
SAMIZDATA: a scale-independent data
management system for time series

Paolo Atzeni1, Luigi Bellomarini2, Eleonora Laurenza3, and Marco Lippi4

1 Università Roma Tre 2 Università Roma Tre and Bank of Italy
3 Sapienza University of Rome and Bank of Italy
4 Einaudi Institute for Economics and Finance

Abstract. Time series data are becoming more and more pervasive in
many business and human endeavors. The challenge of developing ded-
icated systems for managing such data lies in handling the problem of
the scale: time series are inherently growing and so the algorithms to
compute answers to queries soon become ineffective. In this paper we
describe Samizdata, a data management system we have developed for
Einaudi Institute for Economics and Finance, a research institute con-
trolled by the Bank of Italy. We leverage a recent systematization of the
concept of scale-independent query answering from the database litera-
ture to deliver a scalable management system for time series.

1 Introduction

We are assisting to a big proliferation of data sources that produce ordered se-
quential measurements, each referred to a specific point in time. This kind of data
is generally named time series [10]. Many important applications of time series
data are in the financial context, where prominent examples are the sequences
of trading ticks, that is, the upward and downward movements of the price of a
security [8, 14]. Series play a fundamental role also in many other fields, where
they represent a range of different events, such as: scalar quantities measured
by sensors, machine logs, metrics from social network analysis, transport data
collected from mobile devices, biological tracks, and so on [3, 9, 11, 13, 15].

The Einaudi Institute for Economics and Finance (EIEF) is a research in-
stitute, controlled by the Bank of Italy, which produces world-class research in
economics and finance. Together with the Bank of Italy, it has been playing
a key role in the standardization and automation of processes concerning the
production of official statistics. Their business processes are centered on time
series: as a consumer, EIEF exploits third-party time series for research needs,
importing data from other systems; as a producer, EIEF compiles and delivers
new time series as the final deliverable research products.

The increasing availability of new time series resulted in many new research
opportunities for the institute that could be exploited only with a new dedicated
management system able to guarantee stable performances with rapidly growing
volumes. Besides, the increased amount of data produced by the various sources



also put the current data management system under stress, affecting the ability
to respond to contingent needs. This paper is based on our experience at EIEF
in the development of Samizdata, a data management system for time series.

Time series data have special characteristics: they tend to be immutable,
rapidly growing and substantially schema-less. Immutable because they repre-
sent a sequence of events, each meaningful at a point in time. Thus, keeping
track of all of them is essential: more recent values do not update older ones, but
are queued and memorized. Since values are never deleted, time series also grow
rapidly. They are usually fed by high-frequency sources, reaching, for instance,
hundreds of thousands of ticks per second (like for stock quotes). Finally, in this
context, the database schema is barely present and indeed very simple: all the
series in a system are only characterized by their values and the respective times-
tamps. Due to these characteristics, in the development of systems for time series,
the challenge is providing solutions “at scale”, that is, the techniques adopted
for certain amounts of data must remain effective when the volumes grow.

Our experience at EIEF showed that a data management system for time se-
ries has to support their whole lifecycle through a range of high-level operations,
which enable the various phases of the business processes. Examples are: the
application of a research model, the compilation of a new time series calculated
from existing ones, the visualization, the export into a known format, and so
on. All these operations rely on the basic task of finding and retrieving the time
series, which are often searched by some characterizing features, such as their
name in natural language, their description, their frequency, the unit of measure,
the original producer of the data, the copyright notes, and so on. For example,
let us suppose we memorize our time series in a database D, in particular in a
relation TS(id, name, description, frequency, ..., ts time, ts data),
where id is a progressive key, name is the name of the series, description,
frequency and currency are some of its features, ts data stands for the values
and ts time is the timestamp each value refers to. The following expression is
an example of feature-based query: name ∧ ts time ∧ ts data ∧ description =
"industrial production". It asks for the name and all the time-value pairs of
the series about “industrial production”.

The problem we address in Samizdata is guaranteeing the scale indepen-
dence of such feature-based queries: independently of how many time-value pairs
are currently stored, we want the system to respond with stable performances.
More precisely, we want it to respect upper bounds for both the execution time
(the query must not take too long) and the size of the result set (the result must
be manageable, hence not too large).

The database literature has recently proposed the notion of access schema [7],
a theoretical device that formally defines the classes of queries that can be ex-
ecuted in a scale-independent way on a database D. In particular, an access
schema is composed of a set of entries ai = (Ri, {f1, . . . , fn}, N, T ). Each of
them specifies that for a relation Ri of D, a query over attributes f1, . . . , fn, will
be answered by the system in at most T units of time, producing no more than
N tuples. Hence, to express the scale independency of the query of our example,



we would have the following entry: ai = (TS, {description}, N, T ). We believe
that the access schema is a precious tool to define and validate the scalability
requirements of a data management system.

In Samizdata we use the notion of access schema, concretely in an industrial
product, taking the chance of EIEF present needs to deliver a software useful for
an emerging category of business scenarios. In particular, Samizdata achieves
scale independence on feature-based queries by using access schemas to drive and
validate the design of the system. First, we characterize the class of queries that
cover the user requirements and then formulate an access schema that expresses
the scale independence requirements for such queries. In order to satisfy the
proposed access schema, we argue that relational solutions have some limitations,
basically due to the impossibility to contain the growth of the number of tuples
and guarantee stable query performances when new time-value pairs are added.
Thus, we propose a non-relational data model for our scenario, where a time
series is represented with documents (i.e. a recursive key-value data structure)
and its time-value pairs as nested sub-documents. In our data model, new time-
value pairs do not increase the number of first-level documents and do not affect
the scalability. For the feature-based queries, we propose an inverted index, also
modeled as a document, which for each possible feature value points to the most
meaningful time series. We build a set of basic primitives on top of the feature-
based queries and use them to support a number of satellite components in the
system, which offer all the functionalities needed to support time series lifecycle
in EIEF business processes.

The remainder of the paper is organized as follows. In Section 2, we present
the scenario, giving context and motivations to our solution. In Section 3, we
introduce the problem of scale-independent query answering, put it in the context
of time series data, and present how we approached the problem in Samizdata.
Then Section 4 describes the overall architecture of the system. In Section 5 we
examine the related work and, in Section 6, we draw up our conclusions.

2 The scenario

The Einaudi Institute for Economics and Finance has relevant responsibilities
in the production of Italian official statistics and, together with the Bank of
Italy, it delivers products that have significant impact on policymaking. For the
compilation of such products, it relies on a business process that foresees the
following phases: the institute collects, cleans and normalizes a large amount of
time series data originating from heterogeneous external sources, such as other
research institutes, providers of official statistics, central banks and so on; then,
EIEF applies its own research models to these data, in the form of programs and
scripts in domain-specific tools for economic and statistical analysis, such as R,
MATLAB, MS Excel, STATA, eViews, Speakeasy, Octave, SAS and so on. As
a result of these calculations, EIEF produces aggregated time series data and
compiles new ones, which are then assembled into panels and datasets, which



form the final deliverables of the research process. These data are then put at the
disposal of the external community, such as other researchers and policy makers.

The rise of the available time series data offers new research opportunities to
the institute, allowing for the design of more refined and robust descriptive or
forecasting models. Yet, the challenge is to cope with the continuously soaring
volumes, which indeed put the present system under stress and affect even the
ability to respond to contingent requests for data.

The main goal of Samizdata project was enabling these new research op-
portunities and, at the same time, shortening the “time to research”, that is,
the amount of effort and preparatory activities needed to have the data ready
for the research job and for publishing the results.

EIEF business processes can be seen as an ecosystem of applications, each
encapsulating a different service or functionality. Since the production of re-
search deliverables involves several iterations and revisions, the whole workflow
is an orchestration of such services, which can be dynamically modified or rear-
ranged according to the specific needs. The services play a client role and query
Samizdata to store, search, transform and export time series data, that is, to
implement their lifecycle.

In this context, Samizdata has a number of motivations:

– for the institute, the system is a long-term investment, since its ability to
scale contains the upfront costs to the present needs, while enabling EIEF,
in the future, to increase the investment and leverage the forthcoming new
sources so as to craft innovative research products;

– it allows to solve the contingent needs, by providing a system that is prac-
tically able to respond to queries upon the present volume of data;

– it represents a step forward in the integration of enterprise information: in a
large institute, such as EIEF, the various research groups tend to work with
a strong vertical focus on their analysis goals, laying the ground for a data
environment with duplicated objects, inconsistencies and low quality in gen-
eral. Samizdata makes up for this, by offering a set of basic functionalities
to the groups and resulting in an integrated database as a side effect;

– it offers a plenty of value-added services, such as normalization and transfor-
mation of the series, conversion into many disparate formats in a unified way,
guarding the quality, the homogeneity of the intermediate data products and
maximizing the opportunities of reuse.

3 Achieving scale independence for time series data

A time series is a sequence of n real values T = (x1, . . . , xn), xi ∈ R, each
associated with a time value (t1, . . . , tn). It originates from a data source as the
the sampling of an underlying process. Each pair (xi, ti) is usually referred to as
an observation.

Although in this definition each observation carries only one real value, in a
broader sense, time series represent generic events occurring at instants of time,



thus observations can also carry non-numeric values, such as strings, texts and
multimedia.

Samizdata is a time series management system: it supports the storage of
such kind of data and provides with functionalities to perform queries upon them.
In Samizdata we enrich the time series with a set of features carrying important
descriptive information. We name such features as metadata and model them as a
function µTi

: F → V, for each time series Ti, where F is an infinite set of features
and V a set of values for those features. For example, the metadata of a time series
T1 concerning the gross domestic product of the United States are represented
by the following function: {µT1

(“description”) = “The GDP of the US”,
µT1

(“source”) = “US Federal Reserve”, µT1
(“Num. of Obs.”) = 3800, . . .}.

Handling time series inherently poses the problem of scale, since the obser-
vations are never modified or deleted and the new ones are always appended.
Moreover, the growth rate is often unforeseeable, and some series are even sam-
pled with mutable frequency at the source.

In developing systems, while the storage needed is a very immediate aspect,
the most challenging and indeed interesting problem is the ability to answer
queries. As we have mentioned in the Section 1, all the major processing tasks at
EIEF (such as applying the research models, export and visualization and so on)
preliminarily require to query the system to individuate the specific series and
completely fetch them. In this, the basic issue is performing metadata- or feature-
based queries, that is finding the time series that have certain properties, deal
with some given topics, or cover some desired subjects. Our goal in Samizdata
is answering to this kind of feature-based queries in a scale-independent fashion.

In other terms, we want to allow users and client applications (including
the modules of Samizdata) to retrieve the time series on the basis of a textual
description v to be searched for among all the features; more precisely, we want
to be able to return all the time series Ti that have some features f ∈ F such
that µTi

(f) ∼ v.1 For example, given v = "industrial production", all the
series having "industrial production" as a substring of any of their features,
such as the name, the description, the notes and so on, should be returned.

In order to explain the problem, let us refer to a generic time series database
D, which is a set {T1, . . . , Tq} of time series, and to a generic a query Q(D,p f),
where p is the vector of features in F and observations that are desired as out-
put, and f is the vector of features in F that are constrained in the query. For
example name∧ ts time∧ ts data∧ frequency = "monthly"∧ description =
"literacy rate" retrieves all the series, with their observations, that have spe-
cific values for the features frequency and description.2 Our goal is achieving
in Samizdata scale independence on this kind of queries, which means answering
Q(D, f) with an effort that is independent of the size of D.

To this end, we leverage the concept of access schema, a useful characteri-
zation, recently proposed in the database literature [7], that allows to formalize

1 The symbol ∼ denotes some similarity metric between the values of V and v.
2 As in our scenario all the queries return the name of the series as well as their

observations (pairs (ts time,ts data)), we omit vector p from hereinafter.



and validate the scalability requirements. Given a relational database schema
R = (R1, . . . , Rk), where Ri is a relation symbol, an access schema A is a set
of entries of the form (Ri, X,N, T ), where X is a subset of the attributes of Ri,
and N and T are positive integers. A database D conforms to A if, for each
(Ri, X,N, T ) ∈ A the following two conditions hold: i) there are at most N
tuples in Ri having a given combination v̂ of values for attributes X (in other
words, the cardinality of a selection σX=v̂(R) for any assignment v̂ of values of
X is at most N); ii) such tuples can be retrieved in at most T units of time.

If a query Q(D, f) only poses conjunctions and disjunctions of conditions
fi = vi over attributes of A entries, we say that the query respects the access
schema and is scale independent, as the time required to perform the query and
the number of output tuples depend on Q and A, but not on D.

Since in our scenario we assume that all the time series are stored with
the “same technique” (for example in the same relation3 or, as we will see, as
documents with a partially defined structure), we can relax the notation without
loss of generality and consider entries of the form (D, X,M, T ), meaning that a
query over a set of features X retrieves a time series in D in at most T units of
time, producing no more than N results.

Thus, in Samizdata, the key to achieve scale independence requires two
important high-level tasks: individuating a sufficiently general range of queries
suitable for users’ needs; devising an appropriate access schema, which expresses
the scalability requirements for such queries. Such access schema is then used to
drive and validate the actual implementation. The next two sections are devoted
to these two tasks.

3.1 The queries

EIEF users and application developers show to prefer full-text and unstructured
queries, where they only have to specify one value v to be searched for in all the
metadata features of the various series, without even knowing the name of the
respective features. The requirements explicitly involve the possibility to search
for any feature, even if that specific feature is present only in a subset of the
stored time series and, clearly, the ones without that property are not to be
included in the results. Moreover, EIEF wants to be able to handle in the future
any other time series, independently of their features, which clearly can differ
from the ones already in the system.

More formally, our class of queries can be represented as Q(D, f) = (f1 =
v∨ . . .∨ fs = v), where s is the maximum number of features that are compared
with v for a time series. Now, in order to fully characterize our queries, we have
to define a finite set F ′ = {f1, . . . , fs} of features (with F ′ ⊂ F) that can be
used to retrieve time series in the system. Since the functions µTi

that define
our metadata are of course non-total (i.e. not all the series have values for all
the features) and their domain varies for each time series Ti (i.e. different time

3 Notice that having one relation for each time series would not be feasible in contexts
with tens of millions of time series, such as the one at EIEF.



series frequently have non-overlapping domains), we choose F ′ as the union of
all the active domains of the various µTi

. More intuitively, we allow queries on
any feature of any time series. Notice that F ′ is not huge since in practice the
number of unique feature names among all the time series is indeed small (a few
hundreds).

As we will explain in Section 4, we build Samizdata architecture in a REST-
oriented style, basing all the components on top this kind of feature-based
queries: GET, to retrieve the stored series, DELETE to erase them and PUT, to
add new series and observations.

3.2 The access schema

In this Section, we start by defining an access schema that represents our scala-
bility requirements. Then we discuss two relational approaches for building time
series management systems, which are the most intuitive and immediate solu-
tions and, indeed, often adopted; we use the defined access schema to argue that
these approaches are not scale independent. Finally, we present our implemen-
tation in Samizdata and show how the limitations of the two approaches are
overcome. In particular, we validate our solution with the same access schema
and show that our class of queries Q(D, f) is handled in a scale-independent way.

Starting from an empty access schema A, we express our scale independence
requirements by adding entries ai to A. For each feature fi we add an entry
afi = (D, {fi},M, Tf ), meaning that each feature must be sufficiently selective,
so that the tuples in the result of the query are at most M and are retrieved in at
most Tf . One particular feature, the name, deserves more care as in the system
it is a unique identifier for a single time series. Therefore, we add a specific entry
of the form au = (D, {name}, 1, Tu), meaning that our system should respond to
name-based queries in no more than Tu units of time and return at most one
result.

We now consider two relational settings, which we show to be not scale
independent. In the first setting, the time series would be stored in a single re-
lation TS(id, name, f1, . . . , fs, ts time, ts data), where id is a progressive
key, name is the time series name (unique in the system), f1, . . . fs the various
features, ts data stands for the values of the observations and ts time is the
respective timestamp. Clearly, we would have an index for the name and each of
the other features. In the relation TS we would have a tuple for each observation
of each time series, hence violating the entry au, which restricts to at most one
result tuple for a given name.4 In this setting, we do not have any constraint on
the number of time series having a specific value for a feature, hence we would
also violate entries afi . The access time constraints would be soon violated for
the same reasons.

There are other important issues with this approach. While the name is com-
mon for all the time series, for the other features only a partial overlap can

4 Notice that also a normalized version of TS, where features and observations are split
in two relations, with a foreign key constraint on the series name, would violate au

as well.



be assumed; therefore TS would be very sparse (with many null values) and
so potentially space- and access-inefficient. Moreover, the addition of new time
series to the store would cause the introduction of new features and, as a con-
sequence, the relational schema would be subject to continuous modifications.
Furthermore, indices in relational systems are suitable for exact matches, while
lend themselves less effectively to full-text search and, in our scenario, metadata-
based queries involve, instead, the evaluation of some similarity metric between
an input text value v and the content of each feature.

Let us consider a second relational setting, where the time series would
be stored in a relation TS(id, name, f1, . . . , fs, ts data). Here, there is no
ts time attribute and ts data would hold an encoding of all the time-value
pairs.5 This solution would limit the output of name-based queries to exactly
one tuple. However this solution would be ineffective for the queries on the other
features and, in facts, we observe that the number of distinct time series having a
given value v for some feature is not limited by M in any case. Moreover, this ap-
proach has another drawback: it adopts an opaque representation of data. Since
the time-value pairs are hidden in the encoding of ts data, punctual access to
observations is laborious, adding new values is inefficient and and the data are
difficultly inspectable.

We overcome the limitations of the two relational representations we have
described by proposing a document-based data model for time series. A docu-
ment is a recursive key-value data structure. The keys are strings and identify
the “fields” of the document, and the respective values can be primitive types,
other documents (sub-documents) or lists of documents. The documents can be
memorized in document stores, specialized NoSQL systems, which support them
natively, offering a range of functionalities, such as indexing, search by field or
sub-field (i.e. field in a sub-document), addition of new key-value pairs and so on.
Interestingly, all these functionalities consider documents along with their sub-
documents as first-class objects and support very quick read, write and append
operations at this granularity.

In our data model, each time series corresponds to one single document and,
in the store, indexing allows for an efficient access by name. Then, the actual
time-value pairs are nested into each time series document. As mentioned, this
nesting is transparently offered by the store. What is more, a document-based
data model better supports the continuous introduction of new features, which
in a relational context, would be structural elements and would require frequent
schema updates. Each time series document has two sub-documents, one for
metadata and one for data. The various metadata features are elements in the
first sub-document and each observation is in turn a sub-document in data. The
following JSON-like snippet exemplifies what we have in the system for the GDP
of the US:

5 Technically, this can be obtained in systems by choosing an appropriate data type
for raw data, such as BLOB.



Fig. 1. Fragments from Samizdata document store.

{ metadata:

{ id: "/fed/all/gdp", description: "The GDP of the US", ... },
data: [

{ timestamp: 2012-12-31 12:13:51...UTC, value: 16.16},
{ timestamp: 2013-12-31 12:13:51...UTC, value: 16.77}, ... ]}

Actually the snippet has some simplifications and in the real system even
the observations are characterized by some observation-level metadata, defining
specific properties. Figure 1 shows some fragments of the real document store.

We satisfied name- and feature-based queries with two different strategies.
The various documents are sharded into many different physical repositories on
the basis of the series name. Since the documents are the atomic elements for
read and write operations (and in the store there are internal limits), we partition
top frequency (i.e. longest) time series into several fixed-length documents, each
with an identifier name + offset that can be dynamically calculated on the
basis of the desired portion of the series. Then, a centralized hash function takes
the name as input and allows to search the right repository and access the data.
As more series come into Samizdata, the system scales out by adding more
shards. The access time is limited by Tu ≤ ts + td, where ts is the time needed
to access a shard individuated by the hash function and td is the time needed
to access an indexed document within a shard. Moreover, the size of the output
is limited by N = 1, which is the specific time series document or its portion, in
case of high frequency series. Hence, for this kind of queries, the entry au of A
is respected.



To satisfy the entries afi of A for the feature-based queries, we adopt an
approach based on a distributed inverted index. We consider all the fragments
of text in the values of the features, ordered by selectivity, and we keep only
the most selective ones. In other terms, we fix an upper bound α, denoting the
maximum number of time series in which the fragment can occur to be consid-
ered. As a consequence, very common fragments (such as prepositions, articles,
etc.) are discarded, while more selective ones (such as “US GDP”, “industrial
production”, “oil”) are kept. For each text fragment, we store the list of at most
α identifiers of the time series in which it has been used. We also memorize the
inverted-index document in the store, as exemplified by the following JSON-like
example:

{ industrial production: ["/wb/it/national accounts",

"/fed/all/gdp", "/un/all/overall debt",...]},
{ oil price: ["/opec/all/op","/wb/all/oil price",...]},...

We adopt sharding also in this case, partitioning the index documents by text
fragment (“industrial production” or “oil price” in the example). In this way,
whenever a feature-based query is issued, first Samizdata accesses the right
shard, it obtains the list of the names of the time series in which it appears and
finally retrieves them by name. The overall time is limited by Tf ≤ (α+1)× ts +
tw +α× td, where ts is the time needed to access a shard of the repository (and
we access once for the index and at most α times for the respective series, in case
they are all in different shards), tw is the time needed to retrieve a document
of the inverted index and td the time needed to access an indexed time series.
Moreover, the number of the fetched documents will be limited by M ≤ 1 + α,
that is, one for the index and at most α for the respective time series. All these
conditions show that also entries afi of A are respected.

4 Architecture of the system

As shown in Figure 2, the architecture of Samizdata is composed of a core
module, SamizDB, which implements the document-based data store that we
have described in Section 3.2. SamizDB exposes a set of basic primitives (GET,
PUT, DELETE), which allow to access time series data in a REST style, with
the scalability properties we have discussed at length. The other modules then
surround SamizDB and work as clients for it and are described in the following
subsections.

4.1 Importing time series from external sources

SamizFunnel has the responsibility of fetching and extracting time series from
third-party sources. It applies the appropriate conversions and feeds the series
into SamizDB. The adapters that are depicted in Figure 2, mirror the present and
next-future requirements of EIEF. We import data from traditional providers,



Fig. 2. The architecture of Samizdata.

which offer SQL access to their databases or, more frequently, adhere to consol-
idated data exchange standards in the sector, such as SDMX.6

However, thanks to the scalability of Samizdata, EIEF can take the oppor-
tunity to leverage non-conventional sources such as data from social networks,
machine logs, messaging queues and even Apps and sensors of the Internet of
Things. Interesting new sources, which could be used even for official statistics
in the next future, come from the web, where the social media such as YouTube,
for which we offer a specific adapter, represent an effective meter of people be-
haviors and trends of the society. SamizFunnel relies on a declarative approach
and a semi-automatic generation of the adapters, for which we leveraged our
experience on translations of database models and data exchange [2].

The adapters support two modes: eager and lazy. In eager mode, the user
specifies a sampling rate, and the adapter actively pulls the new data from the
source with that fixed frequency. When the sources provide new series, they are
indexed by the SamizSearch module, and copied into the respective document
store of SamizDB, with calls to the PUT primitive. In lazy mode, the time series
in the sources are only indexed, yet the actual observations are not copied into
SamizDB. In this way, the initial import is much faster, but it requires the access
to real sources when the users need the actual data. Lazy mode also showed to
be the best choice with top-frequency sources, since the retrieval could be done
in batch mode.

6 Statistical Data and Metadata eXchange is an international standard for the ex-
change of statistical data and metadata adopted by all the major providers of official
statistics (www.sdmx.org).



A final important remark about this module concerns the versioning, which
Samizdata fully supports. Indeed, when SamizFunnel imports the series from
an external source, it invokes the PUT primitive of SamizDB with the validity
interval as a supplementary parameter. As it can be seen in the fragments in
Figure 1, this parameter is then stored at observation level and allows to retrieve
any series as of any instant of time.

4.2 Validating and transforming time series

VTLInterpreter is another satellite module, which plays a particularly relevant
role for a stakeholder active in the official statistics domain, such as EIEF. Before
using the time series originating from external sources, they must be validated,
cleaned and normalized in order to guarantee their quality. These validation and
transformation logics are expressed by the domain experts in form of rules, spec-
ified with a domain-specific language. VTLInterpreter accepts rules expressed
according to an emerging standard syntax in the official statistics field.7 The
module executes these rules, by accessing SamizDB with GET operations, to re-
trieve the actual data and PUT to store the results back into SamizDB.

4.3 Searching, visualizing and exporting time series

SamizConsole is the interface of Samizdata and consists of a web GUI and set
of APIs. The web GUI basically allows to search the series in SamizDB, modify
and export them in all the prominent formats for statistical data. All these
functionalities are provided within one single dashboard (some screenshots are
shown in Figure 3), which also allows for data visualization and exploration. 8

In a typical interaction, the user enters her full-text query. It is interpreted as
a feature-based query as we have explained in Section 3 and compared against
all the features of all the series. Then, the user chooses a series to work with
and the system shows the metadata of interest for that time series in a panel.
The user then indicates a version for the time series. Moreover, the user can
indicate a preliminary transformation, in the sense that she may require the
time series to be altered before being exported. For this purpose, the GUI offers
a set of standard operations that are usually performed. The GUI then invokes
the VTLInterpreter, asking for the application of the required transformation,
fetches the time series again from SamizDB and shows the updated version. The
user can then browse and explore the various observations, both graphically and
in a textual grid. Finally, she can either export the data in a desired format or
add them to a personal basket so as to download multiple series at the same
time at the end of her work session.

Another option to access the data is using the REST APIs that Samizdata
offers for many common statistical tools. This approach is very powerful and

7 https://sdmx.org/?page id=5096
8 An open but functionally limited version of the web console is available on line for

demo purposes at http://www.samizdata.it



Fig. 3. Screenshots of Samizdata web GUI.

only requires the client tool to support HTTP protocol. Nevertheless, handling
the data in this way is laborious since the APIs return a JSON output, which
must be decoded in the application logic with custom code. Hence, Samizdata
also offers a rich set of user-friendly higher-level libraries 9 (an example is in
Figure 4).

5 Related work

The experience of Samizdata shows how the recent formalization of query an-
swering in the context of big data by Libkin et al. [7], can be applied in a
principled way to design and validate the architecture of a data management
system. Indeed, the results our work refers to come as a neat formalization of
many years of experience where patterns and good practices have been applied
in the development of scalable systems. Here we follow the reverse approach and
aim at leveraging this huge expertise starting from the formal results that con-
dense it; in particular we adapt the promising idea of access schema and use it
to drive and validate the design.

In order to achieve scalability, the adoption of a document-based data model
for time series is being explored in the NoSQL community,10 as these systems also
have good performances for typical time series operations, such as high-frequency
inserts and aggregating. Moreover, they have great modularity, supporting, for
example, different schema design choices, according to the frequency of the series
and the desired performance. Samizdata adopts these practices in a principled

9 More details can be found here: http://www.samizdata.it/api doc.html
10 http://blog.mongodb.org/post/65517193370/schema-design-for-time-series-data-in-

mongodb



Fig. 4. Some code snippets exemplifying how to use of Samizdata APIs for importing
time series in R (https://cran.r-project.org).

way and extends them fulfilling the conditions modeled by the concept of access
schema.

The amount of research about time series data management is impressive
and related papers with a rich bibliography exist [6, 1, 5, 12, 17, 16]. However, if
we just concentrate on the works concerning fast retrieval of time series data
from systems, Agrawal et al. [1] in a seminal work propose one of the first ap-
proaches to index time series data, consisting in spotting specific characteristics
of the series, by studying them in the domain frequency by means of Fast Fourier
Transforms. Many other works then follow this approach and develop specialized
methods. What we remark here is that all these techniques concentrate on the
values of the series and open the way to the development of search techniques
based on clustering [4]. In Samizdata we address the more basic but essential re-
quirement of retrieving the series given some metadata features. Our experience
at EIEF and with many other real-world systems, proved that in the context of
official statistics, such case is indeed very common and still unsolved by most
applications.

6 Conclusions

We have illustrated how the application of the theory of scale-independent query
answering to the domain of time series data management can lead to effective
results and drive the design of a data management system for an important
player in the domain of official statistics. We believe that the requirements we
have faced and the techniques that we have adopted in Samizdata are general
enough to represent a feedback to guide database research to address present
and future problems in this domain.



References

1. R. Agrawal, C. Faloutsos, and A. N. Swami. Efficient similarity search in sequence
databases. In Proceedings of the 4th International Conference on Foundations of
Data Organization and Algorithms, FODO ’93, pages 69–84, London, UK, UK,
1993. Springer-Verlag.

2. P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme. Mism: A platform for
model-independent solutions to model management problems. J. Data Semantics,
14:133–161, 2009.

3. Z. Bar-Joseph, G. K. Gerber, D. K. Gifford, T. S. Jaakkola, and I. Simon. A new
approach to analyzing gene expression time series data. In RECOMB, pages 39–48,
2002.

4. P. Chang, J. Hsieh, and T. W. Liao. Evolving fuzzy rules for due-date assignment
problem in semiconductor manufacturing factory. J. Intelligent Manufacturing,
16(4-5):549–557, 2005.

5. H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and
mining of time series data: Experimental comparison of representations and dis-
tance measures. Proc. VLDB Endow., 1(2):1542–1552, Aug. 2008.

6. P. Esling and C. Agón. Time-series data mining. ACM Comput. Surv., 45(1):12,
2012.

7. W. Fan, F. Geerts, and L. Libkin. On scale independence for querying big data. In
Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium on Princi-
ples of database systems, pages 51–62. ACM, 2014.

8. M. Gavrilov, D. Anguelov, P. Indyk, and R. Motwani. Mining the stock market
(extended abstract): Which measure is best? In Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’00, pages 487–496, New York, NY, USA, 2000. ACM.

9. S. Goddard, J. Deogun, S. K. Harms, M. J. Hayes, K. G. Hubbard, S. Reichenbach,
P. Revesz, W. J. Waltman, and D. A. Wilhite. A geospatial decision support
system for drought risk management. In Proceedings of the 2004 Annual National
Conference on Digital Government Research, dg.o ’04, pages 50:1–50:2. Digital
Government Society of North America, 2004.

10. J. Han, M. Kamber, and J. Pei. Data Mining: Concepts and Techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 3rd edition, 2011.

11. R. Honda, S. Wang, T. Kikuchi, and O. Konishi. Mining of moving objects from
time-series images and its application to satellite weather imagery. J. Intell. Inf.
Syst., 19(1):79–93, 2002.

12. F. Korn, H. V. Jagadish, and C. Faloutsos. Efficiently supporting ad hoc queries
in large datasets of time sequences. In Proceedings of the 1997 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’97, pages 289–300,
New York, NY, USA, 1997. ACM.

13. R. N. Mantegna. Hierarchical structure in financial markets. European Physical
Journal B, 11:193–197, 1999.

14. E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes. Correlating financial
time series with micro-blogging activity. In Proceedings of the Fifth ACM Inter-
national Conference on Web Search and Data Mining, WSDM ’12, pages 513–522,
New York, NY, USA, 2012. ACM.

15. K. Uehara and M. Shimada. Extraction of primitive motion and discovery of
association rules from human motion data. In Progress in Discovery Science,
Final Report of the Japanese Discovery Science Project, pages 338–348, London,
UK, UK, 2002. Springer-Verlag.



16. H. Wang, Y. Cai, Y. D. Yang, S. Zhang, and N. Mamoulis. Durable queries over
historical time series. IEEE Trans. Knowl. Data Eng., 26(3):595–607, 2014.

17. W. Zheng, L. Zou, X. Lian, D. Wang, and D. Zhao. Efficient graph similarity
search over large graph databases. IEEE Trans. Knowl. Data Eng., 27(4):964–978,
2015.


