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Abstract. This paper describes the participation of ECSTRA-INSERM
team at CLEF eHealth 2016, task 2.C. The task involves extracting
ICD10 codes from death certificates, mainly described with short plain
texts. We cast the task as a machine learning problem involving the
prediction of the ICD10 codes (categorical variable) from the raw text
transformed into a bag-of-words matrix. We rely on probabilistic topic
models that we evaluate against classical classifiers such as SVM and
Naive Bayes. We demonstrate the effectiveness of topic models for this
task in terms of prediction accuracy and result interpretation.
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1 Introduction

Completing death certificates is a routine task in hospitals and healthcare insti-
tutions. In France, the death certificates are produced by physicians and trans-
mitted to the French Epidemiological Center for the Causes of Death (CépiDC)6.
Beyond the administrative and personal information, the death certificates usu-
ally contain a free-text description of the cause(s) of death. To monitor popula-
tion’s health, free texts are converted by the CépiDC into formal standardized
codes, usually derived from the International Classification of Diseases (ICD)
taxonomy. These codes also serve as a basis for mortality and epidemiology
studies.

The ICD taxonomy covers a wide range of diseases, symptoms, signs, proce-
dures, and other content related to diseases7. The World Health Organization

6 http://www.cepidc.inserm.fr/
7 http://www.who.int/classifications/icd/en/



issues separate versions of ICD per language/country. In this paper, we use the
French release of ICD, which is now at its 10th revision (called ICD10). It covers
more than 20,000 codes including diagnoses and procedures, but only a subset
of theses codes can be causes of death. An example is provided in Table 1.

Table 1. Example causes of death from the French ICD10 taxonomy.

C384 Tumeur maligne de la plèvre (malignant neoplasm of pleura)
C450 Mésothéliome pleural (mesothelioma of pleura)
E274 Insuffisance surrénale aiguë (unspecified adrenocortical insufficiency)
I678 Epilepsie vasculaire (vascular epilepsy)
X74 Lésion auto-infligée par décharge d’armes à feu (intentional self-harm

by firearm and gun discharge)

Requiring manual work and expertise, the task of ICD10 code extraction
from text is quite time-consuming because the ICD10 taxonomy contains thou-
sands of possible causes of death. Within the CLEF eHealth 2016, the task 2.C
focuses on the problem of automatic extraction of the causes of death from the
textual description [8, 10]. The task may be approached either from a machine
learning perspective (supervised classification) or a natural language processing
perspective by using syntactic and/or semantic decision rules. Both approaches
aim at automating the ICD10 code extraction from death certificates.

In this paper, we describe our system to automatic cause-of-death extraction
following the first approach. Concerning the used methods, we mainly focus on
probabilistic topic models [3, 14] that we evaluate against traditional machine
learning methods, like SVM and Naive Bayes, with respect to predictive accu-
racy and result interpretation. We show that topic models are competitive with
traditional methods in terms of predictive accuracy. We also show that topic
models offer more easily-interpreted results and allow to gain a better insight in
the data analysis.

2 Methods

Topic models are probabilistic approaches to discovering hidden structures (com-
monly called topics) from text. Topic models have shown significant efficiency
over baseline models for various language modeling and text mining tasks, like
topic discovery [3], information retrieval [18], and text classification [1]. The
general approach is to model the co-occurrence relation among words (observed
variables) and build soft clusters of words characterizing the topics.

Latent Dirichlet Allocation (LDA) [3] is one of the most popular topic models
completely built on the co-occurrence assumption. In LDA, the words that tend
to co-occur in the same documents are more likely to characterize the same topic.
Conversely, the words that rarely co-occur are likely to describe different topics.



In LDA, the document’s words are captured using an observed variable w (see
Figure 1.a) while the topics are inferred as a latent variable z using Bayes calcu-
lus. For inferring the latent variables, a number of optimization methods can be
deployed, like Gibbs sampling, Expectation Maximization, etc. For more details
on the optimization process, we refer the uninitiated reader to the tutorials in [6,
15].

Fig. 1. Plate representations of (a) LDA and (b) LabeledLDA topic models. In la-
beledLDA, the topics are directly influenced by document’s classes (variable c).

Relying solely on word co-occurrence, LDA model is fully unsupervised. In
this work, we rely on a supervised extension of LDA called LabeledLDA [14].
Unlike LDA, LabeledLDA is supervised in that it learns, in addition to the
hidden topics, a “response variable”. For many tasks, LabeledLDA has shown
competitive results compared to traditional machine learning models, like Naive
Bayes and SVM.

To better explain how LabeledLDA works, we rely on the plate notation given
in Figure 1.b. In the traditional machine learning methods, the words (variable
w) directly influence the prediction decision. For example, in Naive Bayes clas-
sifier, the decision depends on the word frequencies per class. In LabeledLDA,
The prediction decision depends on both document’s words and topics. That is,
the topic’s proportions of the document to be classified are taken into account
when computing the document-code probabilities. On the other hand, the topic
extraction with LabeledLDA is influenced by the document’s classes. Thus, the
documents from the same class are likely to be linked to the same topics. This
feature allows LabeledLDA to take advantage of the hidden structures of docu-
ments as well as the topic-code relations. For example, the code N189 (chronic
kidney disease) is likely to describe a topic about loss in kidney function, that
in turn can be described using the words “kidney”, “renal”, “failure”, etc.

The efficiency of LabeledLDA for text classification has been proved in many
tasks, including diagnosis code assignment to medical summaries [4, 11], which
is very close to our task. In this work, we aim at experimenting LabeledLDA
model for the specific task of death cause extraction. The main differences from
the work in [4] are the following:

– The task is not the same, here the ICD10 codes correspond to the causes of
death while in [4] the codes correspond to diagnoses.



– The number of possible codes is much more important (3,231 vs. 60 in [4])
which endows the task with more challenging analysis problems.

– The documents used here are much shorter (a document contains 3.6 words
on average vs. 60 words in [4]).

The parameters of LabeledLDA are fixed empirically in such a way to max-
imize the predictive scores on a held-out dataset (20% documents randomly
sampled from the whole dataset). As such, the number of topics K is equal to
the number of codes (3,231), α = 0.005, β = 0.07. The remaining hyperparam-
eters are learnt from data. In addition, we perform two experiments by setting
the number of iterations to 20,000 and 50,000 respectively.

The two other classifiers used in this work are SVM and Naive Bayes. SVM
is a non-probabilistic binary classifier that maps the documents in such a way to
maximize the gap between those from opposite classes. For our non-binary prob-
lem, we use the one-vs-one technique that consists of learning a separate classifier
of each pair of classes then taking the class with the largest weight. Naive Bayes
is a simple and widely-used probabilistic classifier based on the calculation of
conditional probabilities (probability of words given the outcome class). The
process is then easily inverted using Bayes theorem and word independence as-
sumption. To run these methods, we rely on Python and “scikit-learn” package8,
specifically “BernoulliNB” and “LinearSVC” implementations. For SVM, we set
the penalty parameter c to 1.0. The rest of parameters are left to default values.

3 Dataset

The CépiDC corpus has been created by the French Center for Epidemiology
and Medical Causes of Death (CépiDC) specifically for the CLEF eHealth 2016
contest [10]. It is composed of separate train/test samples of death certificates.
Only the textual description of the causes of death are available for analysis.
CépiDC dataset is highly imbalanced: about 80% of documents are assigned to
less than 20% of codes.

Also, in order to reduce dimensionality, we filter out frequent words (con-
tained in more than 50% of documents) and rare words (contained in less than
3 documents). We also remove stopwords and numerics. The preprocessed text
documents are then mapped into a bag-of-words representation where the words
are weighted according to their presence/absence in the document (binary val-
ues). Table 2 gives an overview of the preprocessed CépiDC sample used for
training.

4 Results and Discussion

The methods are evaluated and ranked based on micro-averaged F-score (har-
monic mean of precision and recall weighted by the class size). LabeledLDA

8 http://scikit-learn.org/



Table 2. CépiDC training dataset description

Lang. #docs. #unique #codes Avg. #words Avg. #docs.
words /doc. /code

French 266,807 9,332 3,231 3.6 9.1

model is put against other traditional machine learning methods: Naive Bayes
and SVM. We have chosen these methods among others because they gave the
best scores.

Table 3. Micro-averaged predictive scores obtained on CépiDC dataset. The methods
are sorted by F-score.

Method Precision Recall F-score

SVM, linear kernel 88.16 65.54 75.19
LabeledLDA, 50,000 iterations 81.93 66.69 73.53
LabeledLDA, 20,000 iterations 81.10 61.53 69.97
Multinomial Naive Bayes 59.44 79.95 68.18

The obtained results are given in Table 3. For the official evaluation, we
have submitted a run of LabeledLDA with 20,000 iterations because the running
time was too long. In Table 3, we also evaluate a run of LabeledLDA with 50,000
iterations. Our two official submissions are given in italic whereas the best scores
are given in bold.

As can be seen, SVM achieves the best F-score compared to other meth-
ods, followed by LabeledLDA model. In terms of micro-averaged F-score, SVM
achieves 75.19% while LabeledLDA arrives second with 73.53%. Compared to the
other 6 participant systems, our LabeledLDA-based system was ranked fourth
(based on 20,000 iterations). When rising the number of iterations to 50,000,
LabeledLDA would be ranked second. Based on the official results from [10], the
average score from all participants was 71.85% while the median was 69.97%.

Although the superiority of SVM over LabeledLDA in terms of precision
score, LabeledLDA’s most interesting advantage resides in offering more easily-
interpreted results. In Table 4, we show the top-10 words characterizing topics
extracted with LabeledLDA model. To complete these results, we have asked a
physician to decide of the significance of topics by looking at the top-10 words
globally. The physician has agreed that topics were extremely informative. Most
of the causes of death represented here could easily be recognized from the
associated topical words.



Table 4. Examples of codes and associated topics from LabeledLDA model.

Code Label Probable words

X74 Lésion auto-infligée par
décharge d’armes à feu (in-
tentional self-harm by firearm
and gun discharge)

arme (gun), feu (fire), plaie (wound), thoracique (thoracic),
cranio (cranio), projectile (bullet), gros (large), calibre (calibre),
cardiaque (cardiac), cérébral (cerebral)

C450 Mésothéliome pleural (mesothe-
lioma of pleura)

pleural (pleural), mésothéliome (mesothelioma), malin (malig-
nant), droit (right), mésothélium (mesothelium), gauche (left),
métastatique (metastatic), terminal (terminal), plèvre (pleura),
épithelioide (epithelioid)

C384 Tumeur maligne de la plèvre
(malignant neoplasm of pleura)

sarcome (sarcoma), thoracique (thoracic), pulmonaire (pul-
monary), multimétastatique (multi metastatic), artère (artery),
récidive (recurrence), évolutif (evolutive), thorax (thorax),
pariétal (parietal), paroi (lining)

E274 Insuffisance surrénale aiguë
(unspecified adrenocortical
insufficiency)

insuffisance (failure), surrénalienne (adrenal), aiguë (acute),
chronique (chronic), diabète (diabetes), surrénale (adrenal),
rénal (renal), insulino (insulin), requérant (petitioner), hypophy-
saire (hypophyseal)

I678 Epilepsie vasculaire (vascular
epilepsy)

épilepsie (epilepsy), AVC (stroke), épileptique (epileptic),
encéphalopathie (encephalopathy), alzheimer (alzheimer),
evoluée (evolved), syndrôme (syndrome), séquelles (aftermath),
post (after), maladie (disease)

5 Related Work

The problem of ICD code extraction has been investigated from a larger perspec-
tive involving code assignment to various types of medical documents. The cause
of death may be considered as a specific task. The majority of these works have
focused on English documents. Number of them have been published with the
Computational Medicine Center’s 2007 medical NLP contest involving ICD code
assignment to radiology reports [13]. The dataset contained 45 different diagnosis
codes and each document could be labeled with one or more codes (multi-label
task). [5] used BoosTexter, a boosting-like technique based on a weak classifier,
to learn a set of classification rules. In [19], a simple classifier was learnt based
on the presence/absence of medical concepts from UMLS ontology9. The best
micro-averaged F-score achieved within the contest was about 89%.

Apart from this contest, in [9] both SVM and Ridge Regression classifiers
have achieved a score of 68% on a dataset with 2,618 distinct codes and about
100,000 documents. In [12], SVM classifier has been tested considering both
flat and hierarchical setting. The hierarchical setting relies on the tree struc-
ture of ICD codes to improve accuracy. On a dataset with 5,030 distinct codes,
the achieved F-scores were about 27% under flat setting and about 39% under
hierarchical setting.

In [4], LabeledLDA has been used to extract ICD codes from both English and
French discharge summaries. Compared to SVM classifier, LabeledLDA achieved
almost same performance. With 60 distinct codes, the micro-averaged F-score
was about 52%. In [11], the authors proposed a hierarchically-supervised topic
model (HSLDA) that combines traditional topic modeling with the ICD struc-

9 https://www.nlm.nih.gov/research/umls/



ture. The hierarchical structure of ICD codes has been taken into account during
the topic learning step. Towards this end, the final predicted code was con-
strained to derive from a single branch of the tree: a code could not be assigned
to the document if its parent in the tree were not. Compared to a non-hierarchical
version [2], HSLDA performed about 5% better on a dataset with 7,298 distinct
codes. The source code of HSLDA has not been made available, which prevented
from experimenting it for this task.

6 Conclusion

In this paper, we have described our system used to extract ICD10 codes from
death certificates within the CLEF 2016 eHealth, task 2.C. Our system is based
on LabeledLDA model: a supervised topic model for topic discovery and doc-
ument classification. Even if LabeledLDA does not outperform SVM classifier,
LabeledLDA provides an explanation of the results (why such code for such doc-
ument?) and allows a more in-depth understanding of the classification mecha-
nisms. This feature is obviously a clear advantage over machine learning meth-
ods, like SVM that are usually based on complex mechanisms and consequently
less suitable for human interaction.

As a promising future direction, we believe that the performance of La-
beledLDA can be improved by integrating an “active learning” component. That
is, the active learning allows capturing and integrating user’s feedback into the
learning process [16, 17]. As such, it will also be possible to focus on specific
data, for example a subset of misclassified documents, chosen by the user based
on her experience [7]. The high flexibility offered by topic models will allow for
more in-depth error analysis and better understanding of data, which is more
convenient for integrating user interaction.
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