
Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

Automatic Pruning of Autotuning Parameter
Space for OpenCL Applications

Ahmet Erdem, Gianluca Palermo6, and Cristina Silvano6

Department of Electronics, Information and Bioengineering
Politecnico di Milano

Abstract. OpenCL standard reaches more wider audience due to in-
creasing the number of devices supporting it. This situation puts devel-
opers who want performance on large range of platforms in a difficult
position. To solve this problem, autotuning frameworks are deployed.
But the problem of design exploration space is seriously large because
of OpenCL parameters. In this work, we introduce an approach which
uses constraint programming to prune the design space before employing
intelligent or exhaustive techniques to explore.

1 Introduction

The recent advances in computer architecture made heterogeneous computer
systems available to not only data centers and supercomputers but also to com-
mercial personal computers. Especially, with the advent of AMD APUs and Intel
CPUs which include integrated GPUs, the heterogeneity of modern machines has
increased. Furthermore, enabling discrete GPUs for general purpose computing
has added another type of computation device to the system. While each sys-
tem has provided different granularity of parallelism which needs to be properly
exploited, the communication between various computation units must also be
handled according to the needs of application as well.

Open Computing Language (OpenCL) which is maintained by Khronos con-
sortium [3] is an open standard for developing parallel applications on heteroge-
neous systems by abstracting the underlying compute machine. OpenCL adopts
data parallel approach by describing the parallel computations as a group of
work-items, called work-groups. This hierarchical parallelism has been realized
by launching kernel functions with a number of work-groups including a set of
work-items. Kernel function describes how each work-item defines the operations
that is to be carried out on a single data. Therefore the collection of work-items
under all work-groups together expresses the data parallelism for an application.
Although OpenCL defines the execution of the application that is portable be-
tween the devices conforming the OpenCL standard, it does not guarantee the
performance to be optimal. Especially, moving applications to different types of
architectures like from CPU to GPU may result significant loss of performance,
this is the reason why OpenCL is not considered performance portable. On het-
erogeneous performance portability represents a challenging research issue.



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

One naive solution to performance portability is to develop separate ker-
nel functions for each device the application is supposed to run. This solution
makes development of application dramatically complicated when the system
is heterogeneous, because of explicit management of multiple command queues
and contexts in the presence of multiple vendors on the system.

Performance portability problem of OpenCL applications has been approached
either by tuning of significant parameters described as in [6] or by introducing
Domain-specific languages to annotate kernel and OpenCL code generation [2].

From another perspective, it is not always possible to access these parameters
to tune if they are not being exposed by developers. The work of [1] tackles this
problem by coalescing work-groups using compiler transforms while preserving
the correctness of application.

In this work, we introduce an automation of extraction of OpenCL platform
parameters and usage of the information that is gathered to aid the tuning
process described in [6].

2 Proposed Methodology

The procedure of autotuning of an OpenCL application in order to get optimum
performance without concerns of underlying architecture of the platform requires
a set of parameters that define characteristics of the machine. In the case of
OpenCL, these platform specific parameters are stated by the OpenCL standard
itself. Furthermore, it is possible to gather them using the querying framework
which is provided by the OpenCL standard. With these information gathered,
it is possible to determine the size of the exploration space and then using
intelligent methods for searching optimum design space.

Outside of platform parameters, there might be also application specific pa-
rameters that can be tightly related to platforms capabilities. An example of
this situation is well-known tiled version of the matrix multiplication. Size of
the tiles are considered as an application parameters and due to nature of the
algorithm there is a sharing of information between work-items on the elements
of the same tile. Due to OpenCL architecture design, this kind of communication
requires local memory to be used. Therefore tile size is directly related to local
memory usage which is a limited resource of the platforms.

There are some problems regarding with this approach; design space is larger
for even simple applications, for instance, Nvidia Fermi architecture allows up
to 1024 work-items for first and second dimensions and 64 work-item for the
third dimension, resulting a 226 different configurations already. Most of the
configurations are not feasible in the sense that the kernel may not even launch
or may fail during execution, due to illogical configurations parameters. Moreover
these failed attempts of kernel launches do not provide any information about
the sample that has been taken from design space. Hence effort and time are
wasted on these ill-advised configurations.

In order to address this issue, the work in [6] presented a design space ex-
ploration flow that includes constraint programming to prune the design space



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

and eliminate infeasible solutions. This helps reduction of space while only us-
ing samples which makes sense within the scope of OpenCL standard. Fig. 1
demonstrates this idea simply.

Our work aims to improve the pruning phase by automating the extraction
of platform specifications, to find constraints that are valid for all platforms,
so that application programmer only needs to insert constraints related to ap-
plication itself. For constraint programming, we used MiniZinc [4] constraint
modelling language as it is used in [6]. Using OpenCL querying framework, for
each OpenCL compliant device available on the machine we generated MiniZinc
data files which include the following information about the device:

– maximum work-group size for each three dimensions.
– maximum number of total work-group a kernel launch may contain.
– number of compute units on the device.
– local memory size of the device.

In addition to these, a set of constraints that can be deduced from standard
[3] has been used to generate platform constraint model, thus together with
application constraints provided by programmer can prune the design space
effectively. The generated platform constraints are as follows:

– total number of work-groups launched must be less than or equal to maxi-
mum work-group size.

workgroupx ∗ workgroupy ∗ workgroupz <= max total wg (1)

– each global work-item dimensions must be multiple of corresponding work-
group dimension size.

globalx%workgroupx == 0

globaly%workgroupy == 0

globalz%workgroupz == 0

(2)

– total number of work-groups should be equal or greater than number of
compute units. Otherwise there will be idle compute units.

globalx/workgroupx + globaly/workgroupy+

globalz/workgroupz >= num compute units
(3)

3 Use Case Example

In order to test our approach, we used a machine with Intel i7-2630QM which is a
quad-core CPU at 2.0Ghz and Nvidia GeForce GT 550M which is a mobile GPU
with 96 CUDA cores. For testing purposes, tiled version of matrix multiplication
is used and tile size is given as a application parameter and it is been set the



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

Fig. 1. Pruning of configuration design space

interval of [1 : 256]. Furthermore, we have taken into account that application
global work size and set it to 4096x4096 matrix for this experiment.

Given this setting, the design space for CPU is 234 and for GPU it is 247. But
after the pruning of infeasible configurations, there are only 367 configurations
left for CPU and 421 configurations for GPU. Considering the result of prun-
ing for the use case given, it is even possible to search exhaustively all possible
configurations left to find the optimal one. However the given example is too el-
ementary to deduce this conclusion for broader range of applications. Hence, the
next step is to introduce tools to at least one of the industry-proven benchmarks
like OpenDwarfs [5], Rodinia [7] and shoc [8]. Moreover, testing with more di-
verse and recent hardware platforms is necessary to prove generality of the work.
Additionally, besides platform specific and application specific parameters, there
is a possibility of adding compiler-supported parameters like coalescing factor
that has been explored in [1].

References

1. G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. Towards transparently tackling
functionality and performance issues across different opencl platforms. In In proceed-
ings of the Second International Symposium on Computing and Networking Across
Practical Development and Theoretical Research (CANDAR 2014), Dec. 2014.

2. N. Chaimov, B. Norris, and A. Malony. Toward multi-target autotuning for accel-
erators. In Parallel and Distributed Systems (ICPADS), 2014, pages 534 – 541.

3. Khronos Group. The open standard for parallel programming of heterogeneous
systems. [Online; Accessed: Nov. 2015].

4. MiniZinc. Medium-level constraint modelling language minizinc. [Online; Accessed:
Dec. 2015].

5. OpenDwarfs. Opendwarfs. [Online; Accessed: Jan. 2016].
6. E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano. Cus-

tomization of OpenCL applications for efficient task mapping under heterogeneous



Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016 
	
	
	
	
	

platform constraints. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pages 736–741. EDA Consortium, 2015.

7. Rodinia. Rodinia:accelerating compute-intensive applications with accelerators.
[Online; Accessed: Jan. 2016].

8. Shoc. Scalable heterogeneous computing (shoc). [Online; Accessed: Jan. 2016].


