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Abstract. This paper describes the participation of the Floristic con-
sortium to the LifeCLEF 2016 plant identification challenge[18]. The aim
of the task was to produce a list of relevant species for a large set of plant
images related to 1000 species of trees, herbs and ferns living in Western
Europe, knowing that some of these images belonged to unseen categories
in the training set like plant species from other areas, horticultural plants
or even off topic images (people, keyboards, animals, etc). To address
this challenge, we first experimented as a baseline, without any rejec-
tion procedure, a Convolutional Neural Network (CNN) approach based
on a slightly modified GoogLeNet model. In a second run, we applied
a simple rejection criteria based on probability threshold estimation on
the output of the CNN, one for each species, for removing automatically
species propositions judged irrelevant. In the third run, rather than def-
initely eliminating some species predictions with the risk to remove false
negative propositions, we applied various attenuation factors in order to
revise the probability distributions given by the CNN as confident score
expressing how much a query was related or not to the known species.
More precisely, for this last run we used the geographical information
and several cohesion measures in terms of observation, ”organ” tags and
taxonomy (genus and family levels) based on a knn similarity search
results within the training set.
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1 Introduction

Content-based image retrieval and computer vision approaches are considered
as one of the most promising solutions to help bridging the taxonomic gap, as
discussed in [5,2,26,24,17]. We therefore see an increasing interest in this trans-
disciplinary challenge in the multimedia community (e.g. in [23,10,3,22,19,12].
Beyond the raw identification performances achievable by state-of-the-art com-
puter vision algorithms, recent visual search paradigms actually offer much more
efficient and interactive ways of browsing large flora than standard field guides or
online web catalogs ([4]). Smartphone applications relying on such image-based



identification services are particularly promising for setting-up massive ecologi-
cal monitoring systems, involving thousands of contributors at a very low cost.
A first step in this way has been achieved by the US consortium behind LeafS-
nap4, an i-phone application allowing the identification of 184 common Amer-
ican plant species based on pictures of cut leaves on an uniform background
(see [21] for more details). Then, the French consortium supporting Pl@ntNet
([17]) went one step beyond by building an interactive image-based plant iden-
tification application that is continuously enriched by the members of a social
network specialized in botany. Inspired by the principles of citizen sciences and
participatory sensing, this project quickly met a large public with more than
1M downloads of the mobile applications ([8,7]). A related initiative is the plant
identification evaluation task organized since 2011 in the context of the interna-
tional evaluation forum CLEF5 and that is based on the data collected within
Pl@ntNet.

Since few years, deep convolutional neural networks repeatedly demonstrated
record breaking results in generic object recognition problems such as ImageNet
[20] and do attract more and more interest in the computer and multimedia vi-
sion communities. The promising effectiveness of this kind of approaches on more
specific and fine grained classification problems like plant identification was con-
firmed last year [9] with impressive results regarding the fineness of the classes (at
species level) and the unbalanced data in terms of available images per species.
Rather than extracting the features according to hand-tuned or psycho-vision
oriented filters, such methods directly work on the image signal. The weights
learned by the first convolutional layers allows to automatically build relevant
image filters whereas the intermediate layers are in charge of pooling these raw
responses into high-level visual patterns. The last fully connected layers work
more traditionally as any discriminative classifier on the image representation
resulting from the previous layers.

A known drawback of Deep Convolutional Neural Networks is that they re-
quire a lot of training data mainly because of the huge number of parameters
to be learned. This is particularly true here where the training set is highly
unbalanced and includes many classes with few instances. The possibility to effi-
ciently fine tune an already learned model, to adapt the architecture and resume
training from the already learned model weight, is one a the main strength of
CNN. This is one key explaining such results obtained last year on the plant
identification task.

However, this year the task introduce an additional challenge by considering
an open set classification problem, i.e. where some of the queries of the test set do
not belong to the known species[6]. More precisely, according to the description
of the task, these unseen images came from the plantnet mobile application and
reflect the diversity of the visual content which the users produce despite of

4 http://leafsnap.com/
5 http://www.clef-initiative.eu/



the plantnet application is dedicated to wild plants from Western Europe. More
precisely these pictures can be:

– off topic pictures like peoples, keyboards, landscapes, etc,
– horticultural plants (house & garden plants, vegetables & fruits),
– and wild plants but observed from all around the world and outside from

the list of known species in the training set.

Considering the off topic pictures, one can guess that it must be rather easy
to build a system predicting low or scattered probabilities on the 1000 known
species, since visual content should be very different from the training dataset. In-
deed, strong lines and corners from a manufactured object will produce certainly
visual features very different from textured and mostly green visual contents
learned from the training dataset. The difficulty of the task is most probably
concentrated on the queries related to horticultural and wild plants with images
sharing with the training set more visual similarities.

That said, CNN, like a vast majority of machine learning tools and recogni-
tion systems are designed for a static closed world, where the primary assumption
is that all categories are known. We can admit that is a classification problem
not so much explored in computer vision while it is a frequent usage case in the
real world, even if some previous works are yet done in this direction with the
CNNs [1].

2 Related work

2.1 Floristic Run 1

To address this challenge, we used a CNN model without any rejection procedure
in order to obtain a first run considered here as a baseline, with the expectation
that a query related to a known species will obtain a probability distribution
concentrated on one or few relevant species (for instance species related to a
same genus). The opposite expectation is that a query related to a unseen class
will obtain a probability distribution spread over many classes.

We have used Caffe [14], a Deep Learning Framework, allowing us to use
CNN architectures and models from the literature. We have chosen and slightly
modified the ”GoogLeNet GPU implementation” model in the Caffe model Zoo,
based on the Google winning architecture in the ImageNet 2014 Challenge [25].
The GoogLeNet architecture consists of a 22 layers deep network with a softmax
loss as the top classifier. It is composed of three ”inception modules” stacked
on top of each other. Each intermediate inception module is connected to an
auxiliary classifier during training, so as to encourage discrimination in the lower
stages of the classifier, increase the gradient signal that gets propagated back,
and provide additional regularization. These auxiliary classifiers are only used
during the training part, and then discarded.

We modified this model network by adding a batch normalisation at each
level between the pooling and the Local Response Normalization layers in order



to accelerate the learning phase [13]. As it is mentioned in this paper, we also
removed the dropout layers. Combined with Parametric Rectified Linear Unit
(PReLU) instead of ReLU layers, this model finally prevent the risk of overfitting
[11]. Since we didn’t find a such GoogleNet implementation, we learn this model
on the ImageNet 2014 dataset (one week, 1,100,000 iterations with a batch size
of 32, reaching a final train loss cost around 0.12).

Finally, we fine-tuned this model on the LifeCLEF Plant Task 2016 train-
ing dataset. For each image in the training and test sets, we therefore cropped
the largest square in the center, and re-sized it to 256x256 pixels. As it was
implemented within Caffe library, it makes also use of a simple data augmen-
tation technique, consisting in cropping randomly a 224x224 pixels image, and
mirroring it horizontally.

As a reminder, here are the most important parameters for Caffe to obtain
our first submitted run ”Floristic Run 1”. The base learning rate parameter was
set to 0.0075 which is rather high compared to usual learning rates applied to
models without batch normalisation. The learning rate is divided by 10 every
42451 iterations with a batch size of 16 involving that each training images will
pass 6 times during a step (113204 images x 6 / 16 gives the step size). We used
only 2 steps and finally stopped the training after 90k iterations. For information,
this fine-tuned model stopped with a top-1 loss accuracy on the training set itself
of 0.9378.

To obtain the first run ”Floristic Run 1”, we directly used this fine-tuned
model on the 8000 test images and limited the responses to the first 50 predicted
species for each (when necessary).

2.2 Floristic Run 2: run 1 + rejection procedure

In a second run we added to the first approach a simple rejection procedure based
on the estimation of probability thresholds, one for each species. The main idea
was here to detect and remove some species predictions judged irrelevant. If the
thresholds are correctly estimated, a query related to an unseen category should
not be associated to any predictions and finally should not occur in the run file.

Given a species, for estimating its probability threshold, we computed the
probability for each of its training image, and then selected the lowest value as
a threshold. This threshold represents in a way the limit of the visual knowledge
of the species according to the model and its available training images.

Finally, we produced the run file ”Floristic Run 2” by applying the estimated
thresholds on the predictions given by the run 1. This approach divided by two on
average the number of species predictions of each query, with numerous queries
associated to only one species prediction (1470 queries among 8000, while the
run 1 contained only 83 queries with a response size of 1). But finally, none of
the queries where entirely rejected.



2.3 Floristic Run 3: run 1 + mitigating factors

The risk of the approach using rejection procedure like in the run 2 is to definitely
remove false negative species propositions, notably if the thresholds are too high
while the probability of a correct species on a query is too loo. Therefore, in
the third run, we preferred to keep all the species predictions produced in run 1
and apply on it some various attenuation factors. Indeed, the metric of the task
is the classification MAP, i.e. the Mean of the Average Precision of each class
taken individually, so, given a class, all the queries are sorted by their probability
associated to this class, and the Average Precision depends directly on the ranks
of the queries which really belong to this class. The main idea here was to reorder
the list of the queries by downscaling their initial probability value by several
factors between [α, 1.0] (α fixed arbitrarily to 0.9) with the expectation that
irrelevant queries will be finally pushed on the tail of the list while relevant
queries will maintain their rank.

For each query, six distinct factors were applied, mixing some information
available in the metadata provided in the dataset with some consistency mea-
sures computed on the response given by a visual similarity search approach.
The similarity search is produced by a fast nearest neighbors indexing and search
method applied to the 1024 dimensional high level feature vector extracted with
the CNN model from the second to last layer ”pool5/7x7 s1”. Each image fea-
ture is compressed with RMMH[15] (Random Maximum Margin Hashing) and
its approximate k-nearest neighbors are searched by probing multiple neighbor-
ing buckets in the consulted hash table (according to the a posteriori multi-probe
algorithm described in [16]). In that way, the knn search gives a complementary
views of the training dataset from which we re-examine the species predictions
given by the softmax output in the CNN model. More precisely, we can com-
pare the metadata of the knns returned by the system with the metadata of
a query for computing several factors (five here) reporting various contextual
information:

– a factor Sclasses based on the classes returned by the knns,
– a factor Sorgans based on the ”organ” tags,
– two ”taxonomic” factors Sgenus and Sfamily at the genus and family levels,
– and a geolocalisation factor Sgeoloc.

Factors are estimated individually for each query i, with values belonging to
[0.9, 1.0] and are directly applied to the probability distribution Pi in order to
obtain some confident scores Ci:

Ci = Pi ∗ Sclasses ∗ Sorgans ∗ Sgenus ∗ Sfamily ∗ Sgeoloc

For computing these factors, we choose to select arbitrarily the most visually
similar images belonging to distinct observations. We didn’t take directly the
5 most similar images because it can potentially be only near duplicate images
belonging to a same observation and thus report poor contextual information.



Class distribution factor Sclasses: this factor represents the convergence
of the knns to a same class or not: if the knns belong to the same class, the factor
will be neutral (Sclasses = 1), while more the returned classes are distinct, more
the factor will tend to α = 0.9. Based on the occurrences of the classes appearing
in the knns, we can compute a probability distribution P and then compute the
entropy Hc defined by:

Hc = −
k∑

i=1

Pi log2 Pi

with k = 5 observations. The entropy Hc will be equal to 0 when all the knns
belong to a same same class, while it will be equal to its maximal value Hcmax =
log2(k) = log2(5) when each knn belong to a different class. Then an affine
function gives directly the factor:

Sclasses = 1 − 0.1 ∗ Hc

log2(5)

Organ factor Sorgans: following the same previous approach, we count here
the number of distinct tags organ reported by the knns among the available tags
(flower, fruit, leaf, scan, stem, entire, branch), extract a probability distribution
on these organs, compute the entropy Ho and finally compute the factor:

Sorgans = 1 − 0.1 ∗ Ho

log2(5)

Taxonomic factors Sgenus and Sfamily: following the same previous for-
mulas, from the occurrences of the distinct genera (families) reported by the nns,
we can extract a probability distributions on the genera (family), compute the
entropy Hg (and Hf ) and compute finally the factors:

Sgenus = 1 − 0.1 ∗ Hg

log2(5)

Sfamily = 1 − 0.1 ∗ Hf

log2(5)

Geolocalisation factor Sgeoloc: here we didn’t use a visual similarity knn
search, but computed directly a factor based on the great circle distance dist
between the GPS coordinates given by the metadata of a query and the coordi-
nates representing more or less the center of France (latitude = 46.3, longitude
= 2.3): Sgeoloc = 1− dist

distancemax where distancemax = 20000 kms is more or less
the farthest distance on earth from the center of France. By default dist = 500
kms if the metadata of a query doesn’t contain some GPS coordinates, which is
giving a factor of Sgeoloc = 0.975

3 Official Results

Table 1 reports the scores of the 29 submitted runs, and figure 2 gives a com-
plementary graphical overview of all results obtained by the participants.



Fig. 1. LifeCLEF 2016 Plant Task Official results

Fig. 2. LifeCLEF 2016 Plant Task Official results



4 Conclusion

Floristic team submitted 3 runs: the first run Floristic Run 1 was based on the
well-known GoogLeNet CNN architecture, but slightly modified with the use
of Parametric Rectified Linear Units and the use of batch normalisation lay-
ers in order to accelerate and prevent from overfitting the learned model. This
first approach obtained an intermediate MAP of 0.619 while the best system
obtained a MAP of 0.742. Unfortunately, by adding the rejection criteria, we
degraded slightly the MAP (down to 6.111 obtained by ”Floristic Run 2”). This
rejection criteria was certainly too strong, with estimated probability thresholds
too high, and have probably removed too much correct species predictions. On
another side, contextual information exploited in ”Floristic Run 3” for revising
the species predictions slightly improved the MAP (up to 0.627), but not enough
for reaching the performances of the best systems.
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