
Building a Bridge between User-Adaptive Systems
Evaluation and Software Testing

ABSTRACT

User Adaptive Systems (UASs) are futile without software.

Moreover, integrating user modeling component into software

system may add bugs if not tested properly. However, the

evaluation of UASs does not intersect with software evaluation as

commonly defined in Software Engineering. We suggest adopting

the common software engineering practices, changing the

community’s practice and methods by integrating software testing

as an integral part of any study involving software development.

That will allow win-win situation for both: the researcher and

community, since the code will be bug-free and hence easily

reproducible/reusable by other members of the community.

CCS Concepts

• Information systems → Recommender systems • Software

and its engineering → Software testing and debugging

Keywords

Software Engineering; Testing; Evaluation; User-Adaptive

Systems

1. THE BRIDGE FOUNDATION
User-Adaptive Systems (UASs) are interactive systems that adjust

their functionality to individual users according to the user model

that was built by learning user behavior, inference, or decision

making [13]. Over the last decade, a wide variety of different UASs

has been introduced. Indeed, they incentivize researchers to publish

their results by writing papers that often have the same structure:

They contain of few common essential parts, like introduction,

related work, experiment/method, evaluation and conclusions. The

evaluation part allows us, as researchers, to decide whether this

specific system lives up to both: the scientific community and the

end user expectations in terms of quality and performance [16].

However, no one, as far as we know, reported on testing these UAS

for their correctness. This is, primarily, because performing a study

without testing the software properly first is the reality in our

community. As Valentino Rossi maintained once:” Once the races

begin it's more difficult and there is never that much time for

testing”[9].

Let us consider other researchers’ expectations within the same

scientific community when they read a relevant paper and are eager

to replicate the same experiment again but with a different setup.

There are two primary aspects in such scenario: reproducibility and

correctness of the method/algorithm/system that introduced in the

paper. Nowadays, the reproducibility is a hot topic [3][14].

Researchers’ intent is obvious: they want to be able to compare

their algorithm with the published one by reproducing it according

to the paper that describes the study. Moreover, clear methodology

eliminates a redundant mail correspondence, when researchers

approach the authors of the published paper for more details, and

by that reduces a frustration of people that often struggle with the

guessing an author’s intention. Albeit everyone agrees with the fact

that it is essential to improve the quality of research algorithms by

at least making their code publicly available and elaborating on the

tools one had used during the research, nobody reports on any

testing done to ensure that a system provides correct, consistent

results. Once researchers get good results in terms of

accuracy/coverage/novelty/serendipity or any other predefined

evaluation metric, they hasten to share their findings with the

community. However, without testing whether they have bug in

their implementation or even inconsistency in the chain of actions

according to the paper they have published, the results may be

questionable.

Hence we inquire the reader:” How do you know whether your User

Adaptive system’s results are correct? Have you tried to verify your

results by writing new code and reproducing the steps that were

defined in your paper?” By following such strategy, you can kill

two birds with one stone: first, test that your method/experiment is

reproducible and secondly prove that it works correctly by testing

results with other implementation.

The goal of this position paper is to examine existing evaluation

methods in both UASs and Software Engineering and suggest

testing approach that will strengthen this research field’s outcome

in the future.

Evaluation metrics are commonly used to determine both the

quality and performance of UASs [2]. Most frequently used are

statistical evaluation methods, personality tests, accuracy, RMSE,

A/B Testing and Benchmarking. Albeit all these metrics appraise

UASs on their performance, accuracy and statistical significance,

none of them addresses software testing for code, that is used to

implement these UAS.

2. A BRIDGE TO SOFTWARE TESTING
According to Myers’ classic definition: “Testing is the process of

executing a program with intention of finding errors.” The intent of

the testing is to discover as many errors as possible and by that

bring the tested software to the accepted level of quality [5].

By taking different approaches software tests can be classified

incongruously: according to the testing concept or to the

requirements [5]. The former is related to the black box testing

(functionality) and the while box testing (structural). The latter is

defined by McCall’s classic model for classification of software

quality requirements [7] that is shown in the Table 9.1[6] .

The testing strategy choice depends on the software and its

requirements: whether one develops desktop, web, android or

mission critical system applications.

Let us peruse two kinds of applications to show the differences in

the testing process. Web application, a client-server software

Veronika Bogina

 Information Systems Dept.
The University of Haifa,

Haifa 31905, Israel

sveron@gmail.com

Tsvi Kuflik

Information Systems Dept.
The University of Haifa

Haifa 31905, Israel

tsvikak@is.haifa.ac.il

application, differs from other applications in few ways. Indeed, it

can be accessed by a wide number of users, from different parts of

the world. Since each one of them uses different hardware, OS,

Web browser and etc., such application should be able to run on

heterogeneous execution environments. Moreover, the ability to

respond the user input in real time is essential [4]. Common

examples for such applications are web mails, online retail stores,

instant messaging chats, wikis and so on [12]. From the testing

perspective an executing performance, an availability testing, web

accessibility, different web browsers, operating systems and

middleware testing, security, usability, hyperlinks testing are

germane testing mechanisms that should be used here in order to

verify functional and non-functional requirements [4] .

On the other hand, in mission critical systems, whose failure may

cause the failure of some goal-directed activity, errors or failures

cannot be tolerated. Moreover, in safety-critical applications failure

can be catastrophic. Meaning that errors in such systems are

unacceptable. Thus reliability, availability, clear documentation

and instructions, proper design and reviews, security are essential

parts of the genuine testing [15]. Common examples are online

banking systems, railway and aircraft operating systems, electric

power and other similar computer systems [10].

As can be seen above software testing is an essential part of

software development. All applications require such approach, with

no exception and depending on their functionality and the goal,

various methods for testing are chosen.

3. DISCUSSION AND CONLCUSIONS
In this section, we claim that since user models and user modeling

components should not be separated from the software, testing

techniques that are applicable in software development should also

suit User Modeling research. The question only is what testing

techniques can be applied from Software Engineering field.

After scrutinizing various factors categories [6] and existing

evaluation methods, it caught our eyes that there is a gap in UASs

testing and only Operation factor is partially covered in UASs

evaluation. Yet Revision and Transition are not considered. From

Revision perspective there is a need to ensure code’s testability and

it needs to be tested at least for accuracy, as a starting point. Let us

argue on how using Transition techniques can be advantageously.

Wouldn’t it be useful to make our code reusable by publishing it

on GitHub with good documentation and clear code and by this

allowing other researchers to reuse modules from our code?

What about portability? Whether we should write software on Java

(write once, run everywhere) to exclude compatibility issues, like

we have with different python versions and packages support.

Adaptability, installability and interoperability [11] can only

strengthen our systems and code exchange between researchers.

We advocate that it is an essential process to use a software testing

in User Adaptive Systems in the future, though it is up to

researchers to decide what technique to use for their specific

system. It would be beneficial to both: a researcher and the

community.

As a further matter, in order to be able to rely on the results of the

system, there is a need to ensure its testability and it needs to be

tested at least for accuracy. Moreover, in order to enable replication

of the experiments and software reuse, both portability and

reusability need to be tested as well. We believe that approaching

testing in UASs is going to benefit both the researcher and the

community. As Burt Rutan maintained:” Testing leads to failure,

and failure leads to understanding”.

4. REFERENCES
[1] Avazpour, I., Pitakrat, T., Grunske, L., & Grundy, J. (2014).

Dimensions and metrics for evaluating recommendation

systems. In Recommendation Systems in Software

Engineering, 245-273. Springer Berlin Heidelberg.

[2] Chin, D. N. (2001). Empirical evaluation of user models and

user-adapted systems. User modeling and user-adapted

interaction, 11(1-2), 181-194.

[3] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T.,

Gargi, U., & Sampath, D. (2010, September). The YouTube

video recommendation system. In Proceedings of the fourth

ACM conference on Recommender systems 293-296. ACM.

[4] Di Lucca, G. A., & Fasolino, A. R. (2006). Web application

testing. In Web Engineering , 219-260. Springer Berlin

Heidelberg.

[5] Galin, D. (2004). Software quality assurance: from theory to

implementation. Pearson education.

[6] Galin, D. (2004). Software quality assurance: from theory to

implementation. Pearson education. Table 9.1, 188.

[7] General Electric Company, McCall, J. A., Richards, P. K., &

Walters, G. F. (1977). Factors in software quality: Final

report. Information Systems Programs, General Electric

Company.

[8] http://www.brainyquote.com/quotes/quotes/b/burtrutan39455

6.html

[9] http://www.brainyquote.com/quotes/quotes/v/valentinor3012

35.html

[10] https://en.wikipedia.org/wiki/Mission_critical

[11] https://en.wikipedia.org/wiki/Portability_testing

[12] https://en.wikipedia.org/wiki/Web_application

[13] Jameson, A. (2001, December). User-adaptive and other

smart adaptive systems: Possible synergies. In Proceedings

of the first EUNITE Symposium, Tenerife, Spain.

[14] Kohavi, R., Longbotham, R., Sommerfield, D., & Henne, R.

M. (2009). Controlled experiments on the web: survey and

practical guide. Data mining and knowledge

discovery, 18(1), 140-181.

[15] Parnas, D. L., van Schouwen, A. J., & Kwan, S. P. (1990).

Evaluation of safety-critical software. Communications of

the ACM, 33(6), 636-648.

[16] Said, A., & Bellogín, A. (2015, September). Replicable

Evaluation of Recommender Systems. In Proceedings of the

9th ACM Conference on Recommender Systems 363-364.

ACM.

http://www.brainyquote.com/quotes/quotes/v/valentinor301235.html
http://www.brainyquote.com/quotes/quotes/v/valentinor301235.html
https://en.wikipedia.org/wiki/Mission_critical

