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However, is this point stable? 
 Proposition 2. For any set ,  and b 0v    ( 0 1  ) Nash equilibrium (9) is 

unstable for sufficiently large number of firms  if n k

n
  and 3

4

k

n
 

 

for any 

0  . 
The destabilizing role of number of players  is well known for the evolution of 

firms’ strategies in oligopoly games [8]. However, in this case, according to 
calculations, point (9) is unstable even at . 

n

5n 
Proof. We show that in dynamic system (6) at Nash equilibrium point (9) modulus 

of Jacobian J is greater than 1: |det J|>1. This implies that at least one eigenvalue of 
the Jacobian is greater than 1 in absolute value, which means instability of the fixed 
point (9). Here, the Jacobian of the system (6): 
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 do not equal 

zero for all possible n, k, b, v> 0 and α (0≤α≤1), Q.E.D. 

2.3 Dynamic Model Equations with Adaptive Expectations 

Since all selfish firms are assumed as identical, it is natural to suggest that they have 
the same planning at moment t , so their production quantities 1ty   at moment  

will be equal too. Given these expectations, each selfish firm is looking for such value 
 at which it obtains the highest profit, suggesting that production quantity of  

firms will remain unchanged: 
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Obviously, the maximum point for 1ty  is found from the condition 
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Similarly, firm-reciprocator naturally expects that the quantity of production of all 
these firms at moment  would be the same. Based on this expectation, each firm-1t 
reciprocator finds the value of 1tx   at which the objective function is maximal, 

assuming that the output of  firms does not change: PI
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Here we can find the maximum point for 1tx   from the condition 
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a system of dynamics equations of the model, taking into account the forecast: 
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2.4 Equilibrium Conditions for the Model with Adaptive Expectations 

In the Nash equilibrium point xt+1=xt=x, yt+1=yt=y for all 0,1,...t  . Therefore, at this 
point in view of (11) and (14) we get: 
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To calculate the coordinates of the fixed point, we substitute this expression y in 
terms of x at first equation (16): 
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Hence, we obtain: 
Proposition 3. There is unique Nash equilibrium point in the dynamic system (15) 
with adaptive expectations: 
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As before, without loss of generality, let 1  , otherwise we can override the share 

of profit as 
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. At 1   system (18) takes the form: 
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Proposition 4. The equilibrium point (18) is stable for all possible values of the 
parameters. 

Proof. To prove the stability of dynamic system (15) in Nash equilibrium point 
(18) it is necessary and sufficient to demonstrate that for Jacobian J of this system in 
(18) the following conditions named after Shur were satisfied: 
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The price of product P in the market is given by the inverse market demand 
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Corollary. The trajectories of the dynamical system (15) converge to a Nash 

equilibrium (18) for any initial values 0
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3 Dynamic Model Equations in a General Case 

Suppose that in planning under the given market model adaptive expectations are 
used with probability , naïve ones - with probability p 1q p  . Then the profit 

function for a typical (representative) firm-egoist has the form: 

1
1 1( 1) ( 1)Y t

t t t t

b
v y

y kx p n k y q n k y
 

 

 
         

 , (19) 

and the objective function for the representative firm-reciprocator  

1 1
1 1( 1) ( 1) ( )X t t

t t t t

b
x vx

x p k x q k x n k y
  

 

 
           

, 

1 1( 1) ( 1) ( )
(1 ) ln( )t t t tx p k x q k x n k yb

k




      
  . 

(20) 

Obviously, for  ( ) objective functions 0p  1q  Y  and X  are consistent with the 

results of naive model (1) and (4), for 1p   ( 0q  ), they are consistent with the 
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Thus, in view of (22), we obtain the dynamics model of equations system of in the 
general case: 
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3.1 Equilibrium Conditions in a General Case 

Since Nash equilibrium point is xt+1=xt=x, yt+1=yt=y for all 0,1,...t  , then at this 
point in view of (21) and (23) we obtain: 
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To calculate the coordinates of the fixed point we substitute from (26) expression for 
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where the function ( , , , , )G G p q n k   is given in (26). 

Proposition 6. For  ( ) the equilibrium point 0p  1q  ( *; *)x y  coincides with point 

(9) of a dynamic system with naive expectations. When 1p   ( ) the 

equilibrium point coincides with point (18b) of the dynamic system with adaptive 
expectations. 

0q 
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4 C# - Application Model for Numerical Investigation 

C# window application Model has been created specifically for the numerical 
investigation of the model of this paper, using a graphical interface of C# system 
libraries System.Drawing and System.Windows.Forms. Note that all the calculations 
associated with the model, are localized in the method calc of the application Model 
that makes it easy to modify the equations of the model and use the Model to study 
the other two-dimensional dynamical systems. Fig. 1 shows the application window. 

 

Fig. 1.  Application Model for two-dimensional model 

The right side presents 6 kinds of graphs displayed by the application; their 
examples are set forth in the paper. Selected switch indicates that here the graph of 
trajectory x(t) is selected. On the left side counters allow us to specify the parameters 
of the model and the initial values of the trajectory. After their setting the calculation 
results of the iterations’ coordinates below and their image in the center of the 
window. This displays an animation of a selected path, the number of iterations been 
set on the scroll bar above. Pressing the button Model view left displays information 
about the model, its equations and parameter information. 

4.1 Numerical Experiment: from Stability to Chaos with Increasing  
of Naive Expectations 

    With the increasing probability of naive expectations q, that is with decreasing p, 
the market becomes unstable, evolving from simple dynamics (15) with a single 
stable equilibrium point to the unpredictable behavior of system (6). From the proof 
of Proposition 2 it follows that the market volatility is proportional to the number n of 
firms in the market. Therefore, for fixed q market instability increases with increasing 
n. Thus, model (24) has two parameters: the number of firms n and the probability of 
a naive approach  q, whose growth leads to instability. The transition from stability to 
chaos is the same in both cases. Consider this transition for parameter q. 
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Fig. 2.  Quantity trajectory of selfish firm under probability of naive expectations  0.5q 

Let n n=20, k=6, b=200, v=2, α=0.9, q=0.5. The trajectory of the dynamical system 
(24) with the following parameters and the initial point x0=0.1, y0=0.1 is shown in the 
following figures 2 and 3. In Fig. 2 on the x-axis of the system are given iterations of 
system (24) from m = 1 to m = 100, on the y-axis – corresponding quantity product of 
selfish firm ym. 
As we can see from the graph, the path quickly converges to the equilibrium value 
y*≈2.488. The graph for the trajectory of firm-reciprocator xm on y-axis is similar. 
The equilibrium value of x* is about 6.72. Let us consider the graph of the trajectory 
for the same parameters except q. Now q = 0.55 (Fig. 3). 
 

 
Fig. 3.  Quantity trajectory of selfish firm under probability of naive expectations  0.55q 

It still has stable Nash equilibrium, but 100 iterations does not suffice for 
convergence. Further, let q = 0.6 (Fig. 4). 
 

 
Fig. 4.  Bifurcation quantity trajectory of selfish firm under probability of naive expectations 

0.6q   

As we can see, bifurcation occurred, and instead of equilibrium point there was a 
steady cycle, where values of ym are approaching the point of y*≈4 for even m and the 
point of y*≈1 for odd m. By doubling the lag between iterations only even or only 
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odd iterations will be considered, and thus either point y*≈4, or y*≈1 respectively 
would be the equilibrium steady state. 

Stable cycle has four cycles for q=0.64 (fig. 5). There was a new cycle doubling 
bifurcation. Calculations show that with increasing parameter q doubling bifurcation 
cycle continues, following Sharkovskii’s scale. According to this scale, when q≈0.675 
there is the state of dynamic chaos (fig. 6). Similarly, the graph of product xm on y-
axis by firm-reciprocator looks like trajectory of a selfish firm. 

 

 
Fig. 5.  Doubling bifurcation cycle of quantity by selfish firm under probability of naive 

expectations 0.64q   

 
Fig. 6.  The state of dynamic chaos of quantity by selfish firms under probability o e f naiv

expectations 0.675q   

Note that the ratio between the quantity of output by selfish firms and reciprocators 
remains almost unchanged. It is demonstrated in the graph of fig. 9, where each 
iteration on x-axis shows the value of output by firms-reciprocators xm, and the 
vertical axis - the appropriate output of quantity ym of selfish firms (fig. 7.). 

 

 
Fig. 7.  The ratio between the quantity of product of selfish firms (horizontal axis) d 

reciprocator ones (vertical axis) 
an
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4.2 

In detail the process of loss of stability and transition to chaos of dynamic system (24) 
g bifurcation diagram (fig. 8). 

Bifurcation diagram 

can be presented in the followin
 

 

Fig. 8.  The bifurcation diagram of dependence quantity product of selfish firm ( ) on the 

probability of naive expectations ) in a general dynamical system 

b e 
ordinate val 0.3. 
This rescaling is done for the sake of clarity. The values of the other parameters are 
the

 
he strategic model of cooperation between the two types of 

f homogeneous product, where reciprocator and selfish firms 
lan their output using the adaptive approach with probability p and naïve (bounded 

y
( q

Here the horizontal axis represents the parameter value of q multiplied y 10. Th
ues quantity volumes of selfish firm on stable cycle, multiplied by 

 same as above. The bifurcation diagram, where on vertical axis are placed the 
values of output of firms-reciprocators xm looks similar. 

As noted in numerical simulations, the bifurcation may be interpreted as separation 
of equilibrium into several ways, one of which is selected by the market due to 
evolution of firms’ strategies, such as repeated interactions and adaptations. 
Numerical experiments with n firms as the variable parameter are analogous to those 
described above. 

5 Conclusion 

Thus, we have designed t
firms in the market o
p
rationality) one with a probability of q = 1-p, which distinguishes this model from 
existing analogues, where each type of firm adheres to one strategy rather than their 
combination and maximizes only its own profit rather than social welfare.  

Desktop C# application Model using a graphical interface to animate the model 
trajectories has been created specifically for the numerical investigation of the model. 

It has been proved that in the model with adaptive expectations the unique Nash 
equilibrium in a dynamic system is stable for all possible values of the parameters. 
The trajectories of the dynamical system converge to the fixed point for any possible 
initial values. In the model with naive expectations the unique Nash equilibrium is 
unstable for sufficiently large values of n for all possible values of other parameters. 
According to the calculations, this point is unstable even at n ≥ 5. 
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As a result of numerical experiment we have found that bifurcations of cycle 
doubling occur with an increase in naive expectations. This bifurcation can be 
int

e adaptive approach, i.e. the 
on

here system also moves from stability to chaos if n increases. 

.Y.: Reciprocal interactions: the nature, function, specificity. Sociological 
studies 8. 20--30 (2004) 

erpreted as separation of equilibrium state into several ways, one of which is 
selected by the market in the evolution of firms’ strategies. If two-thirds of firms use 
naive expectation (q≈0.675), then in accordance with the Sharkovskii scale there 
appears the state of dynamic chaos in the market, leading to degeneration of the 
existing competition model between two types of firms. 

Thus, the crucial factor, which ensures sustainable equilibrium in the market and 
the ability to predict the product quantity of firms, is th

e taking into account adaptive expectations of the firms when they plan their 
production. 

Similar results are obtained if instead of q we use parameter n - number of firms in 
the market, w
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