1 ,.., ck) means that { c1 ,.., ck } is a set of pairwise 
equivalent concepts. 
 
Property Axioms, Cardinality constraints and Property Characteristics are expressed 
as binary functions that take in input a pair of concepts. 
 
When a Predication (or Decomposition) relation is established between two OPAL 
concepts, the type of the attribute can be specified, by using the functions type and 
dataRange. These functions can be applied to a pair of concepts related by either the 
Predication or the Decomposition relation, depending on the kind of the second 
element of the pair. 

  



If the Decomposition relation is established between a Complex Attribute and an 
Atomic Attribute, the type of the attribute must be specified by using the type and, 
possibly, the dataRange functions. 

 
− type: D  ∪  Pr  {’string’, ‘int’, ’real’, ’boolean’}. 

NOTE: type is a partial function; type((ci,ck))=undefined if kind(ck) ≠ AA 
In the Purchase Order example: 

type(PurchaseOrder,PONumber)=‘int’ 
Please note that this approach implies the locality of typing. In fact, the same attribute 
label may be bound, for another concept, to a different type. This is one of the main 
differences between the frame-oriented approach of UML, adopted in OPAL, and the 
logical approach of OWL. 

 
− dataRange: D ∪ Pr  INTERVAL ∪ ENUM 
This function specifies a restriction on the values the attribute can assume. We 
indicate with INTERVAL a subset of INT × INT or REAL × REAL. We also indicate 
with ENUM a finite set of STRINGS or INT. 
dataRange can assume the following values: 
− dataRange((ci,ck)) = (x,y) ∈ INT × INT if  type((ci,ck)) = ‘int’;  
− dataRange((ci,ck)) = (x,y) ∈ REAL × REAL if type((ci,ck)) = ‘real’; 
− dataRange((ci,ck)) = x ∈ ENUM if  type((ci,ck)) = ‘string’; 
NOTE: dataRange is a partial function, it is undefined if kind(ck) ≠ AA.  
In the Purchase Order example: 

type(PO,PaymentTerms)=‘string’ 
dataRange(PO,PaymentTerms)={cash, credit card, bank transfer} ∈ ENUM. 

 
Furthermore, cardinality constraints can be specified for an attribute or a relation, by 
using the following functions: 
− minCard(ci,ck) ∈ INT 
 NOTE: if minCard is not specified, 0 is assumed. 
− maxCard(ci,ck) ∈ INT 
 NOTE: if maxCard is not specified, it is unbounded. 
 
Other Property Axioms can be expressed by using the following functions: 
− Functional: R ∪ Pr ∪ D  {‘true’,’false’,‘not-spec’}; 
− InverseFunctional: R ∪ Pr  ∪ D  {‘true’,’false’,‘not-spec’}; 
− Symmetric: R ∪ Pr  ∪ D  {‘true’,’false’,‘not-spec’}; 
− Transitive: R ∪ Pr  ∪ D  {‘true’,’false’,‘not-spec’}. 
 
Finally, when a Relatedness is established and the relation is named, the label of the 
relation can be specified by using the Rel_name and the Inv_rel_name functions.  
− Rel_name: R  STRING 
− Inv_rel_name: R  STRING 

In the Purchase Order example: 
Rel_name(PurchaseOrder, Invoice)=‘originate’ 
Inv_rel_name(PurchaseOrder, Invoice)=‘is_originated_by’ 



 
In the Specific Sections we can find the relations specific for each concept category; 
we give the specification of the Actor Specific Section. The Specific Sections of the 
other concept catergories are defined in a similar way. 
ActorSpecSecti = [Goals(ai), Skills(ai), Responsabilities(ai), Cooperations(ai)] 
− Goals(ai) = {(l, d), l ∈ String, d ∈ String}; 
− Skills(ai) = {p | (ai, p), p ∈ P};  
− Responsabilities(ai) = {(p, r, o) | (ai, p, r, o), ai ∈ Ar , p ∈ P, r ∈ {“performer”, 

“controller”, “stakeholder”, “supporter”}, o ∈ O }; 
− Cooperations(ai) = {ak | (ai, ak) ak, ai ∈ Ar, ak ∈ Ar}.  

5.2 OPAL Relations and inherent constraints 
In the following, the OPAL relations are formally described and, for each of them, the 
inherent constraints of the OPAL model are presented. The examples illustrating the 
constraints are taken from the business domain. 

Generalisation (ISA) 
Generalisation (inverse: Specialisation) expresses the relation between a narrower 
and a broader concept. In our example the concept AccountingDocument is 
specialized into PurchaseOrder. 

The first constraint is that ISA relation must be defined among concepts belonging 
to the same conceptual category (e.g., Objects, Actors, Processes); accordingly, 
AccountingDocument and PurchaseOrder are both Objects.  

Formally, let ci (i=1,…,n) be concepts, let kind(ci) be the OPAL category of the 
concept ci, the following constraint must be verified: 
C1) (ci,ch) ∈ ISA ⇒ kind(ci)  = kind(ch) 

Furthermore the Specialisation relation is transitive and must be acyclic. 
C2) (ci,ch), (ch,ck) ∈ ISA ⇒ (ci,ck) ∈ ISA  
C3) there are no sequences c1..cn such that (c1,c2), …(cn-1,cn) ∈ ISA and c1=cn  

Predication (Pr) 
Predication expresses the relation among a concept and its attributes. For example the 
PurchaseOrder concept can have as attributes the concepts PONumber and 
OrderLine. 

Since this relation typically connects a primary concept with Complex Attributes 
(the OrderLine, in our example) or Atomic Attributes (the PONumber), it must be 
defined between concepts whose kinds are defined as follows: 
C4) (ci,ch) ∈ Pr ⇒ kind(ci) = O | Ar | P, kind(ch)  = CA | AA) 

When a Predication relation is established between two OPAL concepts, the kinds of 
the concepts are constrained as indicated.  

Decomposition (D) 
Decomposition expresses the relation between a composite concept and a concept 
representing one of its components. For example an Enterprise can be decomposed 
into Departments or an Address can be decomposed into City, Street, Number and 
ZipCode. 

The involved concepts must satisfy one of the following constraints, depending on 
their kinds:  
C5) (ci,ch) ∈ D and kind(ci) = Ar | O ⇒ kind(ci) = kind(ch) 

  



C6) (ci,ch) ∈ D  and kind(ci) = CA ⇒ kind(ch) = AA | CA 
C7) (ci,ch) ∈ D  and kind(ci) = P ⇒   kind(ch) = P | Op 

When a Decomposition relation is established between two OPAL concepts, the 
cardinality constraints can be specified by using the minCard and maxCard functions 
previously introduced.  

Relatedness (R) 
Relatedness expresses the fact that, between two concepts, a domain relation exists. 
Such domain relation can be labeled. For example an Enterprise can be related to a 
Manager with a relation named manages.  

Furthermore, since the related concepts may be of different kinds one of the 
following conditions holds: 
C8) (ci,ch) ∈ R and kind(ci) = Ar | O | P ⇒ kind(ch) = Ar | O | P  
C9) (ci,ch) ∈ R and kind(ci) = CA | AA | Op ⇒ kind(ci) = kind(cj) 

When a Relatedness relation is established between two OPAL concepts, the 
cardinality constraints can be specified by using the minCard and maxCard functions 
previously introduced. A name can be specified for the relationship, as well as the 
name of the inverse relations. It can be done by using the functions 
relName(ci,ck) ∈ STRING 
invRelName (ci,ck) ∈  STRING  

Specific Sections Constraints 
Each relation in the Specific Section of an OPAL template must satisfy the following 
domain constraints: 
Let S be a relation in the Object Specific Section: C10) (ci,ch) ∈ S ⇒ kind(ci) = O 
Let S be a relation in the Process Specific Section:   C11) (ci,ch) ∈ S ⇒ kind(ci) = P 
Let S be a relation in the Actor Specific Section:  C12) (ci,ch) ∈ S ⇒ kind(ci) = A 
Let S be a relation in the CA Specific Sections:  C13) (ci,ch)∈ S ⇒ kind(ci) = CA 
Let S be a relation in the AA Specific Section:  C14) (ci,ch)∈ S ⇒ kind(ci) = AA 
Let S be a relation in the Operation Specific Section: C15) (ci,ch)∈ S ⇒ kind(ci) = Op 
 
Also the range of the relations in the Specific Sections is constrained.  
C16) (ci,ch) ∈  GeneratedBy ⇒ kind(ch) = P 
Similarly, the ranges of the other specific relations can be desumed by the description 
of the Specific Section given  in the abstract syntax description. 
 
In some Specific Section properties relate an object to a tuple. For instance, in the 
Actor Specific Section the Responsabilities relation is definied as follow: 

Responsabilities(ai) = {(p, r, o) | (ai, p, r, o), ai ∈ Ar , p ∈ P, r ∈ {“performer”, 
“controller”, “stakeholder”, “supporter”}, o ∈ O }; 

The range of this relation is constrained to assume values in the set of tuples [Process, 
role, Object]. This set is given by the cartesian product of the sets in which processes, 
roles and objects can assume values. 
C17) (ai, p, r, o) ∈  Responsabilities ⇒   (p, r, o)  ∈   P × Roles × O ,  

 where Roles =  {“performer”, “controller”, “stakeholder”, “supporter”} 
 

Similarly, the range of the other specific relations can be desumed by the description 
of the Specific Sections given in the abstract syntax description. 



6.  Conclusions to the Athos Representational Specifications 

In this paper we presented an ontology modeling method aimed at supporting the 
domain experts, with limited ontology engineering knowledge, in the ontology 
building activities. Our work starts from the assumption that ontology languages, such 
as OWL, are not easy to use and adding domain specific modeling notions provides a 
helpful solution. Therefore we presented OPAL, an ontology framework that includes 
a few basic notions drawn from business modeling domain and from key constructs in 
UML. 

In particular, the primary concept categories identified are: Object, Process, and 
Actor. The domain expert, during the ontology modeling process, is required to 
identify the relevant concepts of the domain and to classify them according to OPAL 
categories.  

Furthermore, a set of semantic relations (such as ISA, Decomposition, 
Relatedness) and some domain specific relations (generated-by, updated-by, roles, 
skills, etc.) can be used to describe the relationships among these concepts.  

 We presented a first axiomatization of OPAL, aimed at a better understanding of 
its semantics. The axioms are represented by a set of constraints defined over the 
semantic relations. On a more practical ground, the axioms are used to supporting the 
verification, for an enhanced quality of the produced ontology. 

 In OPAL the structure of concepts is based on a Frame-Slot-Facet paradigm. In 
particular, the proposed frame structure (template) is organised in three sections: 
Identification, Structural, Specific Section. These sections have been presented with 
an algebraic approach that can be seen as the abstract syntax of the representation 
language. 

The OPAL ontology framework has been used in building the Athos ontology 
management system. Athos, an open source system implemented on top of the Zope 
platform, has been developed within the European Integrated Project Athena and is 
currently under experimentation. The first results indicate that the proposed method is 
well accepted by business people and its supporting features have been recognised.  

References  

1. F.van Harmelen, I.Horrocks, P.F.Patel-Schneider, OWL Web Ontology Language 
Semantics and Abstract Syntax, W3C Candidate Recommendation 18 August 2003 

2. M. Minsky, Frame-system: Theory in Thinking, University Press, London, 1977. 
3. Fernandéz, Mariano; Gómez-Pérez, Asunción; and Juristo, Natalia. 1997. 
4. METHONTOLOGY: From Ontological Art to Ontological Engineering. 

Workshop, on Ontological Engineering. Spring Symposium Series. AAAI97 
Stanford. 

5. On-To-Knowledge Methodology - Baseline Version, Hans-Peter Schnurr, York 
Sure, Rudi Studer (University of Karlsruhe), Hans Akkermans (Vrije Universiteit 
Amsterdam), On-To-Knowledge EU-IST-1999-10132 Project Deliverable D15, 
2000. 

  



6. OMG Group. Unified Modeling Language (UML), version 1.5. Available on-line:  
http://www.omg.org/technology/documents/formal/uml.htm. 

7. http://www.rosettanet.org 
8. Business Process Modeling Language (BPML). Alameda (CA): Business Process 

Management Initiative, 2001. Working Draft 0.4 
9. ebXML Business Process Specification Schema. Version 1.01. OASIS and 

UN/CEFACT, 2001. Accessed 2002-04-11 2002. Available from 
http://www.ebxml.org/specs/ebBPSS.pdf 

10.OAGIS: A 'Canonical' Business Language Providing both Vertical and Horizontal 
Requirements." By Michael Rowell (Chief Architect, Open Applications Group). 
Version 1.0. White Paper, 2002. 

11.Unified Modeling Language (UML), version 1.5, 2003. Available at: 
http://www.omg.org/technology/documents 

12.D. Nardi, R. J. Brachman. An Introduction to Description Logics. In the 
Description Logic Handbook, edited by F. Baader, D. Calvanese, D.L. 
McGuinness, D. Nardi, P.F. Patel-Schneider, Cambridge University Press, 2002, 
pages 5-44. 

13.Gruninger, M., Sriram, R.D., Cheng, J., Law, K., "Process Specification Language 
for Project Information Exchange," International Journal of IT in Architecture, 
Engineering & Construction, 2003 

14.Eric S. K.Yu and John Mylopoulos. From E-R to “A-R” – modelling strategic 
actor relationships for business process reengineering. In Proc. of the 13th 
International Conference on the Entity-Relationship Approach – ER’94, 
Manchester (UK), December 13-16, 1994. 


