






We can choose the block V1 from the condition of asymptotic stability of the
slow subsystem, which for an autonomous system takes the form

Re λj(A1 − V1C̃1) < 0. (12)

For the estimation of state vector of the initial system we have

m1 = mv + εPmz, m2 = mz + Lm1.

Let us construct the full order observer for slow subsystem of the block diagonal
system (10)

v̇ = A1v,

y = C̃1v
(13)

as

ṅv = (A1 − V1C̃1)nv + V1y.

We can choose the block V1 from the condition of the asymptotic stability which
for an autonomous system has a form of the inequalities (12).
It can be proved that

lim
t→∞

‖nv −mv‖ = 0.

As an estimation of fast variable we can use any solution of the system

εṁz = A2mz.

For estimation of state vector of the initial system we have

m1 = nv + εPmz, m2 = mz + Lm1.

The similar reasoning can be used for construction of the Luenberger observer.

For the slow subsystem (13) we choose matrix W such that matrix Q =
(

C̃1

W

)

is nonsingular. Let Q−1 = (R D). The estimations of state vector take the form

m1 = Dα + (R + DV1)y, m2 = mz,

where

α̇ = (W − V1C̃1)(A1Dα + A1(DV1 + R)y), α(0) = α0,

εṁz = A2mz.

Aircraft model

Consider the model of a longitudinal motion of an aircraft, see Figure 1, [10]

v̈ = d1α− d2δ

θ̇ = d3α, (14)

T δ̇ + δ = Krmu.

Mathematical Modelling Vidilina OV, Voropaeva NV. The construction...

Information Technology and Nanotechnology (ITNT-2016) 757



Fig. 1. Aircraft model

where ν is a pitch angle, θ is a flight path angle, α=v − θ is an angle of attack,
δ is a deviation of the elevator, di is the aerodynamic coefficients, T and Krm

are the characteristics of control–surface actuator.
The typical values of the parameters are d1 = 36, d2 = 18, d3 = 1.2, T = 0.1.
Let ε = T and

x1 =




ν̇
ν
θ


 , x2 = δ.

The system (14) takes the form

ẋ1 = A11x1 + A12x2

εẋ2 = −x2, (15)

where

A11 =




0 −d1 d1

1 0 0
0 d3 −d3


 A12 =



−d2

0
0


 ,

A21 =
(

0 0 0
)
, A22 = −1.

Let the outputs be ν and θ, then

y = C

(
x1

x2

)
, C =

(
0 1 0 0
0 0 1 0

)
.

Using the coordinate transformation

x2 = z, x1 = v + εPz,

where P = P (ε) is the matrix function, which satisfies the equation

−P = εA11P + A12,

we can transform the system (15) to the block diagonal form

v̇ = A11v, εż = −z. (16)

The matrix function P (ε) may be constructed with any degree of accuracy as
asymptotic series in small parameter ε

P = P (ε) = P (0) + εP (1) + . . . ,
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where

P (0) = −A12 =




d1

0
0


 , P (1) = −A11P

(0) =




0
−d2

0


 .

Output vector y takes the form

y = C̃

(
v
z

)
,

were

C̃ = (C̃1 C̃2), C̃1 = C1, C̃2 = εC1P + C2,

C̃1 = C1 =
(

0 1 0
0 0 0

)
, C̃2 =

( −ε2d2

1

)

Let us construct the full order observer for the slow subsystem of the block
diagonal system (16)

v̇ = A11v,

y = C̃1v,

in the form

ṅv = (A1 − V1C̃1)nv + V1y.

We can choose the block V1 from the condition of the asymptotic stability in the
form

V1 =




a 0
b 0
c 0


 .

Then the estimation of the state vector v must satisfy the equation

ṅv =




0 −d1 d1 − a
1 0 −b
0 d3 −d3 − c


 nv +




a
b
c


 y1(t).

For example, let us put a = 0, b = 1, c = 1.
As an estimation of the fast variable z we can use any solution of the system

εṁz = −mz.

For the estimation of the state vector of the initial system we have

m1 = nv + εPmz, m2 = mz.

The Figures 2 – 5 demonstrate the dynamic of the state vector and its estimation.
Similar reasoning can be used for construction the Luenberger observer.
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Fig. 2. v̇, mv̇
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Fig. 3. v, mv
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Fig. 4. δ, mδ
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Fig. 5. θ, mθ

For slow subsystem we notice that the second row of matrix C̃1 is zero. We
choose matrix W such that matrix

Q =
(

C̄1

W

)
, where C̄1 =

(
0 1 0

)
,

is nonsingular. For example,

W =
(

1 0 0
0 0 1

)
.

Write matrix Q−1 in the form Q−1 = (R D), where

R =




0
1
0


 , D =




1 0
0 0
0 1


 .

The estimation of the vector v takes the form

mv = Dα + (R + DV1)y,

where

α̇ = (W − V1C̄1)(A11Dα + A11(DV1 + R)y), α(0) = α0.

Let

V1 =
(

a
b

)
.
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We have

(W − V1C̄1)A11D =
( −a d1

−b −d3

)
.

For example, let us put a = 0, b > 0.
As an estimation of the fast variable we can use any solution of the system

εṁz = −mz.

For the estimation of the state vector of the initial system we have

m1 = mv + εPm2, m2 = mz.

The Figures 6–9 demonstrate the dynamic of the state vector and its estimation.
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Fig. 6. v̇, mv̇
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Fig. 9. θ, mθ

Conclusion

The asymptotic decomposition method helped us to reduce the observation prob-
lems for the dynamic systems with slow and fast variables. This approach can
be also used for solving the observation problems in a stochastic case.
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