
A Static Code Search Technique to Identify
Dead Fields by Analyzing Usage of Setup Fields

and Field Dependency in Test Code

Abdus Satter, Amit Seal Ami, and Kazi Sakib

Institute of Information Technology, University of Dhaka
Dhaka 1000, Bangladesh

{bit0401,amit.seal,sakib}@iit.du.ac.bd

Abstract. Dead field is one of the most common test smells found in
the test code which is responsible for degrading performance and creating
misapprehension about the code. The reason of its occurrences is that in
most of the cases, developers initialize setup fields without considering
the usage of those fields in the test methods. In this paper, an automatic
dead field identification technique is proposed where the test code is
statically searched for identifying the usage of all the setup fields. It
does so by figuring out all the setup fields which are initialized in the
setup method or its invoked methods. After that, it detects such fields
which are used by at least one test method directly or indirectly. In
addition, field dependency is resolved to find all the fields on which used
setup fields depend. At last, all the unused setup fields are gathered and
considered as dead fields. To evaluate the technique, it was implemented
in the form of a tool and two open source projects were run on it. It has
been seen that it identifies all the dead fields in those projects correctly
and performs better than existing dead field detection techniques.

Keywords: test smell, dead field, setup fields, test fixture, test smells,
test code comprehension, code search

1 Introduction

Dead fields are the initialized fields in the setup method of a test class that are
never used by any test method. However, manually scrutinizing test code to find
dead fields slows down the production of software, and may induce bugs while
applying refactoring methods to stump out this smell. On the other hand, when
test code fails to convey its intent is considered to have the test smells which
have no impact on the behavior of the test code but causes the attrition of the
test code quality. Dead field is one of those which degrades the performance of
the test code as well as maintainability by unnecessarily using computational
resources and creating misunderstanding among the developers. So, dead fields
should be identified and removed from the test code to maintain the quality.
Dead fields can be identified by analyzing the test fixtures and test methods in
the test code. However, the major challenges are to find all setup fields in the



Dead Field Identification 61

test fixtures, resolve field dependency among those and figure out the usage of
those fields in test methods automatically.

Generally, a test fixture defines the configuration of the system under test
including setup methods. Those setup methods are invoked before execution of
any test case to ensure that all the setup fields are initialized properly for running
the test cases. On the other hand, after preparing the system for testing, test
methods use their required setup fields directly or indirectly through invoking
other method(s). To identify dead fields, unused setup fields are required to be
detected for which all the setup fields and their usage in the test methods are
needed to be analyzed. However, in order to identify setup fields, all the setup
methods in the test fixture are required to be analyzed. In addition, to find the
usage of the setup fields, dependency relationship among the setup fields and
those fields’ usage in test methods need to be resolved.

Martin Fowler coined code smell [1] and later, van Deursen first introduced
the concept of test smells in test code [2]. Michael Grielar and van Deursen
identified five new test smells including dead fields and developed a tool named
TestHound1 to identify those smells by analyzing test fixture [3]. The tool per-
forms well in identifying those test smells but for dead field detection, manual
code inspection is required to resolve field dependency and usage of setup fields
among the test methods. TestLint, another automatic test smells identification
tool, can deal with some test smells by finding the properties of those smells
in the test code [4]. However, this tool cannot handle dead fields in the test
code through test fixture and test method analysis because dead fields have not
been considered here. Although Bart van Rompaey proposed a metrics-based
approach based on the unit test concept to identify eager test smell, the author
did not address any metric to automatically detect dead fields [5, 6]. Bavota dis-
closed the distribution and impact of test smells in software maintenance but no
approach was explained to automatically identify dead fields in his analysis [7].

In this research, a technique named Dead Field Identifier (DFI) is proposed
to identify dead fields automatically by analyzing usage of setup fields and field
dependency in test methods. Initially, all the fields in the test code are searched
and gathered from test code. As header fields2 are also considered as setup fields,
so all the header fields are figured out from the identified fields by parsing the
code. Later, setup method and all other methods invoked directly or indirectly
by it are identified. The body of those methods are extracted to find all the
setup fields in the code. To find usage of those fields, all the test methods and
other methods invoked by those are obtained and fields which are used in those
methods are detected. Usually, it is found in the code that a setup field which is
used in at least one test method may depend on one or more other setup fields
which are never used by any test method. So, those fields are identified through
analyzing field dependency among the setup fields and considered as used setup
fields. At the end, all unused fields are separated from the setup field list and
those are marked as dead fields.

1 http://www.swerl.tudelft.nl/twiki/pub/MichaelaGreiler/TestHound/TestHound
2 Header fields are those fields which are initialized in the class header



62 Satter et. al.

In order to assess the technique, a tool is implemented based on it. The pro-
posed technique requires test code related information like fields in the test class,
method signature, method body etc. For this reason, test code is converted into
compiler centric Abstract Syntax Tree (AST) by the tool where AST is a semi-
structured form of the code [8, 9]. This tree based representation assists to find
required information more easily for dead field detection than searching in the
raw test code [10]. Two open source projects (eGit3 and EquationSolverTest4)
are used for the justification of the technique. Both projects are run on DFI and
TestHound for comparative analysis of the technique. Manual inspection is also
carried out to ensure the correctness of the result. While analyzing the results,
it is seen that for eGit, 3 percent of the fields could not be identified as used
fields whereas DFI figures out all the dead fields by properly identifying all used
setup fields. On the other hand, 82 percent setup fields can not be detected for
EuqationSolverTest and as a result 67 percent setup fields are not considered
as dead fields by it. However, DFI resolves field dependency among setup fields
and finds the usage of those in test methods correctly. For this reason, it per-
forms better than TestHound by identifying all the setup fields and dead fields
correctly in the project.

The rest of the paper is organized as follows. Section 2 describes related
works in detecting dead fields. The proposed technique is discussed in Section 3.
Section 4 presents implementation and result analysis of the proposed technique.
Conclusion is drawn in Section 5.

2 Related Work

The presence of dead field in the test code indicates incomplete or deprecated
software development activities. This smell is a recent contribution in the litera-
ture. Several researches have been carried out so far for analyzing the impact of
test smells in the test code. Besides, researchers proposed different techniques to
identify and remove those smells from the code. These are outlined as follows.

van Deursen et al. first described the concept of test smells [11, 12]. They
identified a list of eleven different test smells such as Mystery Guest, Resource
Optimism, Test Run War, General Fixture, Eager Test, Lazy Test, Assertion
Roulette, Indirect Testing, For Testers Only, Sensitive Equality, and Test Code
Duplication. They discussed about the characteristics of the smells and appro-
priate refactoring mechanism to remove those, but they did not provide any
technique for automatically identifying dead field in the test code because this
smell was not discovered at that time.

A metrics-based approach was proposed by Bart van Rompaey et al. [5, 13]
for the detection of two test smells which were test fixture and eager test to in-
crease the quality of test cases. To identify test fixture, they used several metrics
like setup size, fixture size, and fixture usage. Setup size is the combination of
the number of method or attribute references to non-test object from the setup

3 http://www.eclipse.org/egit/
4 https://github.com/rifatbit0401/EquationSolverTest



Dead Field Identification 63

method of a test case, and number of production type used in the test code.
They also defined fixture size as number of fixture elements and production type
in the fixture. For eager test identification, they used production type method
invocation as metric which is the number of invocations to the methods in the
production code from a test command. Their result was compared against man-
ual inspection. The technique worked well in identifying test fixture and eager
test smell. However, the metrics that were used to identify those smells are not
adequate enough to detect dead field in the test code as its characteristics are
different.

In order to understand the distribution of unit test smells and the impact
of those smells on software maintenance, Gabriele Bavota et al. conducted an
empirical analysis regarding this [7]. Two studies were carried out for the analysis
where one was an exploratory study and another was a controlled experiment.
The exploratory study was performed for the analysis of the distribution of
test smells. On the other hand, the controlled experiment was carried out for
analyzing the impact of test smells on the comprehension of test code during
software maintenance. Although they provided an insight about the distribution
and impact of test smells while managing test code, they did not provide any
approach to automatically detect dead fields in the code. The reason is that they
only analyzed the impact and distribution rather than detection of test smells.

Stefan Reichhart et al. developed a tool named TestLint for assessing the
quality of test code [4]. This rule-based tool identifies static test smells such as
Guarded Test, OverReferencing, Assertionless Test, Long Test, Overcommented
Test, and so on. It performs so by parsing the source code, analyzing the source
tree, detecting patterns, and computing metrics on the test code. All the rules
used to develop the tool were the characteristics of those smells [2, 14, 15]. How-
ever, the tool can not identify dead field in the test code because no metric was
defined for the identification of this smell.

Manuel Breugelmans and Bart van Rompaey presented a tool called TestQ
for exploring structural and maintenance characteristics of unit test suites [6]. It
allows developers to visually explore test suites and quantify test smelliness. The
tool could identify twelve different test smells proposed by van Deursen [5]. For
the detection, the tool uses a list of metrics defined by the authors such as number
of invoked framework asserts for Assertionless, number of invoked description-
less asserts for AssertionRoulette, number of invoked production methods for
EagerTest, and so on. However, the tool can not detect dead field in the test
code because they did not define any metric or strategy for it.

A static analysis technique to identify test fixture related smells in the test
code was presented by Michaela Greiler et al. [3]. Here they introduced five new
test smells which are Test Maverick, Dead Fields, Lack of Cohesion of Test Meth-
ods, Obscure In-Line Setup, and Vague Header Setup. To identify those smells,
they developed a tool named TestHound. It takes the test code, all dependen-
cies and all test cases as input. Next, it analyzes the code, finds the smells, and
provides a report describing all identified test smells in the code. The tool was
assessed by running on three projects (eGit, HealthCare and Mylyn). However,



64 Satter et. al.

it produced false positive results while detecting dead fields due to not being
able to resolve field dependency and find usage of setup fields in the test code.
So, manual inspection was performed to identify dead fields correctly.

Although dead field is a recently introduced test smell in the literature, some
significant works have been performed in identification of test smells so far. Re-
searchers explained the impact of test smells in test code maintenance and pro-
posed different techniques to detect test smells like metrics based approach, rule
based assessment, test fixture analysis and so on. Some of those could identify
dead fields in the test code but the outcome is not accurate enough. Sometimes
it is seen that those techniques provides false positive result which ultimately
induces serious impact while managing the code. For that reason, test code is
needed to be inspected manually for making sure the correctness of the result
in dead field detection. So, automatically identifying dead fields in the code
properly is still an open problem in the literature.

3 The Proposed Technique

The intent of this research is to develop a technique named Dead Field Identifier
(DFI) to identify dead fields in the test code for making the code more maintain-
able and comprehensible by removing those fields. For the identification, firstly,
it is required to identify all the invoked methods for any method in the test code.
In addition, all the setup fields are required to be obtained and usage of those
fields are needed to be identified in the code which assist to detect dead fields. So
the technique for the identification comprises several steps like invoked method
identification, setup field detection, finding usage of setup fields and dead field
identification which are described in the following subsections.

Algorithm 1 Invoked Method Identification

Require: A method (M) for which all the methods invoked directly or indirectly by
it will be identified and an empty list L to store invoked methods

1: procedure GetAllInvokedMethod(M)
2: if M /∈ L then
3: add M into L
4: end if
5: initialize an empty list N to store methods invoked by M
6: get all methods invoked by M through parsing its body
7: store those methods into the list N
8: for each m ∈ N do
9: A← GetAllInvokedMethod(m)

10: Insert all items in A into L
11: end for
12: return L
13: end procedure



Dead Field Identification 65

3.1 Invoked Method Identification

In order to identify invoked method(s) in the test code Algorithm 1 is developed.
Usually, the first step to identify dead fields in the test code is to identify all
the methods invoked directly or indirectly by any method in the code. This is
required because fields in the test class may be initialized by any method invoked
directly or indirectly by the setup methods. Even setup field(s) may not be used
directly by a test method but may be used by other methods which are invoked
by the test method directly or indirectly.

In Algorithm 1, the procedure GetAllInvokedMethod takes a method as
input and returns a list of all methods invoked directly or indirectly by the
method. For this, first of all, a list is initialized to store all invoked methods and
the body of the inputted method is parsed to identify all the methods invoked
by it which are inserted into another list (Algorithm 1 Line 5-7). A loop is used
to identify all the invoked methods for each method in the list by recursively
calling GetAllInvokedMethod. For each iteration, the corresponding method is
also added into the list which is responsible for containing all invoked methods
(Algorithm 1 Line 8-11).

3.2 Finding Setup Fields

Setup fields in the test code are those which are initialized in the implicit setup
procedures or the class header. All the setup fields in the test code are required
to be identified because such setup fields are considered as dead fields which
have never been used by any test method in the test code.

Algorithm 2 describes a procedure GetAllSetUpFields which works on given
test code and provides a list of all setup fields in the code. Initially two lists are
initialized - one is to store all setup fields and another is to store all the fields by
parsing the test code (Algorithm 2 Line 2-3). In the loop, all the header fields
are identified from the list of fields and those are added to the setup field list as
header field is also considered as setup field (Algorithm 2 Line 4-8). After that,
from rest of the fields those which are initialized in the implicit setup are added
to the list of setup fields (Algorithm 2 Line 9-22).

3.3 Finding Usage of Setup Fields

After identifying all setup fields following the previous step, the usage of all these
fields are required to be found in the test code. This will help to detect which
setup fields are never been used by any test method in the test code.

In Algorithm 3, all the test methods and all the setup fields in the test code
are identified and stored in two different lists respectively (Algorithm 3 Line
3-5). For each identified test method, the procedure GetAllInvokedMethod is
called to obtain all the methods invoked directly and indirectly by the method
(Algorithm 3 Line 6-8). After that, the body of each invoked method and the test
method are checked to identify which setup fields are used in the body and such
fields are added to the used setup field list (Algorithm 3 Line 9-16). At last, the



66 Satter et. al.

Algorithm 2 Finding Setup Fields

Require: Test code T for identifying all setup fields in T
1: procedure GetAllSetUpFields(T )
2: initialize an empty list S to store setup fields
3: identify all the fields in T using parser and store those fields in the list F
4: for each f ∈ F do
5: if f is header field then
6: Add f to S
7: end if
8: end for
9: find setup method M by parsing T

10: create an empty list I to store method
11: I ← GetAllInvokedMethod(M)
12: add M to I
13: for each m ∈ I do
14: for each f ∈ F do
15: if f ∈ S then
16: continue
17: end if
18: if f is initialized in m then
19: add f to S
20: end if
21: end for
22: end for
23: return S
24: end procedure

Algorithm 3 Finding Usage of Setup Fields

Require: Test code T for finding usage of setup fields in the test code
1: procedure GetAllUsedSetUpField(T )
2: initialize an empty list U to store all used setup fields in T
3: initialize an empty list M to store all test methods in T
4: identify all test methods by parsing T and add those into M
5: S ← GetAllSetUpFields(T )
6: for each m ∈M do
7: L← GetAllInvokedMethod(m)
8: add m to L
9: for each i ∈ L do

10: Get the body of the method (i) and save it in b
11: for each f ∈ S do
12: if f is used in b and f /∈ U then
13: add f to U
14: end if
15: end for
16: end for
17: end for
18: return U
19: end procedure



Dead Field Identification 67

Algorithm 4 Dead Fields Detection

Require: Test code T to identify dead fields in the code
1: procedure GetAllDeadField(T )
2: S ← GetAllSetUpFields(T )
3: U ← GetAllUsedSetUpField(T )
4: F ← S − U
5: initialize a list D to store dead fields
6: for each f ∈ F do
7: flag ← false
8: for each i ∈ U do
9: if i depends on f for initialization in the implicit setup then

10: flag ← true
11: end if
12: end for
13: if flag = false then
14: add f to D
15: end if
16: end for
17: return D
18: end procedure

list of all used setup fields are returned by the procedure GetAllUsedSetUpField
(Algorithm 3 Line 18).

3.4 Dead Fields Detection

Subsection 3.3 provides all the setup fields that are used by at least one test
method directly or indirectly. However, such setup fields can be found in the test
code, which are not being used by any test method, but some used setup fields
may depend on those fields for initialization. So, those fields are not considered
as dead fields. For finding all those fields, incorporating those with the list of
fields obtained using subsection 3.3 and finally providing a list of all identified
dead fields in the test code, Algorithm 4 is used for implementation.

To detect dead fields, all the setup fields and used setup fields are gathered
(Algorithm 4 Line 2-3). A list is used to store all the setup fields which are not
used by any test method (Algorithm 4 Line 4). The nested loops identify which
setup fields of the list are never used for the initialization of any used setup field
(Algorithm 4 Line 6-16). All those unused fields are considered as dead fields
which are returned by the procedure GetAllDeadField as a list (Algorithm 4
Line 17).

Complexity Analysis

The overall complexities of GetAllInvokedMethod, GetAllSetUpFields,
GetAllUsedSetUpField, and GetAllDeadField are O(p), O(pq), O(prs), and
O(pq + prs + mn) respectively. Here, p, q, r, s, m and n are number of invoked



68 Satter et. al.

methods, number of fields, number of test methods, number of setup fields,
number of unused setup fields, and number of used setup fields correspondingly.

4 Implementation and Result Analysis

In order to evaluate DFI, a tool is implemented based on it. TestHound [3] is
used for comparative analysis with DFI. At last, manual inspection is carried
out to make sure the correctness of the result which is provided by DFI.

4.1 Environmental Setup

This subsection outlines the software tools required for the experimental analysis.
For this analysis, DFI is developed using Java programming language. Although
the tool works to identify dead fields in the test code written using Java, the
approach proposed here is platform independent and only the facts extraction
aspect is language specific. So, the technique can easily be implemented in any
programming language. Some other tools are also used in the experiment and
those are addressed as follows.

– Eclipse Juno5: Java IDE for the development of DFI
– Byte parser6: Java byte code parser which has been developed to parse java

byte code and construct AST
– Maven7: Apache build manager for building the java projects used as the

dataset in the experiment

Table 1. Experimented Projects

Project Name Line of Code Number of Test Class

EquationSolverTest 800 4

eGit 130k 87

For the analysis, two open source projects have been used which are depicted
in Table 1. One of those is EquationSolverTest which is developed to solve equa-
tion having different expressions. It is an open source project and it has 800 lines
of code as well as 4 test classes. Another is eGit which is also an open source
Eclipse integrated version control system. It consists of 130K lines of code and
87 test classes. Both are available in the GitHub.

4.2 Comparative Analysis

As we have said above, two different sized projects are used for the experiment
to observe the behavior of the proposed technique. One of those is eGit which is

5 https://eclipse.org/juno/
6 https://github.com/rifatbit0401/ByteParser
7 https://maven.apache.org/



Dead Field Identification 69

Table 2. Result for EquationSolverTest

Class Name No.
Test
Method

No. of Setup Fields No. of Dead Fields

TestHound DFI Manual
Inspection

TestHound DFI Manual
Inspection

Simulate
EquationTest

4 0 5 5 0 4 4

Expression
FormatterTest

3 1 4 4 1 3 3

Expression
Simulation
ResultTest

4 2 7 7 2 2 2

OperationTest 4 0 1 1 0 0 0

large in size, and another is EquationSolverTest which is comparatively small.
The results obtained using those projects are explained as follows.

Result Analysis for EquationSolverTest: For comparative analysis, ini-
tially the project EquationSolverTest is run by TestHound and DFI. In addition,
manual inspection is also performed on the code. Table 2 summarizes the result
produced by the tools and manual inspection. In the table, it is seen that there
are four test classes. Comparative analysis for those classes are described below.

For the test class SimulateEquationTest, TestHound can not identify any
setup field whereas DFI detects 5 setup fields as well as 4 dead fields from those.
The outcome of DFI is equal to the result of manual inspection. The reason is
that TestHound can not identify those setup fields which are initialized in the
methods invoked by setup method, but DFI considers all those methods and
checks the initialization of setup fields.

In the test class ExpressionFormatterTest, there are 4 setup fields where one
is header field and others are initialized through indirect method invocation by
the setup method. TestHound detects no usage of the header field and thus,
considers it as dead field, but others are ignored because of the same reason as
stated earlier. However, DFI identifies all those and recognizes as dead fields.

Both tools identify two dead fields correctly for the test class ExpressionSim-
ulationResultTest. However, TestHound identifies 2 setup fields out of 7 because
those two are header fields and rest 5 are initialized in the setup method which
are not considered in it. On the other hand, DFI checks the setup method as
well as header field, that is why it detects all setup fields.

There is a single header field in test class OperationTest and this field is used
in all 4 test cases. As both tools can detect header fields and usage of setup fields
in test cases so those tools provide the same result for the test class.

Result Analysis for eGit: DFI is also run on a module of eGit named
org.eclipse.egit.core.test. There are 13 test classes and 46 test methods in total.
The result provided by the tool for the project is shown in Table 3. According
to the table, DFI identifies 78 setup fields and 6 dead fields. To ensure the cor-



70 Satter et. al.

rectness of the result, manual inspection is performed and the same outcome is
produced. During manual inspection, it is found that test classes which extend
the same super class contain dead fields. This is because setup fields are initial-
ized in the super class but never been used by any test method in the subclasses.
However, DFI first identifies all the fields of a test class. Later, all the inherited
fields are accumulated with those if the class extends another class. After that,
it identifies setup fields among those by analyzing all methods’ body invoked by
the setup method and detects dead fields by finding usage of those fields in test
methods. For this reason, DFI’s result is the same to the manual inspection’s
outcome. However, 3% of the fields in this project could not be identified as field
usage by TestHound [3]. So, in comparison with it, DFI performs better than it
in dead field identification.

Table 3. Result of eGit by DFI

DFI Manual Inspection

Number of Test Class 13 13

Number of Test Method 46 46

Number of Setup Field 78 78

Number of Dead Field 6 6

DFI and TestHound, both can identify dead fields in the test code. However,
TestHound can not detect dead fields correctly due to not handling some cases
properly like setup fields initialization in a method invoked by setup method,
field dependency among setup fields, and usage of setup fields by test methods
indirectly. On the other hand, DFI can appropriately deal with those and as a
result it detects dead fields correctly in the test code.

5 Conclusion

The presence of dead fields in the test code reduces the manageability and com-
prehensibility of the code. To detect those fields in the code, an automatic iden-
tification technique is introduced. A tool is also implemented based on the tech-
nique which identifies dead fields in the test code.

The technique first identifies all the fields in the test code through static
code search. Setup fields are identified from those by analyzing the initialization
of those fields in the setup method and its invoked method. At last, usage of
those fields in test methods and dependency relationship among those fields are
resolved to figure out dead fields in the code.

For the experimental analysis of the approach, two open source projects were
run on it. The result of DFI was compared to another tool named TestHound.
The experimental result shows that DFI identifies all the dead fields in those
projects correctly and performs better than TestHound. In future, more open
source projects and industrial projects will used to evaluate the technique.



Dead Field Identification 71

Acknowledgment This work is supported by the University Grants Com-
mission, Bangladesh under the Dhaka University Teachers Research Grant No-
Regi/Admn-3/2016/46897. The authors would like to thank Sheikh Muhammad
Sarwar for his contribution in the revision phase of the paper.

References

1. Martin Fowler. Refactoring: improving the design of existing code. Pearson Edu-
cation India, 1999.

2. Arie van Deursen, Leon Moonen, Alex van den Bergh, and Gerard Kok. Refactoring
test code. CWI, 2001.

3. Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Automated detec-
tion of test fixture strategies and smells. In Proceedings of the Sixth International
Conference on Software Testing, Verification and Validation (ICST), 2013 IEEE,
pages 322–331. IEEE, 2013.

4. Stefan Reichhart, Tudor Gı̂rba, and Stéphane Ducasse. Rule-based assessment of
test quality. Journal of Object Technology, 6(9):231–251, 2007.

5. Bart Van Rompaey, Bert Du Bois, Serge Demeyer, and Matthias Rieger. On the
detection of test smells: A metrics-based approach for general fixture and eager
test. Software Engineering, IEEE Transactions on, 33(12):800–817, 2007.

6. Manuel Breugelmans and Bart Van Rompaey. Testq: Exploring structural and
maintenance characteristics of unit test suites. In WASDeTT-1: 1st International
Workshop on Advanced Software Development Tools and Techniques, 2008.

7. Gabriele Bavota, Abdallah Qusef, Rocco Oliveto, Andrea De Lucia, and David
Binkley. An empirical analysis of the distribution of unit test smells and their
impact on software maintenance. In Proceedings of the 28th IEEE International
Conference on Software Maintenance (ICSM), 2012, pages 56–65. IEEE, 2012.

8. David E Langworthy, John L Hamby, Bradford H Lovering, and Donald F Box.
Tree-based directed graph programming structures for a declarative programming
language, October 23 2012. US Patent 8,296,744.

9. Peter Buneman. Semistructured data. In Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems, pages
117–121. ACM, 1997.

10. Terence Parr. The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
11. A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring test code.

In Proceedings of the 2nd International Conference on Extreme Programming and
Flexible Processes (XP2001), pages 92–95. University of Cagliari, 2001.

12. A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring test code.
In G. Succi, M. Marchesi, D. Wells, and L. Williams, editors, Extreme Programming
Perspectives, pages 141–152. Addison-Wesley, 2002.

13. Bart Van Rompaey, Bert Du Bois, and Serge Demeyer. Characterizing the relative
significance of a test smell. In Proceedings of the 22nd IEEE International Con-
ference on Software Maintenance, 2006. ICSM’06., pages 391–400. IEEE, 2006.

14. Gerard Meszaros. xUnit test patterns: Refactoring test code. Pearson Education,
2007.

15. Gerard Meszaros, Shaun M Smith, and Jennitta Andrea. The test automation
manifesto. In Extreme Programming and Agile Methods-XP/Agile Universe 2003,
pages 73–81. Springer, 2003.


