
Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Evaluation of Autotuning Techniques for the
Compiler Optimization Problems

Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

Politecnico di Milano,
Milan, Italy

{amirhossein.ashouri,ginaluca.palermo,cristina.silvano}@polimi.it

Abstract. Diversity of today’s architectures have forced programmers
and compiler researchers to port their application across many different
platforms. Compiler auto-tuning itself plays a major role within that
process as it has certain levels of complexities that the standard opti-
mization levels fail to bring the best results due to their average per-
formance output. To address the problem, different optimization tech-
niques has been used for traversing, pruning the huge space, adaptability
and portability. In this paper, we evaluate our different autotuning ap-
proaches including the use of Design Space Exploration (DSE) techniques
and machine learning to further tackle the both problems of selecting and
the phase-ordering of the compiler optimizations. It has been experimen-
tally demonstrated that using these techniques have positive effects on
the performance metrics of the applications under analysis and can bring
up to 60% performance improvement with respect to standard optimiza-
tion levels (e.g. -O2 and -O3) on the selection problem and up to 4%
w.r.t. to LLVM’s standard optimization on the phase-ordering problem.

1 Introduction

Conventional software applications are first developed in the desired high-level
source-code (e.g. C, C++) and then are passed through the compilation phase to
build the executable. The later phase includes compiler optimization process in
which the target metrics such as execution time, code-size, power, etc are opti-
mized depending on the desired scenario. Compiler optimizations are playing an
important role to transform the source-code to an optimized variation. Usually,
open-source/industrial compiler platforms are coming off-the-shelf with some
standard optimization levels (e.g. -O1, -O2, -O3 or -Os) to bring the average-
good results for conventional platforms. However, quite often they fail to bring
the optimal results for specific applications, architectures and platforms. In the
short paper, two different techniques for compiler auto-tuning , namely, DSE
and Machine Learning based techniques have been proposed to accommodate
and address the problem of selecting the best compiler optimization for a given
application.

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

2 Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

Fig. 1: Approach (I): DSE Proposed Methodology

2 Approach (I): DSE Approach

Design Space Exploration (DSE) refers to the activity of exploring the design
parameters alternatives before the actual design. It deals with pruning and ex-
ploring the design space efficiently. The proposed work targets the exploration of
compiler options parameters, in order to automatically explore the design space
and analyze the compiler-architecture co-design. We experimentally assessed the
proposed methodology in Very-long-Instruction-Word (VLIW) architecture by
applying random Design of Experiment (DoE) and an automatic tool-chain in-
cluding our Multi-Objective System Tuner tool (MOST), a wrapper and a com-
piler/simulator; namely, LLVM and VLIW-EXample (VEX). It enables to au-
tomatically explore, optimize and analyze the optimizations by using several
standard benchmarks for both high-end embedded and signal processing appli-
cations [1]. Analytically, we show that the adoption of the specific methodology
either in a cross-architecture and/or cross-application manner, can deliver signif-
icant application specific insights thus enabling the designer to guide through de-
cisions regarding the architecture and the compilation optimization strategy [2].
Figure 1 represents the proposed methodology for compiler co-exploration with
DSE. The work-flow starts by inferring the Pareto-optimal architectural design
space and then feeding the found architectural properties to the compiler frame-
work. Statistical analyses will be applied at the end to assess the correlation
between utilizing the certain compiler options and the observed performance
metrics. Figure 2 is showing different distributions derived by applying the pro-
posed DSE.

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Eval. of Autotuning Techniques for Compiler Opt. 3

(a) (b)

Fig. 2: Visualization of (a) licm’s significant positive effect, (b) reassociate’s no
significant effect

3 Approach (II): Machine Learning Approach

Diversity in applications and architecture, simply makes it barely possible to
manually optimize and port the source-codes for each application/architecture.
Random Iterative Compilation fails to efficiently bring the optimal results due
to its high demand on time and number of iterations. In order to improve the
portability of compiler optimization with respect to the handcrafted approaches,
machine learning has been used to address both the selection of compiler opti-
mization options and phase-ordering problem [3] to predict the right optimization
to be applied given an unseen application [4].

3.1 The Problem of Selecting the Right Set of Compiler
Optimizations

Addressing the issue on the second approach, we propose a Machine Learn-
ing based autotuning framework that maximizes the performance of a target
application. COBAYN: Compiler Autotuning Framework Using Bayesian Net-
works, starts by applying statistical methodology with Bayesian Networks to
infer the probability distribution of the compiler optimizations to be enabled to
achieve the best performance. We start to drive the iterative compilation process
by sampling from the probability distribution. Likewise most machine learning
approaches, here we use a couple of sets of training applications to learn the sta-
tistical relations between application features and the compiler optimizations.
Given a new unseen application, its features are fed into the machine leaning
algorithm as evidence on the distribution. This evidence imposes a bias on the
distribution. Since compiler optimizations are correlated with the software fea-
tures, we can redo the process of sampling for the new target application. Figure
3 demonstrates the second proposed approach that is assessed on an embedded
ARM device with GCC compiler. The obtained probability distribution is in-
deed application-specific and effectively exploits the use of iterative compilation
process as it only drives with the most promising compiler optimizations [5, 6].
Figure 4, represents the result of our proposed methodology, COBAYN, against
GCC’s standard optimization levels -O2 and -O3 when using cBench suite. It
represents significant speedup factor over the the experimentally tested applica-
tions with the average 56% and 47% improvement, respectively against -O2 and

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

4 Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

(a) (b)

Fig. 3: Approach (II): Overview of the proposed M.L Methodology a) training
phase b) predicting phase

Fig. 4: Performance improvement of our Bayesian Networks w.r.t -O2 and -O3

-O3. COBAYN, led to reach a factor of 3× exploration speedup compared with
the random iterative compilation having a fixed number of predictions.

3.2 The Phase-ordering Problem

when taking into considerations the order of the appearance of the compiler
optimizations, the so-called phase-ordering problem comes into play. The space
gets enormously bigger and simple classic supervised techniques are not able to
tackle accurate models for prediction. Addressing the phase-ordering problem,
we propose an intermediate speedup predictor that is able to predict the current
optimization to be applied given the state of the code being optimized. We
used predictive models and dynamic software characterization to construct the
application specific models in cross-validation manner. In order to speedup the
exploration on the space, we defined two traversing heuristics , depicted in Figure
5, that use Depth First Search (DFS) and exhaustive search within the prediction
space. The proposed approach reaches up to 4% speedup w.r.t LLVM’s default
compilation performance [3].

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Eval. of Autotuning Techniques for Compiler Opt. 5

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

s
p

e
e

d
u

p
 v

s
.

o
ri
g

in
a

l

unique program variant

averaged

Actual
Greedy DFS policy

Exhaustive search policy
-O1

Fig. 5: Performance improvement of our proposed speedup prediction models
against LLVM

4 Conclusion

This paper presents two main approaches for the compiler autotuning problem
using DSE and machine learning. The experimental results is shown speedup on
the performance metrics while classifying the effective compiler optimizations
derived by DSE approach and 40% - 60% speedup with against GCC’s -O2 and
-O3 on an ARM embedded-board using COBAYN.

References

1. A. H. Ashouri, “Design space exploration methodology for compiler parameters in
vliw processors,” 2012, http://hdl.handle.net/10589/72083.

2. A. H. Ashouri, V. Zaccaria, S. Xydis, G. Palermo, and C. Silvano, “A framework for
compiler level statistical analysis over customized vliw architecture,” in Very Large
Scale Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference on.
IEEE, 2013, pp. 124–129.

3. A. H. Ashouri, A. Bignoli, G. Palermo, and C. Silvano, “Predictive modeling
methodology for compiler phase-ordering,” in Proceedings of 7th Workshop on Par-
allel Programming and Run-Time Management Techniques for Many-core Architec-
tures and 5th Workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms. ACM, 2016.

4. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, J. Thom-
son, M. Toussaint, and C. K. Williams, “Using machine learning to focus iterative
optimization,” in Proceedings of the International Symposium on Code Generation
and Optimization. IEEE Computer Society, 2006, pp. 295–305.

5. A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano,
“Cobayn: Compiler autotuning framework using bayesian networks,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 13, no. 2, p. 21, 2016.

6. A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian network ap-
proach for compiler auto-tuning for embedded processors,” in Embedded Systems
for Real-time Multimedia (ESTIMedia), 2014 IEEE 12th Symposium on. IEEE,
2014, pp. 90–97.

