
Personal Web API Recommendation Using
Network-based Inference

Svetlana Omelkova1 and Peep Küngas1

1 University of Tartu, Estonia ,
svetlana.omelkova@ut.ee

2 peep.kungas@ut.ee

Abstract. In this paper, we evaluate a generic network-based inference
algorithm for Web API recommendation. Based on experimental data
collected from the Programmable Web repository, we construct two tri-
partite networks: one where the nodes are Web APIs, users and mashups,
and another where the nodes are Web APIs, users and tags. Experimen-
tal results show that the network-based inference algorithm yields higher
precision, ranking quality and personalization score when applied to the
second network. This approach also outperforms three existing meth-
ods: a global ranking method, a collaborative filtering method and the
Programmable Web recommendation tool.

1 Introduction

The uptake of Web APIs (Application Programming Interfaces) allows devel-
opers to conveniently expose data and applications on the Web in a reusable
manner. Developers can easily create a Web API composition (a.k.a. a mashup)
that aggregates data and application logic from different sources. The prolifera-
tion of Web APIs brings about significant opportunities for developers, but also
a burden of choice. For example, in order to enrich an application with machine
translation functionality, a developer needs to choose between a wide range of
available solutions such as Google Translate, Microsoft Translator, IBM Watson
Machine Translation and other less popular but sometimes equally suitable alter-
natives. This information overload raises the need for specialized recommender
systems that automatically suggest appropriate Web APIs in a given context.

Programmable Web (PW)3 – the largest online repository of Web APIs –
provides a keyword-based recommendation tool and allows users to filter Web
APIs by category and/or communication protocol. However, these filters are
coarse-grained and sometimes return too many options. For example, more than
200 Web APIs are proposed by PW’s recommendation tool when feeding it with
the keyword “translation”. It is a tedious job to browse through this list and to
assess the relevance of each Web API for a given need.

The problem of Web API recommendation has attracted significant atten-
tion in the research community. Some authors [12, 5] have proposed to cluster
Web APIs based on their functional properties and to use these clusters for Web
3 http://www.programmableweb.com/



API recommendation. Other authors [4] have proposed to use Web API tags
in conjunction with WSDL descriptions to locate Web APIs providing similar
functionality. Bianchini et al. [1] have proposed to semantically annotate Web
API interfaces with concepts from standard Web Service taxonomies, and to
use these semantic annotations to calculate similarity measures between pairs
of Web APIs. Other streams of research have addressed the problem of ranking
Web APIs by their relevance relative to a given query, taking into account us-
age and popularity [6, 2]. Collaborative filtering (CF) has also been applied to
address the problem of Web API recommendation [16, 9]. In these approaches,
recommendations are produced by computing the similarity between users and
analyzing the preferences of the top-k most similar users. Other techniques that
have been applied to this problem include latent semantic models and matrix
factorization [11, 13]. However in these approaches only historical usage data is
employed, while the Web API functionality itself is not taken into consideration.

Another popular approach to recommend Web APIs is to construct networks
that relate various types of entities associated to a Web API. For example,
Cao et al. [3] construct a network where each node is a mashup. Two mashups
are connected via an edge if they share Web APIs and/or functionality tags.
In a similar vein, Wang et al. [8] construct User-API and User-Tag networks.
Network-based inference techniques can then be applied to these networks in
order to produce specific Web API or mashup recommendations.

In this paper, we apply a generic Network-based Inference (NBI) algorithm
proposed by Zhou et al. [17] to the problem of recommending Web APIs to a
given user and in a given context. We evaluate this algorithm with respect to
three metrics (ranking quality, top-k precision, and top-k personalization) using
networks extracted from the PW repository. We consider two types of tripartite
networks: one where the nodes are Web APIs, users and mashups, and another
where the nodes are Web APIs, users and tags. We also compare the performance
of Zhou’s algorithm with respect to three baselines: a global ranking method, a
collaborative filtering method, and the keyword-based recommendation method
embodied in the PW repository.

The rest of the paper is structured as follows. Section 2 introduces the NBI
algorithm of Zhou et al. and its application to Web API recommendation. Section
3 discusses the dataset and the data extraction steps we have applied. Section 4
presents the evaluation results and Section 5 draws conclusions.

2 Network-based Inference

The NBI algorithm by Zhou et al. [17] is based on a network representation
of the input data. In its original form, the algorithm takes as input a simple
user-item network, which captures historical data about purchases, downloads
or endorsements of an item by a user. The algorithm computes an importance
score for each item relative to the target user to whom the recommendation is
being made. Figure 1(a) illustrates this recommendation approach. A blue circle



denotes a target user. Initially, one unit of resource4 is allocated to each item
node linked to the target user. Other items get no resource. In the first step, each
item evenly spreads its resource to all connected user nodes (Figure 1(b)). In the
second step, each user node evenly spreads its resource to its neighboring items
(Figure 1(c)). After these two steps, all items not yet linked to the target user are
sorted in descending order according to their sum of resource value. Items with
the highest recommendation score can now be recommended to the user. Zhou
et al. show that this method outperforms a Collaborative Filtering (CF) rec-
ommendation method based on user similarity, with respect to recommendation
accuracy and computational complexity [17]. Later, Yu et al. [10] conducted a
comparative evaluation of different variants of this generic NBI algorithm, which
confirmed the applicability and good performance of this approach.

The generic NBI algorithm [17] has been further developed in [15], leading to
a more advanced recommendation algorithm that uses the procedure described
above for a user-item-tag tripartite network. Here, the tags capture information
about the preferences of a user and about the contents of an item. The tags are
assigned via a collaborative tagging system. The extended algorithm uses the
same two-step resource spreading principle outlined above, but now the resource
spreads in parallel along the user-item and item-tag networks. The final resource
is computed as a linear superposition of two resource vectors obtained from
these parallel spreading processes. The evaluation results show that the use of
collaborative tags significantly improves the recommendation accuracy.

In the Web API ecosystem, tags represent an abstract functionality of a Web
API rather than personal preferences of a user, since tags are assigned to a Web
API by its developer(s). Therefore, Web APIs with identical tags have the same
abstract functionality. The fact that two Web APIs are used in the same mashup
can also be treated as an indicator of similar functionality. In this article we use
either the information captured in the tags or the information about inclusion
of a Web API in a mashup to construct two types of tripartite networks.

Fig. 1: An illustration of NBI resource spreading procedure.

3 Dataset

For benchmarking we used the PW repository crawled on 22 Oct. 2015. Informa-
tion about published Web APIs, mashups, and users, who published or followed
4 In this setting, the resource being flooded into the network is the total recommen-
dation capacity.



Fig. 2: Dataset structure

at least one Web API or mashup has been collected. All available metadata has
been mapped into an RDF graph using the API-Network ontology proposed by
us earlier [7]. The structure of the dataset is depicted in Figure 2. The dataset
includes a description of itself, descriptions of WebAPI s with their data prop-
erties such as authentication, commentUrl and textual description as well as
object properties capturing relationships with other classes. For example object
properties primaryCategory and secondaryCategory connect WebAPI with its
categories which are an instances of a skos:Concept class. Another member of
the dataset is foaf:OnlineAccount, which represents a user. For each user, the
dataset tells us which mashups and Web APIs the user follows and which ones
he/she provides. A user can also follow other users. The Mashup class provides
detailed information about a given mashup, e.g. registrationDate and textual
description, as well as lists of WebAPI s it includes and its tags. Tag is an RDF
property capturing the functionality of a Mashup. Category on the other hand
captures the functionality of a WebAPI.

The basic statistics of the dataset are listed in Table 1. The table shows the
number of Web API, User, Mashup and Tag nodes in the network as well as
the total number of different links between them. The instances of red-colored
classes in Figure 2 are nodes and those of blue-colored classes are links.

Number of RDF triples 497734 Earliest published Web API 2005-06-02
Number of Web APIs 14028 Latest published Web API 2015-10-19

Number of Users 70328 Num of User-WebAPI links 121530
Number of Mashups 7692 Num of WebAPI-Mashup links 15758
Number of Categories 461 Num of WebAPI-Tag links 40992

Table 1: Programmable Web dataset’s basic counts

4 Evaluation

We evaluate the performance of the NBI method for Web API recommendation
with respect to the question “Which Web APIs a given user would most prob-
ably follow given his/her past preferences?”. For the experiment we extracted



two networks from the PW RDF graph (Section 3). The first one is a tripartite
User-API-Tag network where nodes are instances of classes foaf:OnlineAccount,
:WebAPI and scos:Concept. A link exists between a User node and a WebAPI
node if an RDF property sioc:follows exists between these nodes. Similarly, a
link exists between a WebAPI node and a Tag node if an RDF property :pri-
maryCategory exists between these nodes. The second network is a tripartite
User-API-Mashup network, which is identical to the first network except that
the third type of node corresponds to class :Mashup and a link exists if there is
an RDF property gr:include between a Mashup and a WebAPI node.

For the evaluation we use three baseline recommendation techniques. The
first baseline is a global ranking method (GRM), which sorts all presented Web
APIs in descending order by in-degree, i.e. by the number of followers. Although
it is a non-personalized method, it is widely used in practice. GRM will always
favor the most popular Web APIs such as facebook, google-maps or twitter. The
second baseline is CF based on item similarity. The similarity of two items is
computed based on the number of users who follow both items. Finally, the third
baseline is the Web API recommendation tool provided by the PW repository5.
The tool provides a keyword-based Web API search method with the option of
filtering by category and/or interaction protocol. To customize the PW recom-
mendation tool for our experiment, we determine the set of interests of a target
user. To determine the latter, we extracted the list of categories of Web APIs
that a target user is already following. From this list of categories of interest, we
selected the top-2 most prevalent in the list. These two categories form a query
to the PW recommendation tool, and the result is considered to be a personal
recommendation list for the target user.

4.1 Evaluation metrics

A good recommendation method is characterized by its ability to identify an
item that the target user would like (use, buy). We divide the dataset (121530
User-API edges) into training and test set in the proportion 9/1 respectively. The
training set is used as the actual input for the evaluated method. The obtained
recommendation list is compared with the test set. Finally, the degree of match
between them is quantified using three evaluation metrics: precision, ranking
score and personalization score.

The first metric is a ranking score (r). For a target user ui, each method
under study ranks Web APIs that have not been already picked by ui in the
training set (uncollected items), by recommendation score in ascending order.
The result is an ordered personal recommendation list for target user ui. For
each User-API pair (ui − apij) from the test set we take a positional number
of apij in the recommendation list of ui and normalize this quantity by the
length of the recommendation list. This value is the individual ranking score r.
A small r means that the apij from the test set has been ranked highly by the
recommendation algorithm, which implies better recommendation accuracy. A

5 http://www.programmableweb.com/category/all/apis



mean ranking score of the method is computed by averaging individual ranking
scores across all User-API pairs in the test set.

The second metric is precision. This metric focuses only on top-k positions
of the recommendation list since in practice only the top recommended items
are viewed by the user. Individual precision is computed as a number of Web
APIs from the test set appearing in the top-k positions normalized by k. A mean
precision of the method is computed as an average value of individual precisions
for all users in the test set.

The third metric is personalization score. It measures the difference between
the recommendation lists of pairs of distinct users. The difference between two
lists can be measured as a Hamming distance. The Hamming distance between
two users i and j can be computed using the formula: Dij(k) = 1 − Cij(k)/k,
where the Cij(k) is the a number of common elements in the top-k positions of
the recommendation lists of the two users. The mean Hamming distance is com-
puted by averaging the Hamming distance across all pairs of users. The higher
is the mean Hamming distance, the more personalized is the recommendation.

4.2 Experimental results

Fig. 3: Cumulative distribution of ranking
scores of apij in the ui’s recommendation
list computed by five methods.

Table 2: Evaluation of five recom-
mendation methods using three ac-
curacy metrics (k =30)

Method r P(k) D(k)

NBI User-API-Mashup 0.168 0.0135 0.976

NBI User-API-Tag 0.153 0.0137 0.991

GRM 0.197 0.007 0
CF API-API similarity 0.26 0.004 0.643

PW recommendation 0.335 0.004 0.553

The performance of the described methods are shown in Table 2. For each
of the five methods under study we compute the mean ranking score r, mean
precision P (k) and mean personalization D(k), for k=30. This latter value is
the default number of entries appearing on the first page returned by PW’s
recommendation tool. A good recommendation method is expected to have a
low ranking score, high precision, and high personalization.

Among the two NBI methods, the User-API-Tag method outperforms the
User-API-Mashup by achieving a lower ranking score and slightly higher preci-
sion and Hamming distance. Therefore, additional usage information (i.e. inclu-
sion of API into mashups) has a lower impact for the recommendation than the
tag information. Previous studies show that the PW ecosystem has an unbal-
anced, long tail distribution of Web API usage frequency [14]: only a tiny portion



of Web APIs is well-known and widely used. The benefits of using tags can also
be seen in Figure 3 where the cumulative distribution of individual ranking scores
is shown. The figure shows that the NBI User-API-Tag method (green line) out-
performs the NBI API-User-Mashup (blue line) in terms of ranking score. Both
NBI methods have high personalization scores (D(k)).

The GRM appears to be also quite accurate regarding the mean ranking
score. This fact can be seen in Figure 3 (black line). The only limitation of
GRM is that it has a non-personalized nature. Such good performance of the
non-personalized method is possible only on highly imbalanced ecosystems, i.e.
the winning strategy is always to recommend the most popular items, no matter
what are the personal preferences.

CF based on API-API similarity has relatively high mean ranking score and
low precision and personalization scores. The worst performance is that of the
PW recommendation tool. On average only 55% of items are different in the top-
k recommendation lists for various users (Hamming distance equals to 0.553).
Its poor ranking ability is reflected as a red line on Figure 3. Most probably the
PW recommendation tool does not take into account how often a recommended
Web API has been used in the past. At the same time, such a recommendation
strategy can help to overcome the so-called cold start problem, i.e. recently reg-
istered Web APIs remain unnoticed by many possible users. By recommending
not yet popular Web APIs, the PW recommendation tool helps them to gain
popularity, but at the cost of accuracy.

Overall the two NBI methods outperform all three other recommendation
methods chosen for evaluation. The NBI methods achieve higher precision and
personalization values and also better ranking score.

5 Conclusion

In this paper we studied the applicability of a generic Network-based Inference
method to Web API recommendation. We compared two NBI algorithms based
on different tripartite networks (User-API-Tag and User-API-Mashup) against
three baselines, namely global ranking, collaborative filtering and the recommen-
dation tool provided by the PW repository. We showed that the NBI algorithms,
especially the one based on the User-API-Tag network, outperform other meth-
ods in terms of ranking score, precision, and personalization.

The main benefit of NBI is that it can work on diverse networks. Different
networks can help to answer different questions. For example, an API-Tag bipar-
tite network can be used to recommend additional Web API categories, while a
Mashup-API network can be used to supplement a possibly incomplete mashup.
And to increase recommendation accuracy, one can extend the input network
and make it tripartite by adding another type of node.

Acknowledgment. This research is funded by the Estonian Research Coun-
cil. We would like to thank Prof. Marlon Dumas for the language editing and
proofreading.



References
1. Bianchini, D., De Antonellis, V., Melchiori, M.: A recommendation system for

semantic mashup design. In: Database and Expert Systems Applications (DEXA),
2010 Workshop on. pp. 159–163. IEEE (2010)

2. Bianchini, D., De Antonellis, V., Melchiori, M.: Exploiting social tagging in Web
API search. In: On the Move to Meaningful Internet Systems: OTM 2013 Confer-
ences. pp. 764–771. Springer (2013)

3. Cao, B., Liu, J., Tang, M., Zheng, Z., Wang, G.: Mashup service recommendation
based on user interest and social network. In: Web Services (ICWS), 2013 IEEE
20th International Conference on. pp. 99–106. IEEE (2013)

4. Chen, L., Wang, Y., Yu, Q., Zheng, Z., Wu, J.: WT-LDA: user tagging augmented
LDA for web service clustering. In: Service-Oriented Computing, pp. 162–176.
Springer (2013)

5. Elgazzar, K., Hassan, A.E., Martin, P.: Clustering WSDL documents to bootstrap
the discovery of web services. In: 2010 IEEE International Conference on Web
Services. pp. 147–154. IEEE (2010)

6. Gomadam, K., Ranabahu, A., Nagarajan, M., Sheth, A.P., Verma, K.: A faceted
classification based approach to search and rank Web APIs. In: Web Services, 2008.
ICWS’08. IEEE International Conference on. pp. 177–184. IEEE (2008)

7. Omelkova, S., Küngas, P.: A linked data model for Web API-s. In: Perspectives in
Business Informatics Research - 14th International Conference, BIR 2015, Tartu,
Estonia, August 26-28, 2015, Proceedings. pp. 48–63 (2015)

8. Wang, J., Chen, H., Zhang, Y.: Mining user behavior pattern in mashup com-
munity. In: Information Reuse & Integration, 2009. IRI’09. IEEE International
Conference on. pp. 126–131. IEEE (2009)

9. Yao, L., Sheng, Q.Z., Segev, A., Yu, J.: Recommending web services via combining
collaborative filtering with content-based features. In: Web Services (ICWS), 2013
IEEE 20th International Conference on. pp. 42–49. IEEE (2013)

10. Yu, F., Zeng, A., Gillard, S., Medo, M.: Network-based recommendation algo-
rithms: A review. arXiv preprint arXiv:1511.06252 (2015)

11. Yu, Q.: Decision tree learning from incomplete QoS to bootstrap service recom-
mendation. In: Web Services (ICWS), 2012 IEEE 19th International Conference
on. pp. 194–201. IEEE (2012)

12. Yu, Q., Rege, M.: On service community learning: A co-clustering approach. In:
Web Services (ICWS), 2010 IEEE International Conference on. pp. 283–290. IEEE
(2010)

13. Yu, Q., Zheng, Z., Wang, H.: Trace norm regularized matrix factorization for ser-
vice recommendation. In: Web Services (ICWS), 2013 IEEE 20th International
Conference on. pp. 34–41. IEEE (2013)

14. Yu, S., Woodard, C.J.: Innovation in the programmable web: Characterizing the
mashup ecosystem. In: Service-Oriented Computing–ICSOC 2008 Workshops. pp.
136–147. Springer (2009)

15. Zhang, Z.K., Zhou, T., Zhang, Y.C.: Personalized recommendation via integrated
diffusion on user–item–tag tripartite graphs. Physica A: Statistical Mechanics and
its Applications 389(1), 179–186 (2010)

16. Zheng, Z., Ma, H., Lyu, M.R., King, I.: Wsrec: A collaborative filtering based web
service recommender system. In: Web Services, 2009. ICWS 2009. IEEE Interna-
tional Conference on. pp. 437–444. IEEE (2009)

17. Zhou, T., Ren, J., Medo, M., Zhang, Y.C.: Bipartite network projection and per-
sonal recommendation. Physical Review E 76(4), 046115 (2007)


