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ABSTRACT
One-class collaborative filtering (OCCF), or recommenda-
tion with one-class feedback such as shopping records, has
recently gained more attention from researchers and practi-
tioners in the community. The main reason is that one-class
feedback in the form of (user, item) pairs are often more
abundant than numerical ratings in the form of (user, item,
rating) triples as exploited by traditional collaborative fil-
tering algorithms. However, most of the previous work on
OCCF do not consider the temporal context, which is known
of great importance to users’ preferences and behaviors. In
this paper, we first formally define a new problem called
time-aware OCCF (TOCCF), and then design a novel time-
aware similarity learning (TSL) model accordingly. Our T-
SL is based on a novel time-aware weighting scheme and a
seminal work on similarity learning, and is able to learn the
item similarities more accurately. Empirical studies on t-
wo large real-world datasets show that our TSL model can
integrate the temporal information effectively, and perform
significantly better than several state-of-the-art recommen-
dation algorithms.

CCS Concepts
•Information systems → Personalization; •Human-
centered computing → Collaborative filtering;
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1. INTRODUCTION
One-class collaborative filtering (OCCF) [2, 5] is a recent

research focus in the community of recommender system-
s. In OCCF, the data we can exploit for recommendation
are the so-called one-class feedback such as “transactions”
in e-commerce instead of multi-class feedback or numerical
ratings in traditional collaborative filtering problems. The

.

reason that modeling one-class feedback is considered more
important is simply due to the fact that users are somehow
reluctant to assign a multi-class score to a product after
purchasing.

In order to model the one-class feedback, two main lines of
techniques are usually adopted, which are parallel to that of
collaborative filtering, including memory-based OCCF and
model-based OCCF. For memory-based OCCF, the only d-
ifference from that of memory-based CF is that the simi-
larity between two users or two items are estimated based
on the one-class feedback instead of the ratings. For model-
based OCCF, the techniques are often different from that of
model-based CF, in particular of the underlying assumption
for the learning task of positive feedback only and the predic-
tion rule based on similarity learning. The most well-known
preference assumption for one-class feedback is probably the
pairwise preference assumption called Bayesian personalized
ranking defined on the difference between a purchased prod-
uct and an un-purchased one [7]. And the most recent work
on similarity learning approach is the factored item similar-
ity model (FISM) [2], which learns the latent representation
of items with the assumption that the inner product of two
items’ latent factors is their similarity.

The aforementioned advances in modeling one-class feed-
back in OCCF have indeed achieved great success in various
recommendation applications. However, we find that very
few work have explicitly studied the temporal effect in OC-
CF, though it has shown to be very helpful in user behavior
modeling in CF [3, 4]. A recent work on microblog recom-
mendation [8] shows that temporal information is helpful.
However, the time-aware weighting scheme [8] is designed
for the specific application, where the items (or tweets) are
recorded with time when they arrive at the users instead of
when they are retweeted by the users. In the studied general
time-aware OCCF, we only have the temporal information
when users have actions to items.

In this paper, we first design a time-aware weighting scheme
for the reliability of the positive feedback, and then propose
a time-aware similarity learning (TSL) model by integrating
the weight as a confidence score into the similarity learning
model [2]. The time complexity of TSL is the same with
that of FISM [2]. We conduct extensive empirical studies
on two public large datasets with the state-of-the-art base-
lines of memory-based methods and model-based methods.
The empirical results show that our new similarity learning
model is simple but very effective in exploiting the time con-
text, and is significantly better than the algorithms without
modeling the temporal effect.



Figure 1: An illustration of time-aware one-class collaborative filtering (TOCCF) and OCCF.

2. TIME-AWARE SIMILARITY LEARNING

2.1 Problem Definition
In time-aware one-class collaborative filtering (TOCCF),

we have n users, m items and their positive feedback in the
form of (user, item, time) triples, e.g., (u, i, tui), denoting
user u has a positive feedback on item i at time tui. In
TOCCF, our goal is to learn users’ preferences from the
positive feedback and associated temporal information, and
provide a personalized ranked list of items for each user u

that he or she may like in the future.
Notice that in OCCF [5], the temporal information is not

exploited, i.e., the data is of (user, item) pairs. We illustrate
the studied problem in Figure 1, where OCCF is a special
case of TOCCF and is represented as a mixed (user, item)
feedback matrix ignoring the time context.

Table 1: Some notations.
T = {u, i, tui} positive feedback
Tu positive feedback of user u
T ′ sampled unobserved feedback
d ∈ R latent feature number
Vi·,Wi′· ∈ R

1×d latent feature vectors
bu ∈ R user bias
pi ∈ R item bias
rui ∈ {1, 0} preference of (u, i)
r̂ui prediction of (u, i)
α tradeoff parameter
T iteration number

2.2 Similarity Learning
It is well known that similarity measurement is critical

in collaborative filtering, because it determines the neigh-
borhood of a certain user u and thus affects the preference
prediction of user u on other items. The state-of-the-art
approach [2] does not adopt traditional similarity measure-
ment such as Cosine similarity or Jaccard index, but turns
to learn the similarity from the preference data, which is
empirically more adaptive to different datasets. Mathemat-
ically, the learned similarity in FISM [2] is represented as
follows,

si′i =
1

√

|Ni\{i}|
Vi·W

T
i′·, (1)

where Ni = {i′|(u, i′, tui′) ∈ Tu}, and Vi·,Wi′· ∈ R
1×d are

latent feature vectors to be learned for item i and item i′,
respectively. The similarity si′i or the latent vectors Vi·

and Wi′· can be learned via some pointwise or pairwise loss
functions in an optimization problem.

With the learned similarity si′i, the preference of user u

on item i can then be predicted as follows [2],

r̂ui =
∑

i′∈Nu\{i}

si′i + bu + pi, (2)

where bu and pi are preference bias of user u and popularity
bias of item i, respectively.

2.3 Time-Aware Similarity Learning
We introduce a confidence measurement for an observed

positive feedback (u, i, tui),

cui =
1

(tτ + 1)− tui
, (3)

where tτ is the largest time stamp (in day) in the training
data, and thus (tτ + 1) is used to denote the current day.
Notice that we use the inverse of the difference between the
current time (tτ + 1) and the time the positive feedback is
issued tui because a more recent feedback is more reliable,
and is thus of high confidence.

Our proposed confidence measurement shown in Eq.(3)
looks similar to but is very different from the pairwise con-
fidence weight in BPRC [8], which is defined on two (user,
item) pairs, i.e., cuij for (u, i) and (u, j), instead of on one
single (user, item) pair in Eq.(3). Notice that in BPRC [8],
(u, i) denotes a retweet feedback and (u, j) denotes a non-
retweet feedback, while both are associated with temporal
information of when the tweet is received by user u. In our
TOCCF, we only have the temporal information of the ob-
served positive feedback, and thus the approach in [8] is also
not applicable to our studied problem.

Finally, we have a general time-aware weighting scheme,

ωui =

{

cui, if (u, i, tui) ∈ Tu,

1, otherwise,
(4)

which means that we will weight the known (i.e., observed
feedback) only. It is thus a ponitwise confidence weight.

With the time-aware weighting scheme and the loss func-
tion of FISM [2], we propose to solve the following optimiza-
tion problem,

min
V,W,b,p

∑

(u,i,tui)∈T ∪T ′

1

2
ωui(rui − r̂ui)

2 +R(V,W, b,p), (5)

where T ′ is a set of randomly sampled unobserved feed-
back with |T ′| = 3|T |, R(V,W, b,p) = α

2

∑m

i=1 ||Vi·||
2 +

α

2

∑m

i′=1 ||Wi′·||
2 + α

2

∑n

u=1 b
2
u + α

2

∑m

i=1 p
2
i is the regular-

ization term commonly used to avoid overfitting. The opti-
mization problem can be solved in a commonly used gradient
descent algorithm [2].



Table 2: Recommendation performance of TSL, FISM, BPR, ICF with Cosine similarity, i.e., ICF(CS), and
Jaccard index, i.e., ICF(JI), on ML10M and Netflix using Precision@5, Recall@5, F1@5, NDCG@5 and 1-
call@5. The best results are marked in bold. We also include the searched value of the tradeoff parameter
and iteration number in model-based methods for reproductivity.

Dataset Method
Parameter Evaluation metric
α T Precision@5 Recall@5 F1@5 NDCG@5 1-call@5

ML10M

ICF(JI) 0.0163 0.0052 0.0064 0.0188 0.0720
ICF(CS) 0.0158 0.0050 0.0062 0.0182 0.0697
BPR 0.01 100 0.1186 0.0437 0.0525 0.1305 0.4021
FISM 0.001 1000 0.1169 0.0418 0.0509 0.1270 0.4029
TSL 0.01 500 0.1391 0.0533 0.0633 0.1442 0.4552

Netflix

ICF(JI) 0.0333 0.0203 0.0196 0.0386 0.1247
ICF(CS) 0.0333 0.0206 0.0198 0.0385 0.1258
BPR 0.001 500 0.0518 0.0219 0.0233 0.0561 0.1878
FISM 0.001 1000 0.0514 0.0237 0.0242 0.0563 0.1937
TSL 0.001 100 0.0628 0.0409 0.0365 0.0730 0.2451

3. EXPERIMENTAL RESULTS

3.1 Datasets and Evaluation Metrics
In order to verify the effectiveness of our proposed point-

wise weighting scheme and time-ware similarity learning (T-
SL) model, we use two large public datasets, i.e., MovieLens
10M (we use ML10M for short) and Netflix, in our empir-
ical studies. ML10M contains about 10 million numerical
ratings from 71567 users and 10681 items, and Netflix con-
tains about 100 million numerical ratings from 480189 users
and 17770 items. In order to simulate the TOCCF problem
setting with time-aware positive feedback, for each dataset,
we first remove the (u, i, rui, tui) quadruples with rui ≤ 4,
and then take the (u, i, tui) triples from the remaining data.

For the resulted time-aware one-class feedback of each
dataset, we further split it according to the time stamp in
order to generate a copy of training data, validation data
and test data. We illustrate the data generation procedure
in Figure 3. Specifically, we first use 60% feedback with the
smallest time stamps for training; and then from the left
40% feedback, we randomly sample 20% feedback for vali-
dation and the remaining 20% for test. We put the statistics
of the resulted datasets in Table 3.

Figure 3: An illustration of data generation for
training data, validation data and test data, where
training data are from the first 60% one-class feed-
back, and validation and test data are from the re-
maining 40% feedback.

For one-class feedback in TOCCF, we adopt several com-
monly used evaluation metrics in ranking-oriented item rec-
ommendation or information retrieval scenarios. In partic-
ular, we check the top-K performance using Precision@K,
Recall@K, F1@K, NDCG@K and 1-call@K.

Table 3: Description of the datasets used in the ex-
periments, including the numbers of users (n), item-
s (m), training feedback (|Tr|), validation feedback
(|Val|), and test feedback (|Te|).

Dataset n m |Tr| |Val| |Te|
ML10M 71567 10681 1277900 425967 425967
Netflix 480189 17770 13900939 4633646 4633647

3.2 Baselines and Parameter Settings
In our empirical studies, we include several state-of-the-

art methods for modeling one-class feedback in recommender
systems, including neighborhood-based methods and factorization-
based methods:

• ICF(JI): item-oriented neighborhood-based collabora-
tive filtering with Jaccard index as the similarity mea-
surement.

• ICF(CS): ICF with Cosine similarity. Both ICF(JI)
and ICF(CS) are simple but effective approaches for
OCCF.

• BPR: Bayesian personalized ranking [7]. BPR is a sem-
inal work based on pairwise preference assumption and
usually produces the best performance in different rec-
ommendation tasks.

• FISM: Factored item similarity models [2]. FISM is
one of the most recent work based on pointwise pref-
erence assumption and similarity learning.

For neighborhood-based methods ICF(JI) and ICF(CS),
we fix the size of nearest neighbors as 20. For factorization-
based methods BPR, FISM and our TSL, we fix the dimen-
sion of latent space as d = 20 and the learning rate γ = 0.01.
The iteration number in BPR, FISM and our TSL are chosen
from T ∈ {100, 500, 1000} and the value of tradeoff param-
eters are chosen from α ∈ {0.001, 0.01, 0.1} all through the
NDCG@5 on the validation data, i.e., there are nine combi-
nations of the value of the two types of parameters.
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Figure 2: Recommendation performance of TSL and other methods on NDCG@K with different value of K.

3.3 Main Results
We report the main results in Table 2, from which we can

have the following observations,

• Two neighborhood-based methods, i.e., ICF(JI) and
ICF(CS), are poor regarding the recommendation per-
formance, which is caused by the intransitivity of the
similarity measurements for the scarce positive feed-
back. Notice that the density of the training data of
ML10M and Netflix are smaller than 0.2%.

• Two factorization-based methods, i.e., BPR and FIS-
M, perform much better than the neighborhood-based
methods, which is expected because of the merit of
transitivity via learned latent factors.

• Our proposed time-aware similarity learning method,
i.e., TSL, further improves FISM and BPR significant-
ly, from which we can clearly see the value of the tem-
poral information and the effectiveness of our weight-
ing scheme to integrate the time context.

For real-world deployment of a recommendation model,
we usually pay more attention to its top-K performance,
because that will affect users’ behaviors most. For this rea-
son, we also check the recommendation performance with
different value of K ∈ {5, 10, 15}. We show the results of
NDCG@K in Figure 2. Notice that the results on other top-
K performance are similar, and are thus not included due to
space limitation. From Figure 2, we can see that the perfor-
mance ordering on different value of K over two datasets is
ICF(JI), ICF(CS) < BPR, FISM < TSL, which is consistent
to that of Table 2. The results on NDCG@K again show the
usefulness of the temporal context and effectiveness of our
time-aware weighting scheme in similarity learning.

4. CONCLUSIONS AND FUTURE WORK
In this paper, we study an important recommendation

problem termed time-aware one-class collaborative filtering

(TOCCF), and propose a novel time-aware similarity learn-

ing (TSL) model based on the seminal work of factored item
similarity model [2]. Empirical results show that our TSL
can incorporate the time information in a simple but ef-
fective way, and is able to recommend significantly more
accurate ranked lists of items than several state-of-the-art
methods without modeling the time information.

For future work, we are interested in generalizing our time-
aware similarity learning model to more advanced similari-

ty learning approaches for recommendation with social and
other auxiliary data [1, 6].
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