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Abstract. Tracing ideas through the scientific literature is useful in un-
derstanding the origin of ideas and for generating new ones. Machines
can be trained to do this at large scale, feeding search engines and rec-
ommendation algorithms. Citations and text are the features commonly
used for these tasks. In this paper, we focus on a largely ignored facet
of scholarly papers—the equations. Mathematical language varies from
field to field but original formulae are maintained over generations (e.g.,
Shannon’s Entropy equation). Here we extract a common set of mathe-
matical symbols from more than 250,000 LATEX source files in the arXiv
repository. We compare the symbol distributions across di↵erent fields
and calculate the jargon distance between fields. We find a greater dif-
ference between the experimental and theoretical disciplines than within
these fields. This provides a first step at using equations as a bridge be-
tween disciplines that may not cite each other or may speak di↵erent
natural languages but use a similar mathematical language.

Introduction

There has been considerable e↵ort building and designing new recommendation
algorithms to help scholars find relevant papers. Most of these methods depend
on citations [14], full text [5] or usage data [3]. One feature that has been largely
ignored are equations and the mathematical language surrounding these equa-
tions. These formal languages can tie together papers and ideas across fields and
time periods. Shannon’s famous entropy equation (also used in this paper) is an
example of this kind of trace [7]. Unlike natural languages, formal languages such
as mathematics are exempt from plagiarism rules. The norm is for an author to
copy an equation from the original source. This provides a unique opportunity
for tracing ideas back to their origins and for tracking them forward in time.

There have been attempts at utilizing the equations as a search facet. For
example, Springer’s LaTeX Search tool1 allows authors to search formulae (in
LATEX format) from more than 8 million documents in Springer journals and
articles. This is used both as a tool for searching similar formulae and for trans-
lating formulae to existing documents. But what if a researcher wants to find
not just individual manuscripts with the same equations, but fields of study and
groups of papers using similar language? What kind of formalism can be used
to map jargon di↵erences across the quantitative sciences?

1
http://latexsearch.com
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In this paper, we measure the communication e�ciency or “jargon distance”
between fields using mathematical symbols. The jargon metric is derived from
a recent paper by Vilhena et al. [11] which measures the distance between dis-
ciplines using n-grams extracted from millions of papers in the JSTOR corpus.
In our paper, we find that the metric separates fields that are di↵erent both in
content and mathematical notation2.

Our ultimate research goal is to find ways to utilize equations and formal
notation in scholarly recommendation. The more proximate goal of this paper
is to validate that equation jargon can delineate the relationship among fields
at the scale of hundreds of thousands of papers in similar ways to citation and
text-based clustering. We show in this paper that the jargon metric proposed in
this paper does a reasonable job at identifying fields with similar attributes and
language. The next steps will involve full-corpus scaling, extracting mathemati-
cal grammar, and incorporating the metric into citation-based recommendation
algorithms [13,14].

Methods

Data

Research papers were downloaded from arXiv.org3, an open-access e-print ser-
vice in the fields of physics, mathematics, computer science, quantitative biol-
ogy, quantitative finance, and statistics. For this study, we used a sample (N =
266,906) of papers published between 2000 and 2009. We downloaded papers us-
ing the arXiv’s bulk data download, analyzing papers that had field designations
in their filenames. We compiled a list of the LATEX representations of 103 sym-
bols commonly used in mathematical formulae4. These symbols included some
commonly used Greek letters (e.g. “\alpha” [↵], “\omega” [!]), arrows (e.g.
“\rightarrow” [!]), binary operation/relation symbols (e.g. “=”, “>”, “\geq”
[�], “\times” [⇥]), and some other symbols (e.g. “\forall” [8]).5 A shortcom-
ing of this approach is that it does not take into account the ability of authors
to redefine commands and refer to symbols with these new command names,
but it gives a rough idea of the usage of these symbols over the corpus. Using
the LATEX source for the arXiv papers, we counted the occurrence of each of
these symbols. We used field designations provided by the arXiv; however, the
fields could be determined by other methods, including citation clustering [14],
co-citations [8], and topic modeling [12]. We intend to combine the jargon metric
with these di↵erent clustering methods in future studies.

2 These content comparisons were based on inspection of sample papers in the respec-
tive fields. More rigorous inspection is needed.

3
https://arxiv.org/help/bulk_data

4 Modified from https://www.sharelatex.com/learn/List_of_Greek_letters_and_

math_symbols

5 Our list of symbols is not exhaustive; for example, it does not include certain struc-
tural elements of equations such as sums. We intend to expand the list in future
analysis.
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Jargon Distance

To measure the communication barrier between fields, we adapt a metric devel-
oped by Vilhena et al. [11]. In this study, the authors develop a model of com-
munication to topographically map the JSTOR corpus. Instead of using n-grams
from full text like the Vilhena study, we use the language of mathematics—such
as symbolic notation and Greek letters—extracted from LATEX source files.

The jargon distance (E
ij

) between field i and j is determined by calculating
the ratio between two things: (1) the entropy H of a random variable X

i

with a
probability distribution based on the frequency of mathematical symbols within
field i and (2) the cross entropy6 Q between the distributions in field i and j,
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This calculation derives itself from a general communication heuristic whereby
a mathematician communicates with another mathematician via a channel [7].
The mathematician writing the formulae in field i has a codebook P

i

that maps
mathematical concepts to codewords, which mathematician in field j with code-
book P

j

has to decode. Note that the metric is not symmetrical—field j may
more e�ciently decode concepts in field i than field j does for field i. The model
assumes that the codebooks are optimized based on the frequency of di↵erent
terms. This power-law assumption holds well for English words [15,16]. It also
seems to hold for mathematical terms; we find a Zipfian distribution in our
sample (see Figure 1).

This simple metric of communication e�ciency has advantages. It is based on
a model of communication, which has firm theoretical foundations and additional
tools to build upon. Second, it is easy to calculate and can run an entire corpus
over a relatively short amount of time7.

Results

Table 1 shows the top 20 symbols in our sample. The full distribution of symbols
follows a power-like law (see Figure 1). This is important given the assumption of
the jargon distance metric. We find large numbers of equal signs and inequality
symbols but far fewer of others.

After extracting the symbols and distributions of symbols across fields, we
calculated jargon distances between fields. We wanted to know if similar fields
had smaller jargon distances when compared to more dissimilar fields. To do

6 The cross entropy is the the entropy of Xi plus the Kullback-Leibler divergence
between pi and pj [4].

7 We calculated distances for 200k papers in less than 5 minutes on a micro EC2
instance with Amazon’s Web Services (AWS).
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Table 1. Top 20 mathematical symbols and letters among the papers sampled.

Symbol Count

> 131,163,440
< 124,248,288
= 119,559,867
2 9,586,274
µ 5,655,959
↵ 5,193,305
⇡ 4,021,629
⌫ 3,382,075
� 3,360,273
� 3,207,950

Symbol Count

� 2,970,664
� 2,876,255
⇢ 2,827,491
� 2,820,464
� 2,677,700
✓ 2,483,652
⌧ 2,482,211
! 2,443,861
⇥ 2,320,697
� 2,273,644

Fig. 1. Distribution of math symbols. The distribution of mathematical symbols
in our sample. Most terms occur relatively infrequently compared to the equals (=)
and inequality (>, <) symbols which occurred more than 108 times in equations and
mathematical discussions.
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this, we applied standard hierarchical clustering methods to the distance ma-
trix in order to infer which fields were most like each other. We visualized the
groupings using dendrograms. The dendrogram in Figure 2 was produced using
a hierarchical clustering algorithm implemented in SciPy’s linkage function8. We
used UPGMA [9], which is an agglomerative method that uses average linkage as
its criterion. The clustering is done on the adjacency matrix of fields where E

ij

is the distance. Although the distance metric is not symmetric, for the clustering
we symmetrize the matrix by taking the average of the the distances E

ij

and
E

ji

.

Fig. 2. Hierarchical Clustering. The dendrogram shows the relationships among the
di↵erent fields represented in the arXiv. The jargon distance is used as the distance
metric showing the relationship among disciplines within a sample of 266,906 papers in
the arXiv. The distance between fields was determined using the mathematical jargon
distance (Eij) [11]. For this clustering, the distance between fields is the mean jargon
distance of Eij and Eji.

8 SciPy version 0.17.0 running on Python 2.7.6
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We find a separation among theoretical and experimental sciences. Nuclear
Experiment is most similar to High Energy Physics - Experiment (see Figure 2).
We see Computer Science as an outlier to the rest of the fields. Mathematics
shares a closer branch with Mathematical Physics than with any other discipline
other than Quantum Physics. Quantitative Biology sits on its own but within
the branch that includes Condensed Matter, Physics, Nonlinear Sciences, among
others. We need to further investigate whether these similarities are real.

Figure 3 shows the distances between all fields using a heatmap. The darker
colors represent larger jargon distances (lower communication e�ciency between
the writer and reader). The largest di↵erences are between Computer Science and
Experimental Physics, but Computer Science, in general, is quite di↵erent than
almost all fields except Mathematics. Computer scientists and mathematicians
seems to use similar symbols when conveying technical concepts. High Energy
Physics (lattice) and High Energy Physics (phenomenology) are among the most
similar, as one would expect.

Table 2 shows the top ten symbols for three fields: Computer Science, Nu-
clear Experiment, and High Energy Physics Experiment. The pairing from com-
puter science to high energy physics experiment had a (mean) jargon distance
of 0.171, whereas nuclear experiment to high energy physics experiment had a
much smaller distance of 0.033. The top ten symbols help explain the di↵erences
(even though ten are not enough to see the full distribution di↵erences).

Table 2. Comparing fields. This table compares two fields that have small jargon
distances and two fields that have large jargon distances (see Figure 3). The (mean)
jargon distance between the three pairings are the following (CS, Nuc Exp, 0.142),
(CS, HEP Exp, 0.171), and (Nuc Exp, HEP Exp, 0.033). The experimental sciences
seem to use mathematical languages more similar to each other than to computer
science. CS = Computer Science. Nuc Exp = Nuclear Experiment. HEP Exp = High
Energy Physics Experiment.

CS
Symbol Count

= 1,845,458
> 1,703,602
< 1,649,968
2 253,658
 63,702
↵ 63,302
µ 56,150
� 45,041
\ 36,338
� 34,390

Nuc Exp
Symbol Count

> 1,624,214
< 1,592,675
= 1,188,445
! = 29,422
⇡ 24,879
2 24,139
� 18,637
\ 17,218
µ 14,692
� 13,867

HEP Exp
Symbol Count

> 3,146,439
< 2,957,547
= 2,217,220
⇡ 168,633
µ 100,176
⌫ 85,847
2 71,923
� 68,772
⌘ 65,464
! 59,804
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Fig. 3. Distance Matrix. The heatmap provides a visual representation of the dis-
tances between fields. We use the symmetrized version of the jargon distance matrix.
The darker square represents a greater distance between two fields. For example, the
frequency distribution of symbols in Computer Science is quite di↵erent than the math-
ematical notation found in Experimental High Energy Physics.
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Discussion

Scientific papers contain many features that are used in search engines and rec-
ommendation algorithms: authors, titles, full text, citations, figures, etc. One
feature largely ignored within the digital library community (at least relative
to the other features) are equations. In this paper, we apply a model of com-
munication e�ciency between groups of papers first proposed by Vilhena et al.
[11]. We find that field relationships (i.e., how fields are grouped hierarchcially)
are recapitulated when using the jargon distance metric (Figure 2). The results
are surprising given the simplicity of the data extraction and distance calcula-
tion. We only use isolated symbols and the frequency of these symbols to infer
the groupings of fields. The resultant groups seem to assemble in logical ways
(e.g., the experimental sciences group together, while the more theoretical fields
assemble in another area of the tree). However, we see these results as prelimi-
nary evidence for using mathematical symbols as a way of clustering papers and
topics.

We need to further investigate the true di↵erences in fields. We plan to use
citation based clustering as another means of field designation. We also plan
to talk to scholars in the various fields to assess the validity of the clusters.
In addition, we will extend our analysis to the full arXiv corpus. For corpora
with no LATEXavailable, we plan to use computer vision techniques from the
viziometrics.org project for automatically extracting equations from PDFs [6].
We plan also to compare the jargon method to other well-known methods such as
cosine similarity [10], LDA [1], and word2vec [2]. The primary di↵erence we see
from these methods is the communication theory underlying the jargon metric,
but there needs to be analytic work for making this argument. In addition, we
plan to expand beyond isolated symbols and analyze mathematical grammar.

Assuming the methods hold, our ultimate goal for this research project is
to integrate our methods into existing recommendation engines at the scale of
micro-fields. It is at these finer scales where the method could bridge seemingly
disparate, emerging fields that are using similar mathematical language.

We also plan to extend this analysis to Science of Science questions, investi-
gating the birth and death of ideas and the sociology surrounding these ideas.
We see equations as an e↵ective way of tracing ideas both forwards and back-
wards in time. The relative stability of equations and mathematical language
provides a unique opportunity for tracking the movement of ideas across time
and across disciplines.
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