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Abstract. Formal Concept Analysis (FCA) provides mathematical models, 
methods and algorithms for data analysis. However, by now there is no easily 
available program system, which would provide data analyst with unified, 
intelligible and transparent access to various external data sources with large 
amount of heterogeneous data for subsequent FCA-based knowledge discovery. 
The lack of such tools complicates spreading FCA methods among big data 
analysts and miners of unstructured data. In this paper, we describe advances 
and new functionality in external data querying and preprocessing subsystems 
of Formal Concept Analysis Research Toolbox (FCART), which helps 
processing data of different types in a unified way. 
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1 Introduction 

By now, mathematical models of Formal Concept Analysis (FCA) [1] are widely used 
for solving various problems of Knowledge Discovery and Artificial Intelligence 
[2,3]. Some systems use FCA ideas implicitly, by processing closed sets of attributes 
or objects. In this paper we will concentrate on explicit implementation of FCA 
methods as part of analyst’s workflow in a software system. Three main problems 
here can be stated as follows.  

1. How to generate suitable input data for FCA-based methods? 
2. How to keep initial data properties and metadata while analyzing object-attribute 

representation by FCA-based methods? 
3. How to combat high computational complexity of FCA-based methods in the 

context of an integral analyst’s workflow? 

Around the middle of the last decade, there were several successful 
implementations for transforming a relatively small formal context into a line diagram 
and computing implications and association rules. In [4] we have discussed well-
known FCA-based tools, like ConExp [5], Conexp-clj [6], Galicia [7], Tockit [8], 



ToscanaJ [9], Lattice Miner [10], OpenFCA [11], Coron [12,13], Cubist [14]. Most of 
the reviewed software tools are local applications that require initial data in the form 
of binary or many-valued context in one of the common formats (CSV, CXT or 
other). Thus, such programs can not be used on the stage of data gathering and 
preprocessing, but we should include input formats of those programs in the list of 
supported formats for future integration. 

Formal Concept Analysis Research Toolbox (FCART) [15] supports iterative 
methodology of data mining and knowledge discovery. One of the goals of 
developing FCART is to create a system for handy analysis of heterogeneous data 
gathered from external data sources, e.g. SQL databases, NoSql databases and Social 
Network Services. FCART was successfully applied to analyzing data in medicine, 
criminalistics, sociology, and trend detection [3, 15]. 

In previous papers, we have described the system architecture, main workflow and 
stages of data extraction from various external sources. Here we would like to 
describe recent progress in the distributed version [16] of FCART and its Intermediate 
Data Storage (IDS) subsystem. This progress is mainly related to new functionality in 
data preprocessing. 

2 Problems description 

Data analysis is highly dependent on preprocessing, i.e., transformation from the 
source data format to the target data format, in which data are processed. An 
important functionality of any data analysis system is to support analyst in 
preprocessing transformations, making them transparent and easy. 

2.1 A gap between FCA analytical artifacts and external data 

From an analyst point of view, there is a gap between FCA analytical artifacts 
workflow and data and the legacy data. Fig. 1 illustrates this gap between 
“analyzable” and “external” data. It should be emphasized that it is not a gap between 
concrete data formats or access protocols, it is the gap in ways of thinking and 
knowledge representation. 

The four main questions of object-attribute-value (or object-attribute) 
representation of data are trivial: 1) What are objects? 2) What are attributes? 3) How 
do we gather values of attributes? 4) How do we interpret values of attributes? 

However, such questions bring into being a great many technological questions. 
For now, we can observe specific data preprocessing techniques of concrete data 
analysis projects. Can we propose fully unified approach? In general, the answer is 
no. However, we can try to adapt some common techniques for most popular classes 
of initial data formats and external data sources. On the one hand, we can see 
appearance of such terms as “Data Tidying” [17] for some “human readable” variants 
of ETL (Extract-Transform-Load) processes. On the other hand, there are continuous 
development of such monster software as Oracle Data Integrator Enterprise Edition 
[18] or less monstrous Microsoft PowerBI [19]. 



 
Fig. 1. The gap between “analyzable” and “external” data 

FCA-based analytics tools impose additional requirements because of: 

1. Basic FCA algorithms have very high computational complexity. 
2. Big concept lattices are not suitable for interactive processing and visualizing. 

There were many attempts to adapt FCA-based methods for complex tasks. For 
example, building Iceberg Lattices [20, 21, 22], visualizing other fragments of 
lattices, using incremental lattice construction algorithms. 

2.2 A few comments about methodology 

The core of the FCART supports knowledge discovery techniques, based on Formal 
Concept Analysis, clustering, multimodal clustering, pattern structures and others. 
From the analyst point of view, basic FCA workflow in FCART has four stages. On 
each stage, a user has the ability to import/export every artifact or add it to a report. 

1. The filling Intermediate Data Storage (IDS) of FCART from various external SQL, 
XML/JSON and other data sources (querying external source is described by an 
External Data Query Description – EDQD). EDQD can be constructed by some 
visual External Data Browser (see later). 

2. The loading a data snapshot from the IDS into an analytic session (a snapshot is 
described by a Snapshot Profile). A data snapshot is a data table with annotated 
structured and text attributes  (a many-valued context) loaded in the system by 
accessing IDS. 

3. The transforming a snapshot to a binary context (a transformation is described by a 
Scaling Query). 

4. The building and visualizing formal concept lattice and other artifacts based on the 
binary context within an analytic session. 
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Later in this paper we will discuss mainly the first stage and using EDQDs. Hadley 
Wickham in [17] wrote: “there has been little research on how to make data cleaning 
as easy and effective as possible”. The second and the third stages with example of 
Snapshot Profile construction were initially described in [23]. 

2.3 FCART architecture and the role of the IDS 

The current distributed version of FCART consists of the following four parts: 

1. FCART AuthServer for authentication and authorization, as well as integration of 
algorithmic and storage resources. 

2. FCART Intermediate Data Storage (IDS) for storage and preprocessing (initial 
converting, indexing of text fields, etc.) of big datasets.  

3. FCART Thick Client (Client) for interactive data processing and visualization in 
integrated graphical multi-document user interface. 

4. FCART Web-based solvers (Web-Solvers) for implementing independent resource-
intensive computations. 

IDS plays important role in effectiveness of whole data analysis process because 
all data from external data storages, session data and intermediate analytic artifacts 
saves in IDS. All interaction between user and external data storages goes through the 
IDS. All interactions between Client, Web-Solvers and IDS go through a RESTful 
Web-API. The http-request to the IDS web-service constructed from two parts: prefix 
part and command part. Prefix part contains domain name and local path (e.g. 
http://zeus2.hse.ru:8444/). The command part describes what IDS has to do and 
represents some function of the Web-API. Using web-service commands, FCART 
client can query data from external data storages in uniform and efficient way. 

Early we already have implemented populating IDS from external data sources, but 
now we extend the set of providers and improve data providers’ EDQDs. 

3 Worlds of data and data representation in IDS 

Readers may have noticed that a simplest case of legacy data for object-attribute 
representation is relational data that meet the well-known conditions of E. Codd [24]. 
In this case we have virtually multivalued context. In the current state of Internet 
development we should distinguish  at least the following types of data sources: 

1. Relational data sources (directly queried by SQL). 
2. NoSQL document collections (queried by XQuery or similar query languages). 
3. Text collections with full-text index (queried by special full-text queries). 
4. Social Network Services (with plenty of different access APIs). 



3.1 Data integration problems and FCART Intermediate Data Storage 

Documents are kept in many data formats (only ISO standards describe more then 400 
formats, for example see [25]). After open data revolution [26] and Web 
infrastructure integration in Internet [27], most popular formats for information 
interchange are Comma Separate Values (CSV) [28], Extensible Markup Language 
(XML) [29] and JavaScript Object Notation (JSON) [30]. Extensible Markup 
Language (XML) is a markup language that defines a set of rules for encoding 
documents in a format that is both human-readable and machine-readable. The main 
goal of XML is to store metainformation with information itself. Hundreds of 
document formats using XML syntax have been developed, including RSS, Atom, 
SOAP, and XHTML. XML-based formats have become the default for many office-
productivity tools, including Microsoft Office (Office Open XML), OpenOffice.org 
and LibreOffice (OpenDocument), and Apple's iWork. XML has also been employed 
as the base language for communication protocols, such as XMPP. 

XML and its extensions have regularly been criticized for verbosity and 
complexity.  JSON is lightweight alternative which focus on representing (serializing) 
programming language level objects with complex data structures rather than 
documents, which may contain both highly structured and relatively unstructured 
content. JSON is an open standard format that uses human-readable text to transmit 
data objects consisting of attribute–value pairs. 

Traditional relational databases are not convenient for fast processing of big 
amounts of unstructured textual datasets with metadata. Document-oriented databases 
operating with documents in XML or JSON format are successfully used for storing, 
retrieving and managing big amounts of textual data in last decade. Both FCART IDS 
and FCART Client can handle XML and JSON documents as input format. XML 
format is complex and relatively hard to process at the same time. JSON format is 
more easy to use and lightweight. FCART uses JSON internally as a main format for 
data serialization and intercomponent communication. 

3.2 Main terms and terminology problems 

Preliminary problem of the discussed concepts is a terminological one. Table 1 
illustrates the difference in approaches to defining terms for basic data-related 
concepts in SQL Servers (as stated in the SQL ISO Standard [31]), full-text indexing 
systems (as stated in the Elasticsearch reference [32]) and document-oriented NoSQL 
storages (as stated in the MongoDB reference [33]). One can look at term “Index” as 
a good example of polysemantic word. Graph-oriented databases use absolutely 
different terms for atomic elements (vertices, nodes, link, edges, arcs) and data 
structures, that reflect incidence, adjacency neighbourhood, etc. 

In IDS we use data representation in form of “Databases” with hierarchical 
structure of “Collections” of JSON “Documents”. Each of the Documents may 
contains heterogeneous “Fields”. Each Collection can possess metadata, which 
describes structure of Documents and data types of Fields using JSON Schema [34]. 



It is very powerful approach, which gives an ability to validate Documents with 
compound data types. 

Table 1. Real cases of different terms usage in popular data storages 

 SQL Server Elasticsearch Mongo DB 

1 Database (non normative) Index Database 
2 Scheme Mapping -- 
3 Table Type Collection 
4 Index -- Index 
5 Record/Row (Tuple) Document (JSON) Document (BSON) 
6 Field/Column (Attribute) Field Field 
7 Primary key Document Id _id field 
8 Shard Shard Shard 

4 External Data Queries in IDS 

Extracting data is complicated by the fact that any Internet data source may have its 
own API. For example, we consider Social Network Services as a data source. That is 
why one needs mechanism to describe how data should be extracted, preprocessed 
and stored in IDS. For unified data access we developed External Data Query 
Description (EDQD) language. Each EDQD is a JSON formatted document. It aims 
to unify access to different data sources. By using EDQD FCART represents data 
from various data sources as a IDS Collection. There is no way to create a single 
query with fixed fields that would be with various data sources because each data 
source has its own set of functions, its own API. However, we developed the most 
common EDQD types and field set for mentioned above data sources types (Fig. 2). 

 
Fig. 2. The architecture of IDS and EDQDs for different data sources 
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─ ID – this field describes a unique identifier GUID. 
─ TYPE – this field describes type of data source. For now, FCART supports next 

types: “FS Folder”, “FS File”, “TSQL”, “REST”, “SOAP”, ”Facebook”, etc. Also 
EDQD with type “IDS” can refer to documents which are already stored in IDS. 

─ URI [27] – this field describes path to the data source. It is optional.  
─ CS – this field describes connection string [35]. It is optional. 
─ QUERY – this field describes query to the data source. 
─ TARGET – this field describes target data storage. For now, it’s can be set to the 

values – URI file path, “IDS”. 
─ TRANSFORMATION – this field describes type of source field, connection 

between source field and fields of target data storage; and all transformation such 
as scaling, indexing, etc. 

This are the common fields for all EDQD queries. Below we have described 
specific for data sources EDQD queries. 

Creating EDQD is a complex task, which needs visual tool for development. For 
now, External Data Browsers have been prepared to help user constructing EDQD for 
local JSON/XML files, unstructured text files and SQL data sources. Other types of 
EDQD can be created via direct JSON editing. 

4.1 Query to a SQL data source 

EDQD for a SQL data source is the most straightforward. For now, IDS supports 
connection to the Microsoft SQL 2014 (and its earlier versions) and Postgres 9.5.2 
(and its earlier versions). EDQD for SQL has the following fields: 

─ “ID” – GUID (Globally Unique Identifier). 
─ “TYPE” – DBMS Type. Can be “TSQL” or “PS”. 
─ “URI” – This field is empty for that EDQD query type. 
─ “CS” – Connection String. 
─ “QUERY” – TSQL or PL-SQL query. 
─ “TRANSFORMATION” – For now it describes mapping a column name to a 

target field path in JSON document. 

Example of EDQD for query to the instance of Microsoft SQL 2014: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  ”TYPE”:”sql-server-2014”, 
  “URI”:””, 
  “CS”:”DataSource=190.190.200.100,1433; 

Server=myServerName\myInstance; Ininial Catalog=myDataBase; User 
ID=myUsername; Password=myPassword;”, 

  “QUERY”:”SELECT column_name FROM table1 INNER JOIN table2 ON 
table1.column_name=table2.column_name;” 

  “TRANSFORMATION”: { “field”:{ 
    “name”: “name”, 
    “target_field”:”user_name”}  
} 



4.2 Query to unstructured text files 

EDQD for Text (a collection of files with unstructured text) provides ability to 
extract and transform data from unstructured texts. To analyze data from unstructured 
data file we need to create an inverted index. Using inverted index reduces searching 
time for every text word.  

The inverted index is a central component of indexing search engine. A goal of a 
search engine implementation is to optimize the speed of the query: find the 
documents where word X occurs. Once a forward index is developed, which stores 
lists of words per document, it is next inverted to develop an inverted index. Querying 
the forward index would require sequential iteration through each document and each 
word to verify a matching document. The time, memory, and processing resources to 
perform such a query are not always technically realistic. Instead of listing the words 
per document in the forward index, the inverted index data structure is developed 
which lists the documents per word [36]. 

To create inverted index, we use full-text search engine. For now, there are many 
full-text search engines, which provides rapid search, complicated query language and 
REST interface. Solr [37] and Elasticsearch [32] are the most powerful and popular 
search engines for now. In the previous paper [38] we described detailed comparison 
of Solr and Elasticsearch as basis for implementing full-text manipulating part of IDS. 
In the paper we showed speed advantage of Elasticsearch in situation of indexing and 
inserting data at the same time. It’s important to search text data because unstructured 
text is often a part of other data types, e.g., structured documents (CSV, JSON, 
XML), documents extracted from social network services (user information, posts). 

Initial sets of automatically extracted keywords may be very big. We can have 
additional instruments for such sparse contexts with many uniform attributes like 
sorting and searching attributes (Fig. 3) or analyzing attributes usage statistics. But 
more proper way to generate initial context is using adjustable query. 

Example of EDQD for a query to a folder with text files: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  “TYPE”:”FS folder” 
  “URI”:”file://localhost/c|/source/” 
  “CS“:”” 
  “QUERY”:”” 
  “TARGET”:” file://localhost/c|/target” 
  “TRANSFORMATION”: { 
    “field”: { 
    “name”: “” 
    “target_field”:”body”, 
    “type”:”text”, 
    “indexing”: True}  
} 

Field “Transformation” is the most interesting part of EDQD for a local text-files 
folder. “Name” refers to a field of result IDS document is affected. “Target_field” 
describes name in IDS document. “Type” describes type of the source field. The value 
of the EDQD field “Type” determines operations and transformations which are 
applicable to a document field. By now, FCART supports an indexing operation on 
the “text” type. By default, the value of “Indexing” field is False. 



 
Fig. 3. Example of sparse context for all keywords in 54 documents – 30192 attributes! 

4.3 Query to an XML, JSON or CSV data file 

EDQD for a collection of XML [29], JSON [30] or CSV [28] data files is similar to 
EDQD for the text file. In case of XML one should specify path to the source 
document field in the EDQD field “source_path” according to the XPath standard 
[39]. In case of JSON one should use the JSONPath draft [40]. In the case of CSV one 
should use fragment identifier according RFC-7111 [41].  

Example of EDQD for a query to a folder with collection of JSON data files: 
{ “ID”: 
  “TYPE”: ”JSON Folder” 
  “URI”: ”file://localhost/c|/source/” 
  “CS “: “” 
  “QUERY”: “” 
  “TARGET”: “file://localhost/c|/target” 
  “TRANSFORMATION”: { 
    “field”: { 
    “name”: ”body” 
    “source_path”: “/store/book/title” 
    “target_field”: ”/body” }  
} 



4.4 EDQD query to a web-service 

EDQD for web-service interface provides ability to extract data from web-service. 
In the current version FCART supports REST and SOAP interfaces. EDQD for web-
service has the following fields: 

─ “ID” – GUID (Globally Unique Identifier). 
─ “TYPE” – Web-service type. Can be “REST” or “SOAP”. 
─ “URI” – URI of web-service.  
─ “CS” - This field is empty. 
─ “QUERY” – JSON document which contains query. 
─  “TRANSFORMATION” – JSON document which describes field mapping. 

Example of EDQD query to an Elasticsearch REST interface: 
{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  ”TYPE”:”REST”, 
  “URI”:”http://elasticsearch:1234/index_name/mapping_name/”, 
  “CS”: “”, 
  “QUERY”: “{ 
    "query": { 
    "bool": { 
    "must": [ 
      {"match":{"address": "mill" }}, 
      {"match":{"address": "lane" }} 
    ] }}}”, 
  “TRANSFORMATION”: “{ 
    “field”:{ 
    “target_field”: “body”, 
    “indexing”: True}”  
} 

REST interfaces can iterate set of elements, which are returned by query. Query 
field contains JSON document written on Elasticsearch query language 
(https://www.elastic.co/guide/en/elasticsearch/reference/current/index.html). 

Transformation field contains JSON document, which describes target field and 
preprocessing operation. The current version of FCART supports only indexing 
operation. 

4.5 EDQD query to a Social Network Service 

Social networks services have special API types. FCART processes the most 
common part of social networks services analysis. EDQD represents a user profile of 
Social Network Service as a hierarchical JSON document that has next fields: 

{“user”:{ 
“id”:”..” 
“path”: ”..” 
“user_info”: ”..” 
“friend:[…] 
} 

“post”:{ 
 “time”: 



 “body: ”..” 
 “title” ”..” 
 “tags”:[ ”..”,…, ”..”]} 
}  

Besides full-text queries, analyst can query neighborhood of a person, e.g. friends 
or colleagues. In the current version FCART server supports connection to 
Livejournal, Twitter, and Facebook. Example of extracting posts from third 
neighborhood layer of the person: 

{ “ID”: {6F9619FF-8B86-D011-B42D-00CF4FC964FF}, 
  “TYPE”: “facebook” 
  “URI”: “https://www.facebook.com/someuser/” 
  “CS “: “” 
  “QUERY”: { 
    “path”: “friend/post/body”, 
    “layer”: “3”, 
    ”BEGIN”: “2005-08-09T18:31:42-03”, 
    ”END”:””, 
    ”COUNT”:100 }, 
  “TARGET”:”IDS” 
  “TRANSFORMATION”: { 
    “field”:{ 
    “type”:”post”, 
    “target_field”:”body”, 
    “indexing”: True }  
} 

5 Discussion and future work 

In this paper, main problems of external data access in FCA-based analytics software 
were addressed and some real cases were examined while implementing new 
functionality in the FCART system. The demo version of FCART client is available 
at https://cs.hse.ru/en/ai/issa/proj_fcart and the test version of the IDS Web-service is 
available at http://zeus2.hse.ru:8444. 

For FCA-based data analysis fundamental requirements for software are as 
follows: 

1. The ability to merge heterogeneous data sources in a query to external data.	
2. The ability to cache frequent queries.	
3. The automatic populating of query metadata.	
4. The support of many formats of local data files to communicate with other 

software tools easily.	
5. The support of apriori prescribed constraints on FCA algorithms and 

visualization schemes.	
6. The availability of common and special “quick and dirty” methods of query 

result visualization with low computational complexity.	

When prototyping clinical decision support system components, we have realized 
the importance of having local and web-based versions of the preprocessing tools. So 
unification of external data access tools is the first step in satisfying informal analysts’ 



wishes. We also understand importance of other subsystems, including efficient data 
transformation algorithms, dashboards, etc. However, without unified and 
reproducible access to initial data no one can build real data analysis workflow. 

Improved mechanisms of query data work faster, more intelligible and provide 
necessary information to data analyst. The next steps in our development process are 
adding new External Data Browsers, increasing efficiency of EDQD processing and 
standardizing new API for running Web-Solvers inside IDS instead of Client. 
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