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Abstract. This study intends to help manufacturers that use flexible job shops
improve performance of due date assignment, that is, setting delivery times
to jobs that arrive dynamically. High performing due date assignment enables
achieving on-time delivery and quick response of delivery time to customer
orders. Traditional methods for due date assignment are predefined equations
that estimate the duration of making a product in the production system. Such
equations are sufficient for relatively simple systems such as single machine
shops, but are not very high in accuracy for complex systems such as flexible
job shops. To improve due date assignment for such systems, we propose a
more flexible method that uses distributed learning to learn the remaining time
of a job inside the system. We let each workstation in the production shop
be a distributed unit that updates its local queuing time and interacts with
other units to provide the total remaining time of a job. We carry out extensive
computational experiments to evaluate performance of the proposed method,
and the results show that it outperforms two advanced equational methods in
terms of both accuracy of estimation and stability in performance.

Keywords: Due date assignment, distributed system, artificial intelligence in
production

1 Introduction

In the manufacturing industry, a due date refers to the time that a product can be
delivered. It is important for manufacturers to set good due dates to their products
when customers give orders. The due dates should be neither too short for the produc-
tion line to finish making the products nor too long for customers to wait. Good due
date assignment enables achieving reliable on-time delivery, thereby improving level of
customer service [1–3].

High-performing due date assignment requires a good mechanism for estimating
the duration of a job inside the production system. Traditional methods for such esti-
mation are predetermined equations that either sum up the time that is required for
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the processing of a job and the time that is needed for waiting before the processing
could start or use averaged historical durations of some recently completed jobs. Some
representative methods include Constant (CON) [1, 2], Total Workload (TWK) [2, 6–8],
Slack (SLK) [1], Job In Queue (JIQ), Job In Bottleneck Queue (JIBQ), and Exponen-
tial Smoothed Flowtime (ESF) [3]. Some improved methods include Dynamic TWK
(DTWK), Dynamic Processing Plus Waiting (DPPW), Dynamic Feedback Process-
ing Plus Waiting (DFPPW) [4], and Estimation Method for First-Come-First-Served
(EMF) [3]. A recent review by Gordon et al. gives the details of most of the methods
[5].

Such equation-based methods provide almost accurate due dates for products that
are made in simple production shops such as single machine shops. For complex produc-
tion shops such as flexible job shops, the methods are not very high-performing. This is
because a flexible job shop contains many workstations, each having multiple parallel,
alternative machines, and each job has its own predetermined route to visit some of
the workstations for processing. For such a process, it is difficult to use one equation to
accurately express the waiting time of a specific job. Therefore, more flexible methods
are needed and this study intends to address this need.

We propose a method that is based on distributed learning for this problem. Since
there is no common route for jobs to visit the workstations in a flexible job shop,
information that is needed for estimating waiting times of different jobs differs. If each
workstation stores some information about local waiting time, then the remaining time
after a specific workstation for a specific job could be learnt by collecting information
stored in the downstream workstations of the job. Therefore, we think distributed
learning might be a good method for the problem and would have high flexibility for
general application due to its working mechanism.

The remainder of this paper is organized as follows: Section 2 gives the detailed
problem description. Section 3 describes the proposed distributed learning method.
Section 4 details the computational experiments we carry out to evaluate performance
of the proposed method. Finally, Section 5 concludes the paper with outlook.

2 Problem Description

We consider the problem of assigning a due date to a job that arrives dynamically in a
flexible job shop system. As shown in Fig. 1, a flexible job shop is composed of multiple
workstations, each having multiple machines and a buffer for waiting jobs. When the
number of machines in each workstation is one, a flexible job shop becomes a job shop.
The multiple machines are nonidentical, in other words, the processing time of a job
differs on the machines. Jobs arrive dynamically in the shop and a job’s product type is
known upon the job’s arrival. The product type must be one of the predefined types. A
job must visit some of the workstations in a specific sequence that depends on the job’s
product type to become a finished product. Each workstation processes one operation
of the job (denoted by Ox in Fig.1). The processing can be performed by any of the
multiple machines, and which machine is selected to do it depends on the rule used for
allocating jobs to machines. In this study, we use the rule First-Come-First-Served.
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The objective is to set to each job upon its arrival a due date that is as close as
possible to the real completion time of the job in the shop. For performance evaluation,
we use relative error ratio between the assigned due date and the completion time of
a job as the objective function (Eq.(1)), since relative error ratio is widely used for
evaluating performance of due date assignment [3, 5].
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Fig. 1. The flexible job shop process.

Min

J∑
j=1

1

J
· |cj − dj |
cj − rj

· 100%, (1)

in which j is index of job, J is the number of dynamically arrived jobs, and dj , cj , and
rj are the due date, the completion time, and the release time (time that a job arrives
in the system) of job j, respectively. The following assumptions are made in this study:

Assumptions
(1) One machine can only process one job at a time.
(2) The processing of a job is non-preemptive.
(3) The buffer in each workstation is unlimited.

3 Proposed Distributed Learning Method

We let each workstation be a distributed unit where an estimated remaining time of
each product type is stored and dynamically updated. The update is based on feedback
from the immediate downstream workstation of each product type at the time when
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the local waiting time in the downstream workstation has changed due to arrival of
new jobs. As new jobs keep arriving at the workstations, the estimated remaining time
in every upstream workstation keeps being updated. When a new job arrives in the
system, the estimated remaining time that is stored in the first workstation the job
would visit is used for assigning a due date to the job. More details are given following
the notation.

Notation
j, k index of job, j, k = 1, 2, ..., J
o, i index of operation, o, i = 1, 2, ..., O
p(j) product type of job j, p = 1, 2, ..., P
s(j, o) workstation that processes operation o of job j
o(j, s) operation of job j that is processed in workstation s
RT (p(j), o) estimated remaining time of product type p(j) after operation o
WT (s) average waiting time in workstation s
Q(s) set of jobs waiting in workstation s
M(s) set of machines in workstation s
m index of machine in a workstation, m = 1, 2, ..., |M(s)|
PT (j,m) processing time of job j on machine m
RT (m) remaining processing time of the job being processed on machine m
OT (j, o) average processing time of operation o of job j, =

∑
m∈M(s(j,o))

PT (j,m)/|M(s(j, o))|

Initially, RT (p(j), o) is set to be the average total processing time of the remaining
operations after operation o in job j, i.e. the case in which there is no waiting in any
workstations:

RT (p(j), o) =

O∑
i=o+1

OT (j, i). (2)

As new jobs arrive dynamically in the system, each job is released into the system
immediately after it arrives. At the time, due date of job j is assigned to be

dj = OT (j, 1) +WT (s(j, 1)) +RT (p(j), 1). (3)

In Eq.(3), OT (j, 1) is known whereas WT (s(j, 1)) and RT (p(j), 1) are collected
from workstation s(j, 1). The process to update WT (s) and RT (p(j), o) is as follows:

Every time a job, say job j, arrives in workstation s(j, o), it joins queue Q(s(j, o))
first, and then WT (s(j, o)) is updated to be

WT (s(j, o)) =

∑
k∈Q(s(j,o))OT (k, o(k, s(j, o))) +

∑
m∈M(s(j,o))RT (m)

|M(s(j, o))|
. (4)

The upper part is the total average processing time in the workstation of waiting jobs
plus the total remaining processing time on the machines. Dividing it by the number
of machines in the workstation leads to the average waiting time in the workstation.
The change in WT (s(j, o)) due to the arrival of job j would affect remaining times of
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the upstream operations of jobs that go through s(j, o), so estimated remaining times
in the workstations where the immediate upstream operation of a job k whose product
type requires the job to visit s(j, o) are updated to be

RT (p(k), o(k, s(j, o))− 1) = (1− α) ·RT (p(k), o(k, s(j, o))− 1)+

α · [WT (s(j, o)) +RT (p(k), o(k, s(j, o)))], (5)

in which α is a parameter in the range [0,1].
This is like a learning process whose learning rate is α. When α is at the higher

end of range, change in WT (s(j, o)) leads to fast change in the remaining times of the
immediate upstream workstations. In contrast, a small α results in slower change in
them.

4 Computational Experiments

We evaluate the proposed method by generating random problem instances using fac-
tors given in Table 1. For each problem instance, 1200 jobs arrive dynamically in the
system, the interarrival time between them being exponential distribution whose mean
is given by

I =
PT

M · U
, (6)

in which PT is the average total processing time of a job, M is the total number
of machines in the system, and U is machine utilization rate. We use the first 200
jobs to warm up the system to a relatively stable status and record due dates and
completion times of the remaining 1000 jobs for obtaining the reported results. We set
the parameter α by carrying out pilot tests for each problem instance.

Table 1. Factors for generating random problem instances

Factor Levels Number of levels
S 5, 10 2
P 5, 10 2
M 5, 10, 20 3
U 0.8, 0.85, 0.9, 0.95 4

Number of combinations 48
Problems generated for each combination 5
Total number of problem instances 240

Tables 2-6 show the simulation results. In the tables, the proposed method is de-
noted by DL. We compare with DFPPW [4] and EMF [3]. DFPPW is an improved
version of DPPW and DPPW is an improved version of PPW. DFPPW is reported to
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Table 2. Simulation results

DFPPW DL EMF
25.00a 10.40 23.42
12.70b 7.18 21.48

a Objective function value: relative error ratio
b Standard deviation

Table 3. Simulation results under different levels of S

S=5 S=10
DFPPW 25.44 24.33

13.43 11.48
DL 8.81 12.77

6.40 7.63
EMF 25.53 20.25

23.95 16.64

outperform DTWK and DPPW, which outperform TWK and PPW respectively. EMF
is reported to outperform many traditional methods such as TWK, JIQ, JIBQ, and
ESF.

Since the objective aims for minimization, values in the tables are the smaller the
better. Table 2 gives the overall results, in which DL shows a relative error ratio that is
less than the other two methods by over 50% and a standard deviation that is less than
the others by nearly 50%. This indicates significant improvement in both accuracy of
due date forecast and stability in performance.

To check impact from the levels of factors, we further divide the results according
to levels of S, P , M , and U , respectively, and show the results in Tables 3-6.

From Table 3, it could be found that DL works better for systems in which the
number of workstations is relatively small. This is probably due to the mechanism of
DL that only when a job arrives in a workstation will the estimated remaining times of
the immediate upstream workstations be updated. When there are many workstations
in the system, the update of remaining times from the most downstream workstation
to the most upstream workstation of a job might take time, causing a delay in using

Table 4. Simulation results under different levels of P

P=5 P=10
DFPPW 24.79 23.38

13.19 9.35
DL 13.76 14.34

5.18 6.46
EMF 31.96 36.65

16.28 19.83
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Table 5. Simulation results under different levels of M

M=5 M=10 M=20
DFPPW 15.79 23.44 31.16

6.78 9.48 14.40
DL 10.00 11.27 9.72

6.67 7.23 7.29
EMF 18.09 18.68 30.81

13.35 16.38 26.55

Table 6. Simulation results under different levels of U

U=0.8 U=0.85 U=0.9 U=0.95
DFPPW 21.99 24.08 25.91 28.00

11.59 12.40 12.68 13.28
DL 9.86 10.29 10.78 10.66

6.74 7.07 7.40 7.45
EMF 23.76 23.49 23.12 23.29

22.62 21.02 20.77 21.46

the newest waiting time information when estimating the durations of new jobs arrive
in the system.

From Table 4, it could be found that as the number of product types increases,
performance of DL slightly decreases. This might be understood as the result of using
the average processing time of a large number of products, which is rougher than the
average processing time of a small number of products.

Tables 5-6 show that neither M nor U have a noticeable impact on performance of
DL. In summary, DL shows better performance than the other methods in all examined
cases, indicating it to be a general better choice than traditional methods for due date
assignment in flexible job shops.

5 Conclusions and outlook

For the problem of due date assignment in flexible job shops, we propose a distributed
learning method that updates the remaining time of a job by using changed local wait-
ing time in immediate downstream workstation. The method differs from traditional
equation-based methods and has the advantage of having no restriction on applicable
shop types.

By carrying out extensive computational experiments, we evaluated performance of
the proposed method and found it to significantly outperform two comparatively high-
performing methods in terms of both performance and stability. Thus, the proposed
method would be expected to improve a manufacturer’s performance in both due date
promising and reliability of on-time delivery.

As stated in the discussion of results, the proposed method might have the prob-
lem of having a delay in updating the remaining times of upstream workstations if
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there are many workstations in the system, so future work might include fixing this
problem, thereby enabling the method to achieve higher performance in general system
environments.
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