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Abstract. Several classes of applications expose a set of parameters
that influence their extra-functional properties, such as the quality of
the result or the size of the output. This leads the application designer
to tune these parameters in order to find the configuration that produces
the desired outcome.
From the architectural point of view, the trend in modern systems is
to expose an high level of parallelism, often involving heterogeneous re-
sources. To exploit the full potential of the hardware, the application
designer must take into account resource-related parameters in the tun-
ing process as well.
Since the requirements of the applications and the resources assigned
to each application might change at runtime, we argue that finding a
one-fit-all configuration is not a trivial operation.
For this reason we use a framework that enhances an application with
an adaptation layer in order to continuously tune the parameters of the
application according to the evolving situation, in a best effort fashion.

1 Introduction

One of the main tasks of an application designer is to reach the required perfor-
mance on the target system. Unfortunately, the performance of an application
is seldom defined by one metric, such as the execution time or its throughput.
The performance is instead composed by a collection of metrics that are usually
in contrast between them; for instance the time spent on elaborating the input
against the quality of the result or the power consumption.

A common approach is to write an algorithm that exposes a set of parameters,
also known as dynamic knobs[2] in literature, that influence the performance
of the application, such as the number of trials in a Monte Carlo solver or
the resolution of the output frame in a video encoder. The possible values of
these parameters define the design space of the application and in literature are
described several Design Space Exploration (DSE) techniques[4] that are able
to automatically and efficiently compute the Pareto set, which represent all the
optimal trade-off between the metrics of interest.

Since the application requirements may change at runtime – for instance if
the platform is at first powered by a battery, then plugged in a power supply –
and the system might vary the resources allocated to the application as well, we
argue that is not trivial to select a priori one-fit-all configuration.
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For this reason we rely on the argo1 framework[1]: it is grounded on the
Monitor-Analyze-Plan-Execute (MAPE) feedback loop[3] and it is able to au-
tomatically tune the application parameters according to the evolution of the
system.

The main idea of the framework is to exploit design time knowledge of the
application, obtained through a DSE, to select the best configuration according
to the actual application requirements and the observed performance, both of
them composed by a collection of metrics of interest.

argo is implemented as an external library to be linked against the target
application. It takes autonomous decision without interacting with any other
element. For these reasons we are able to minimize the intrusiveness of the
integration, expressed in terms of lines of code to be changed.
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Fig. 1. The framework structure. The AS-RTM selects the best configuration according
to the runtime information provided by the monitors and the design-time knowledge.

2 Framework structure

The framework follows a modular approach, as showed in Figure 1. A monitor
infrastructure is used to gather insight on the actual performance of the appli-

1 The name argo, has been borrowed by Greek mythology. argo was the ship on
which Jason and the Argonauts sailed to retrieve the Golden Fleece. As that boat was
a means for achieving the Golden Fleece (their goal): it aims at letting applications
to reach their goals too.
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cation (Monitor element). argoships with a monitor suite to observe the most
common metrics:

– The elapsed time or the application throughput.
– The resident set size of the virtual memory that the process is using.
– The process- and system-wide CPU usage.
– Low-level metrics exposed by the widely adopted PAPI framework[6].

Moreover, to observe application-specific metrics, such as the quality-related
ones, the object-oriented implementation enable the application designer to eas-
ily integrate a custom monitor, defining the methods that actually gather the
new data.

On the other side, argoembeds the design time knowledge in the list of
Operating Points (OPs), where each OP represents a configuration and the per-
formance reached by the application using that configuration. The framework
is agnostic about the technique used to perform the DSE, in the current imple-
mentation it parses the MULTICUBE[5] syntax.

The Application-Specific RunTime Manager is the main component of the
framework that selects the best configuration (Plan element), within the list of
OPs, according to a multi-objective constrained optimization that might involve
observed metrics (using Goals) or design time computed metrics (using Static
Goals).

Since the dynamic knobs are heavily application-dependent, is the application
itself that is in charge to apply the configuration selected by argo(Execute ele-
ment), closing the MAPE loop. In this way it is possible to deploy the framework
in a wide range of applications, while minimizing the integration effort. In fact,
we model the application as a sequence of different blocks of code that perform
the elaboration iteratively. The idea is that at the beginning of each iteration,
the application retrieves the configuration to use in the current iteration.

3 Framework integration

To employ separation of concerns, our workflow is based on three kind of files.
The source code of the application describes the functional behavior, while we
use two configuration files written in XML to express the adaptation layer: one
file describes the design time knowledge and the third one describes the monitor
infrastructure and the multi-objective optimization. argouses a tool that au-
tomatically generates the glue-code required to integrate the framework in the
target application.

To better clarify the required effort, Figure 2 provides an integration example
considering a toy application. It shows the original source code written in black,
while the integration code required to adopt argo is written in bold red. The
application itself is very simple: on lines 9-16 the elaboration block, named “foo”,
performs the loop over the available jobs, while the function do job (line 14)
actually performs the computation.
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1 #include ‘‘argo.hpp’’

2

3 int param;

4

5 int main ()

6 {

7 argo::init();

8

9 while( work_to_do () )

10 {

11 argo:: block_foo

12 {

13 // do the computation

14 do_job(param);

15 }

16 }

17 }

Fig. 2. This example shows how to integrate argo in an existing application code that
exposes the elaboration as a loop, using the glue-code automatically generated by the
framework tool from an XML configuration file.

In this example, we suppose that the elaboration is influenced by the pa-
rameter param, expressing the amount of processed data and representing the
software knobs of the application. Since the code of toy application expose di-
rectly the elaboration loop, the integration requires only to include the created
header file, initialize the framework and then wrap the execution call with the
generated macro, highlighted in bold red. In this way the framework is able to
observe and tune the elaboration block. Since no assumptions are made on the
structure of the application code, the tool generates a hierarchy of methods to
interact with the application, that requires to write the glue-code using more fine
grained functions. In the worst case, the application designer is able to directly
use the framework API.

4 Conclusion

In this work we have described a framework that enhances an application with
an adaptation layer. In particular it adapts the knowledge base obtained at
design time with the information gathered by the monitor infrastructure. Using
this information, argo selects the best configuration according to the actual
requirement of the application.
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