

First Workshop on Resource Awareness and Application
Autotuning in Adaptive and Heterogeneous Computing

(RES4ANT)

Adaptive and heterogeneous computing platforms are gaining interest for applications spanning from
embedded to high performance computing due to their promising power/performance ratio. However,
sharing hardware resources creates some challenges with respect to predictable execution time and power
consumption. In traditional real-time approaches, resource usage is over dimensioned to achieve worst case
guarantees, whereas in best effort approaches, predictability remains a challenge. The goal of the workshop
is to bring together researchers from the area of resource awareness and application autotuning, to discuss
their various approaches, their commonalities and differences, to foster collaboration between them and to
share their most recent research achievements with the international research community.

ORGANISATION
General Co-Chairs: Cristina Silvano, Politecnico di Milano, Italy
 Walter Stechele, TU Munich, Germany
 Stephan Wong, TU Delft, The Netherlands
Poster Session Chair: Jeronimo Castrillon, TU Dresden, Germany
Panel Session Chair: Michael Hübner, Ruhr-Universität Bochum, Germany
Web Chair: Amir H. Ashouri, Politecnico di Milano, Italy

FORMAT OF THE EVENT
For the main workshop sessions we plan invited talks (30 minutes long) from top-level specialists coming
from both industry and academia. We plan an open Call for Posters in order to give young researchers and
PhD students a chance to introduce their research and to get in personal contact during the workshop. In
addition to the PhD Forum poster session, there will be a short interactive presentation time for introducing
the posters during the workshop. At the end of the workshop day, speakers from the main workshop sessions
are invited to the one-hour panel on: "Resource Awareness and Application Autotuning: Challenges and
Trends" to further discuss similarities and differences between the approaches, as well as the expected
benefits and limitations of resource-aware computing and application autotuning.

TARGET AUDIENCE
DATE represents the major international event for research on Systems-on-Chip, Systems-on-Board and
Embedded Systems Software. This workshop targets the traditional DATE community as well as experts
from high performance computing, both working on resources awareness and application autotuning. Based
on the experience of the organizers, we plan to enforce our publicity efforts to get a significant attendance
(estimated as about 50 registered attendees from both industry and academia). To further encourage the
attendance to the Workshop, we plan to distribute an open Call for Posters covering the topics of the
workshop topic areas. Poster submissions should either be a 150-200 word abstract or in the form of the
poster itself. Posters will be published online at the Workshop web site.

Timeline: Call for Posters online at the WS web site from Nov.1st. Poster submission deadline: Feb. 1st.
Poster notification of acceptance: Feb. 20th. The advanced program for the Workshop will be finalized to be
included in the DATE program of Workshops (before Dec. 1st), while posters program will be posted online
by March 1st.

1

PRELIMINARY PROGRAM
8.45	 9.00	 Opening	Session		
9.00	 10.30	 Morning	Session	1		
9.00	 9.30	 Cathal	McCabe,	Xilinx:	"Programing	and	benchmarking	FPGAS	with	software-centric	

design	entries"		
9:30	 10.00	 Jürgen	Teich,	FAU	Erlangen:	“Adaptive	Restriction	and	Isolation	for	Predictable	

MPSoC	Stream	Processing”	
10.00	 10.30	 Introduction	to	the	Poster	Session		
10.30	 11.00	 Coffee	Break		
11:00	 12.00	 Morning	Session	2		
11:00	 11.30	 Alexander	Moskovsky,	RSC	Group:	"Energy	efficiency	in	high	performance	

computing.	Examples	from	RSC"	experience
11.30	 12:00	 Axel Auwetter, Leibniz Supercomputing Centre: EU Projects MontBlanc and

DEEP-ER 	
12.00	 13.00	 Lunch		
13.00	 14.30	 Afternoon	Session	1		
13.00	 13.30	 João	Cardoso,	University	of	Porto:	“A	DSL-based	Approach	for	Cross	Layer	

Programming:	Monitoring,	Adaptivity	and	Tuning”
13.30	 14.00	 Axel	Jantsch,	TU	Vienna:	"Resource	management	in	self-aware	platforms"	
14.00	 14.30	 Poster	Session	Interactive	Presentations		
14.30	 15.00	 Coffee	Break	
15.00	 17.00	 Afternoon	Session	2		
15.00	 15.30	 Andreas	Rohatschek,	Robert	Bosch	GmbH:	“DRIVERS	AND	SOLUTIONS	FOR	

TAILORED	AUTOMOTIVE	ECU	ARCHITECTURES”	
16.00	 17.00	 Panel	discussion	on	"Resource	Awareness	and	Application	Autotuning:	Challenges	

and	Trends".	Speakers	from	morning	&	afternoon	sessions	are	invited	as	
panelists.	

17.00	 	 Closing		
	 	 	

FURTHER INQUIRIES
Cristina Silvano Walter Stechele Stephan Wong
Politecnico di Milano Technical University of Munich TU Delft
silvano@elet.polimi.it Walter.Stechele@tum.de j.s.s.m.wong@tudelft.nl
home.deib.polimi.it/silvano/ www.lis.ei.tum.de/?id=stechele www.ce.ewi.tudelft.nl/wong/

2

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Resource-Aware
Application Execution

Exploiting the BarbequeRTRM

Giuseppe Massari, Simone Libutti,
William Fornaciari, Federico Reghenzani

and Gianmario Pozzi

Politecnico di Milano
DEIB: Dipartimento di Elettronica, Informazione e Bioingegneria

giuseppe.massari@polimi.it

Abstract. Energy efficiency and thermal management have become ma-
jor concerns in both embedded and HPC systems. The progress of silicon
technology and the subsequent growth of the dark silicon phenomena are
negatively affecting the reliability of computing systems. As a result, in
the next future we expect run-time variability to increase in terms of both
performance and computing resources availability. To address these is-
sues, systems and applications must be able to adapt to such scenarios.
This work provides a brief overview of the Barbeque Run-Time Resource
Manager (BarbequeRTRM) and the application execution model that it
exploits, in order to deal with run-time performance and available re-
sources variability.

1 Introduction

The need of resource-aware and adaptive applications is driven by several issues
and requirements that are typical of modern computing systems. For instance,
embedded mobile devices must deal with the limited energy budget provided
by the battery, while HPC centers must afford huge costs due to the power
consumption and the cooling of the infrastructure. Furthermore, the dark silicon
phenomenon affecting modern processors is becoming prominent[1], since it is
increasing the amount of silicon area that must be turned off, to guarantee the
power envelope of the processor. For all these reasons, a continuous and full usage
of the whole set of system computing resources is often impossible to achieve.

On the application side, we can gain efficiency by implementing suitable
adaptive behaviors like enabling/disabling the execution of a task, or scaling the
accuracy of the output depending on the availability of computing resources.
A run-time resource management framework can implement such approach by
constraining the resource allocation according to system level requirements or
runtime conditions, and providing to the applications suitable interfaces to check
and negotiate the resource assignment.

3

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Run-time application libraryFIFOs/Binder
DBus

RPC Channel Plain API

AEM API AS-RTM API

Synchronization
Protocol

Recipes

Linux kernel-spacePlatform DriversCPUfreq

Resource Manager
daemonPlatform ProxyPower

Manager

Application Proxy

Resource ManagerScheduler ManagerSynchronization
Manager

Application
Manager

Resource
AccounterScheduler PolicySynchronization

Policy

Applications

C++ OpenCLC

Control Groups

Fig. 1. The BarbequeRTRM Architecture. On top the programming languages sup-
ported by the application Run-Timr Library (RTLib). In red the resource manager
core, on top of the support provided by the Linux OS to control the system resources.

2 Run-time Resource Management

The BarbequeRTRM is a modular and portable run-time resource manager tar-
geting both embedded and High-Performance Computing (HPC) systems. From
the hardware resources perspective, the framework can manage homogeneous
and heterogeneous multi-core processors, as well as heterogeneous systems in-
cluding devices characterized by completely different ISA (e.g., CPU and GPU).

The modularity of the BarbequeRTRM comes from a software architecture
in which we can distinguish between core components and plugin modules. Typ-
ically, the latter are platform-specific extensions and selectable resource man-
agement policies.

The portability instead, is guaranteed by the exploitation of some underlying
Linux operating system frameworks, like cpufreq and cgroups, that allows the
BarbequeRTRM to enforce the resource allocation decisions [2].

2.1 Abstract Execution Model

The resource manager exposes its services to the applications through a run-time
library (RTLib). The library accomplishes a two-fold objective: 1) to provide a

4

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Fig. 2. Abstract Execution Model

communication channel between the resource manager and the applications; 2)
to expose an execution model to support the implementation of the resource-
aware adaptive execution of the applications[3].

In Figure 2 we show the Abstract Execution Model (AEM), that the run-time
manageable applications must implemented accordingly. This execution model
is put in place by defining and implementing a suitable C++ class, derived from
the BbqueEXC class provided by the RTLib.

At run-time, the BbqueEXC member functions are called by a control thread,
which is responsible of synchronizing the application execution with the de-
cisional process of the resource manager. The rationale behind each member
function implementation is the following:

onSetup(): setting up the application (initialize variables and structures,
starting threads, . . .). onConfigure(): check the amount of assigned resources
and configure the application accordingly. onRun(): single cycle of computation
(e.g., computing a single frame during a video encoding). onMonitor(): perfor-
mance and QoS monitoring. onRelease(): cleanup and termination code.

Therefore, once the application ends the initialization step (onSetup), the
control thread waits for the resource allocation decision coming from the Barbe-
queRTRM. As soon as it has been received, the onConfigure function is called.
In this function, the application can then check the amount of assigned resources,
and configure itself accordingly, before starting (or continuing) the execution, as
sketched here below.

5

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

RTLIB ExitCode t BlackscholesEXC : : onConfigure (i n t 8 t awm id){
// Get the number o f CPU cores as s i gned
GetAssignedResources (RTLIB ResourceType : : PROC NR, nr cpu) ;

// Conf igure . . .
}

The functions onRun and onMonitor are then sequentially called and exe-
cuted in a loop, until the entire computation is over.

The RTLib estimates the current performance of the application, in terms of
cycles-per-second (CPS), such that the application could check the gap between
the required performance level and the one currently achieved. After that, the
application can notify the resource manager about this gap.

Considering also that the performance goal can vary depending on input data
and external events, a effective approach is to exploit the SetCPSGoal function to
specify the performance goal and the notification rate, as shown in the following
example of onMonitor implementation:

RTLIB ExitCode t BlackscholesEXC : : onMonitor () {
// S p e c i f i c event cond i t i on t r i g g e r i n g the
// change o f performance requirements
i f (. . .)

SetCPSGoal (2 . 5 , 1 0) ;
// . . .

}

In the example, the application sets a performance goal of 2.5 CPS, and a
notification rate of 10 cycles. The library keeps track of the application per-
formance, computing the average CPS value over a (configurable) number of
last execution cycles. Whenever the performance gap overcomes a given (con-
figurable) threshold, such a gap value is sent to the resource manager. As a
consequence, the amount of assigned resources can be adjusted accordingly. The
notification rate is then exploited to bound the application reconfiguration rate,
and hence the related overhead. In other words, the application asks the resource
manager to send back a reconfiguration request after not less than 10 execution
cycles or more.

3 Experimental Scenario

In this section we show results of the resource-aware adaptive execution of
blackscholes from the PARSEC benchmark suite [4] on a embedded develop-
ment board that features an ARM Cortex A9 dual-core CPU. The benchmark
has been properly modified to fit the Abstract Execution Model. The frequency
of the CPU has been set to its maximum value, which is 920 MHz. The full CPU
usage, which is shown in Figure 3a, causes the chip temperature to raise over
100◦C, thus triggering the thermal throttling response of the operating system.

6

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

20

40

60

80

100

120

T
em

pe
ra

tu
re

 [C
]

0

200

400

600

800

1000

F
re

qu
en

cy
 [M

H
z]

0

20

40

60

80

100

120

Lo
ad

 [
%

]

0 50 100 150 200
Time [s]

The BarbequeRTRM: Power data trace plotLoad Temperature Frequency

(a) CPS = 4

20

30

40

50

60

70

80

90

T
em

pe
ra

tu
re

 [C
]

0

200

400

600

800

1000

F
re

qu
en

cy
 [M

H
z]

0

10

20

30

40

50

60

Lo
ad

 [
%

]

0 100 200 300 400 500 600 700 800 900
Time [s]

The BarbequeRTRM: Power data trace plotLoad Temperature Frequency

(b) CPS = 1

Fig. 3. PARSEC blackscholes execution: CPU load, temperature and clock frequency
variations according to two performance requirements: a) 4 cycles-per-second; b) 1
cycle-per-second.

A continuous frequency scaling is operated in order to cool down the CPU, with
performance variability as a further consequence.

In Figure 3b, the application sets a performance goal of CPS=1. The resource
manager takes into account such information shrinking the amount of CPU time
assigned. The implicit result is a lower but more stable performance level, along
with a reduced thermal stress.

References

1. H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,
“Dark silicon and the end of multicore scaling,” in Proceedings of the
38th Annual International Symposium on Computer Architecture, ser. ISCA
’11. New York, NY, USA: ACM, 2011, pp. 365–376. [Online]. Available:
http://doi.acm.org/10.1145/2000064.2000108

2. P. Bellasi, G. Massari, and W. Fornaciari, “Effective Runtime Resource Manage-
ment Using Linux Control Groups with the BarbequeRTRM Framework,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 14, no. 2, p. 39, 2015.

3. G. Massari, E. Paone, P. Bellasi, G. Palermo, V. Zaccaria, W. Fornaciari, and C. Sil-
vano, “Combining application adaptivity and system-wide resource management on
multi-core platforms,” in Embedded Computer Systems: Architectures, Modeling,
and Simulation (SAMOS XIV), 2014 International Conference on. IEEE, 2014,
pp. 26–33.

4. C. Bienia, S. Kumar, J. P. Singh, and K. Li, “The PARSEC benchmark
suite: characterization and architectural implications,” in Proceedings of the 17th
international conference on Parallel architectures and compilation techniques, ser.
PACT ’08. New York, NY, USA: ACM, 2008, pp. 72–81. [Online]. Available:
http://doi.acm.org/10.1145/1454115.1454128

7

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

A Scalable Black-Box Optimization System for

Auto-Tuning VLSI Synthesis Programs

Matthew M. Ziegler1, Hung-Yi Liu2*, George Gristede1, Bruce Owens3,

Ricardo Nigaglioni4, and Luca P. Carloni2

1 IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

{zieglerm, gristede}@us.ibm.com

2 Department of Computer Science, Columbia University, NY, USA

{hungyi,luca}@cs.columbia.edu}

3 IBM Systems & Technology Group, Rochester, MN, USA

browens@us.ibm.com

4 IBM Systems & Technology Group, Austin, TX, USA

nricardo@us.ibm.com

Abstract. Modern logic and physical synthesis tools provide numerous options

and parameters that can drastically impact design quality; however the large

number of options leads to a complex design space difficult for human circuit

designers to navigate. We tackle this parameter tuning problem with a novel

system employing intelligent search strategies and parallel computing, thus au-

tomating one of the key design tasks conventionally performed by a human de-

signer. We provide an overview of this system, called SynTunSys, as well as

results from employing it during the design of the IBM z13 22nm high-

performance server chip, currently in production. During this major processor

design, SynTunSys provided significant savings in human design effort and

achieved a quality of results beyond what human designers alone could achieve,

yielding on average a 36% improvement in total negative slack and a 7% power

reduction.1

Keywords: synthesis · design space exploration · parameter tuning · optimiza-

tion · VLSI design · design methodology

1 Introduction

The design of modern high-performance processors is a quest to optimally tune and

balance multiple objectives, such as performance, power, and reliability. This multi-

objective design space is further complicated by the need for more complex VLSI

(very-large-scale integration) chips to fuel the ever increasing desire for more com-

pute power. To cope with this design complexity, the VLSI design community has

leveraged CAD (computer-aided design) tools for many decades now; however, the

high flexibility and sophistication of advanced synthesis tools increases their com-

plexity and makes navigating the design space difficult and sometimes non-intuitive

for their users.

* Hung-Yi Liu is now with the Intel Design Technology & Solutions Group, Hillsboro, OR, USA.

8

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

The industrial synthesis tool-flow we employ has over 1000 parameters [1]. These

parameters span the logic and physical synthesis space and the control settings for

modifying the synthesis steps, such as: logic decomposition, technology mapping,

placement, estimated wire optimization, power recovery, area recovery, and/or higher

effort timing improvement. The parameters also vary in data type (Boolean, integer,

floating point, and string). Considering that an exhaustive search of only 20 Boolean-

type parameters leads to over one million combinations, and synthesis runs may take

several hours or even days, it is clear that intelligent search strategies are required.

As an example of the wide design space available from modifying synthesis pa-

rameters, Fig. 1 shows the scatter plot of achievable design points for a portion of a

synthesized floating-point multiplier macro. A macro may span from 1K to 1M gates

in our context. Each point denotes the timing and power values achieved simply by

tuning the input parameters of the synthesis program. The ultimate goal of this pro-

cess is to reach timing closure at the lowest achievable power. Quite often the default

values for the parameters are not ideal for a specific macro, which would benefit in-

stead from parameter customization. Fig. 1 also highlights three scenarios (A, B, and

C) along the Pareto frontier. These scenarios show the available tradeoffs between

timing closure and power reduction, e.g., point A closes timing with a 9% power re-

duction, whereas point C improves timing by 55% with a 29% power reduction.

These points along the Pareto set provide a number of potential steps towards the

ultimate goal, depending on the additional techniques at the designer’s disposal be-

yond parameter tuning. This example of a relatively simple macro underscores how

significantly the parameters settings can affect a design.

2 Related Work

The synthesis parameter tuning problem we address can be classified as a black-box

optimization problem, i.e., we treat the synthesis program as black-box software by

supplying input conditions (input data and parameter settings) and measuring the

Fig. 1. An example of the available design space by modifying synthesis parameters.

9

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

output response in terms of synthesis quality of results (QoR). Black-box problems

are often approached using techniques from the field of simulation optimization [2],

which is an umbrella term for optimization techniques that operate in the absence in

of an algebraic model of the system. Considering each macro exhibits a unique input-

output response to synthesis parameter settings and digital logic can take on an intrac-

table number of functionalities, the synthesis tool-flow of our focus is far too complex

to be modelled algebraically. Furthermore, our synthesis program often exhibits non-

deterministic behavior, which is also a characteristic of many simulation optimization

problems.

 Black-box optimization techniques can also be employed for design-space

exploration (DSE) purposes, however, unlike convention DSE, the goal of black-box

optimization is often to find one or more optimal or near-optimal design points with-

out necessarily requiring a complete exploration of the design space to determine the

whole Pareto frontier of design tradeoff points.

Black-box optimization is a common problem seen across a number of fields, e.g.,

compiler tuning [3] and software engineering [4]. With respect to VLSI design, DSE

is becoming a more attractive solution for complex problems across various levels of

abstraction. At the architectural level, many DSE studies based on models or simula-

tors have been used to explore multi-objective design spaces, e.g., [5]. Architectural-

level studies, however, typically do not result in implemented designs. DSE ap-

proaches have also been applied in combination with high-level synthesis by a num-

ber of researchers, e.g., [6,7]. FPGA synthesis parameter tuning has been reported in

[8] using genetic algorithms and in [9] using Bayesian optimization. However, prior

to our work [10], we know of no publications targeting automated parameter tuning

for logic and physical synthesis.

3 System Architecture

The framework of our parameter tuning system is shown in Fig. 2. SynTunSys con-

sists of a main tuning loop that constructs synthesis scenarios consisting of synthesis

parameter settings (Step (1)), submits and monitors synthesis jobs (2-3), analyzes the

Fig. 2. Architecture of the SynTunSys process, which employs a parallel and iterative

tuning process to optimize macros.

10

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

results (4), and iteratively refines the solutions (5). A second background loop ar-

chives the results of all runs from all macros, users, and projects, which can be mined

for historical trends across multiple macros and to provide feedback in terms of the

performance of synthesis parameters.

The SysTunSys cost function conveys the optimization goals. It converts multiple

design metrics into a single cost number, allowing cost ranking of scenarios. Exam-

ples of available metrics include: multiple timing metrics, power consumption, con-

gestion metrics, area utilization, electrical violations, runtime, etc. The selected met-

rics are assigned weights to signify their relative importance. The overall cost func-

tion is then a “normalized weighted sum” of the m selected metrics, expressed by

Equation (1) where Norm(Mi) is the normalized Mi across all the scenario results in a

SynTunSys run.

 (1)

The SynTunSys decision engine algorithms are key components of the system that

determine which scenarios should be run at each iteration, i.e., the decision engine

tackles the parameter tuning black-box optimization problem discussed previously.

The decision engine can also be upgraded independently and we constantly look to

improve these algorithms in terms of QoR prediction accuracy and compute efficien-

cy. Similar black-box tuning problems have been approached using a number of tech-

niques, e.g., machine learning [3], Markov decision processes [11] and Bayesian op-

timization [9,12]. During the development of SynTunSys we have explored algo-

rithms ranging from pseudo-genetic algorithms to on-line adaptive learning [13].

4 SynTunSys Results

SynTunSys was used during the design of the IBM z13 22nm server processor [14].

The processor underwent two chip releases (tapeouts) over a multi-year design cycle,

during which SynTunSys was applied to macros over both releases. The chip consists

of a few hundred macros that average around 30K gates in size, with larger macros in

the 300K gate range. Prior IBM server processors have also used systematic parame-

ter tuning on a smaller scale. The IBM POWER7+ [15] and POWER8 [16] processors

employed an earlier version of SynTunSys during the second chip releases, but main-

ly for power reduction purposes. In the case of the z13 processor, however, Syn-

Table 1. Average parameter tuning improvements over best known prior solution for a

22nm processor in production.

Pre / Post

 SynTunSys

 Comparison

Latch-

to-Latch

Slack

Total

Negative

Slack

 Total Power

Improvement % 60% 36% 7%

Sum of 200 macros (ps) (ps) (arb. units)

pre-tuning -1929 -2150385 17770

post-tuning -765 -1370731 16508

11

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

TunSys was employed during the entire design cycle for timing closure, power reduc-

tion, and improving macro routability.

Based on the efforts of a dedicated tuning team we were able to track SynTunSys

results on approximately 200 macros from the processor core. Table 1 shows the av-

erage improvements achieved by SynTunSys over the best solution previously

achieved by the macro owners.

Note that these results are based on the routed macro timing and power analysis; in

most cases the best known prior solutions included manual parameter tuning by the

macro owner. SynTunSys resulted in a 36% improvement in total negative slack, a

60% improvement in worst latch-to-latch slack (macro internal slack), and a 7% pow-

er reduction. The actual values of the metrics, summed across all the macros, under-

scores that the changes in the absolute numbers were significant, e.g., ~780,000 pico-

seconds of total negative slack was saved across ~200 macros.

5 References

[1] L. Trevillyan, et al., “An Integrated Environment for Technology Closure of Deep-

Submicron IC Designs,” IEEE Design & Test of Computers, vol. 21:1, pp. 14-22, 2004.

[2] S. Amaran, et al., “Simulation Optimization: A Review of Algorithms and Applications,”

4OR - A Quarterly Journal of Operations Research, Dec. 2014.

[3] G. Fursin, et al., "Milepost GCC: Machine Learning Enabled Self-tuning Compiler," In-

ternational Journal Parallel Programming, 39:296-327, 2011.

[4] A. Arcuri, G. Fraser, "Parameter Tuning or Default Values? An Empirical Investigation in

Search-Based Software Engineering," Empirical Software Engineering, June 2013, Vol-

ume 18, Issue 3.

[5] O. Azizi, et al., "An Integrated Framework for Joint Design Space Exploration of Microar-

chitecture and Circuits," DATE 2010.

[6] S. Xydis, et al., "A Meta-Model Assisted Coprocessor Synthesis Framework for Compil-

er/Architecture Parameters Customization," DATE 2013.

[7] H.-Y. Liu and L. P. Carloni, “On Learning-Based Methods for Design-Space Exploration

with High-Level Synthesis,” DAC 2013.

[8] M. K. Papamichael, P. Milder, J. C. Hoe, "Nautilus: Fast Automated IP Design Space

Search Using Guided Genetic Algorithms," DAC 2015.

[9] N. Kapre, et al., “Driving Timing Convergence of FPGA Designs through Machine Learn-

ing and Cloud Computing,” FCCM 2015.

[10] M. M. Ziegler, H.-Y. Liu, G. Gristede, B. Owens, R. Nigaglioni, L. P. Carloni, “A Synthe-

sis-Parameter Tuning System for Autonomous Design-Space Exploration,” DATE 2016.

[11] G. Beltrame et al., “Decision-Theoretic Design Space Exploration of Multiprocessor Plat-

forms,” IEEE TCAD, 29(7):1083–1095, July 2010.

[12] Z. Wang et al., “Bayesian Optimization in High Dimensions via Random Embeddings,”

Int’l Joint Conf. on Artificial Intelligence (IJCAI-13), 2013.

[13] M. M. Ziegler, H.-Y. Liu, L. P. Carloni, “Scalable Auto-Tuning of Synthesis Parameters

for Optimizing High-Performance Processors,” ISLPED 2016.

[14] J. D. Warnock, et al., “22nm Next-Generation IBM System z Microprocessor,” ISSCC

2015.

[15] M. M. Ziegler, G. D. Gristede, V. V. Zyuban, “Power Reduction by Aggressive Synthesis

Design Space Exploration,” ISLPED 2013.

[16] M. M. Ziegler, et al., “POWER8 Design Methodology Innovations for Improving Produc-

tivity and Reducing Power,” CICC 2014.

12

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Using Reference Attribute Grammar-Controlled
Rewriting for Runtime Resource Management

Johannes Mey1, René Schöne1, Daniel Langner1, and Christoff Bürger2

1 Chair of Software Technology, TU Dresden, Germany
johannes.mey@tu-dresden.de, rene.schoene@tu-dresden.de,

daniel.langner@mailbox.tu-dresden.de
2 Department of Computer Science, Faculty of Engineering, Lund University, Sweden

christoff.burger@cs.lth.se

Abstract. To make distributed systems resource aware and adaptive,
they can be modeled as self-adaptive systems. Such systems have a view
of their own state and context, which can be represented by a model
that is continuously updated and analyzed at runtime. However, such
analyses need to be concise and efficient to allow large models and high
adaptation rates. To achieve this, we apply reference attribute grammar
controlled rewriting to implement the runtime model of a distributed
task-scheduling case study for energy optimization.

1 Modeling Self-Adaptive Systems

Self-adaptive systems [1] are used to cope with changing requirements and
contextual information at runtime. Furthermore, they need to provide short
response times while maintaining low resource consumption and a convenient
way to specify their internal state and algorithms. Another challenge is the high
update rate of their context information[2]. Self-adaptive systems usually employ
a feedback loop, e.g. MAPE-K [3], and have representation of their context,
e.g. a runtime model. The models@run.time approach [4] uses models not only
during development but also as a data representation at runtime. It has been
shown that auto tuning and resource awareness can save energy in Big Data
scenarios [5]. Our use case is a small, yet scalable, distributed Big Data scenario
on a network of embedded devices. We use a self-adaptive system built around a
runtime model, which is easy to specify, and can run algorithms efficiently with
regard to response time. It employs grammar-based modeling and analysis to
deal with frequent model updates efficiently.

2 Attribute Grammars for Runtime Models

Our solution uses reference attribute grammars [6] (RAGs) as its underlying
technology. RAGs originate from the area of compiler construction to describe
abstract syntax trees of program code. However, their intrinsic advantage –
incremental evaluation – fits well to the described problems. Using RAGs, we

13

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

describe the structure of runtime models with a context free grammar that is
well-suited for hierarchical structures. Non-hierarchical parts of a model can be
described as well using reference attributes forming arbitrary overlay graphs. The
analysis of runtime data is done using attributes, which are defined declaratively
for specific non-terminals, achieving a concise specification.

However, the aforementioned updates of the runtime model hinder incremental
evaluation commonly used in RAG systems since they rewrite the AST and
therefore invalidate all previously performed analyses. This work uses a novel
approach called RAG-controlled rewriting (RACR) [7], which treats model changes
as term rewrites [8]. This enables the tracking of dynamic dependencies between
attributes and the model, and thus incremental evaluation across model changes.
Therefore, constantly changing self-adaptive systems can be analyzed efficiently,
thus allowing a more frequent analysis and larger model sizes.

3 Runtime Models with RACR

RACR works in a three-phase process. In the first phase, a context free grammar
with inheritance describing the runtime model is specified, like the one depicted
below for our case study presented in section 4. Terminals are in lowercase and
non-terminals in title case optionally suffixed by an alternative name and a colon.
Root ::= scheduler switching CompositeWorker
AbstractWorker ::= id state timestamp
CompositeWorker:AbstractWorker ::= AbstractWorker*
Switch:CompositeWorker ::=
Worker:AbstractWorker ::= devicetype Queue:Request*
Request ::= id size deadline dispatchtime

The second phase involves the attribution, that is the specification of attributes
for certain non-terminals. Below, the schedule attribute defined for Root is listed.
It reads the terminal scheduler and invokes an attribute to find an insertion
position. All attributes and rewrites are written Scheme, using the API functions
ast-child, create-ast and att-value to get a certain child of a AST node,
create a new AST node and call an attribute, respectively.
(ag-rule schedule

(Root (lambda (n time work-id load-size deadline)
(att-value (ast-child ’scheduler n) n

time work-id load-size deadline))))

At runtime, the system is performing rewrites and attribute evaluations in turns.
Rewrites, like the one shown below, change the model and invalidate cached
attribute values. If those attributes are called, RACR ensures their re-evaluation.
(rewrite-insert

(ast-child ’Queue worker) ; l i s t node to i n s e r t i n t o
index ; p o s i t i o n o f i n s e r t i o n
(create-ast ’Request (list id size deadline #f)))

; s u b t r e e f o r the new reque s t

14

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

schedule

schedule-shortest-queue

schedule-load-consolidating

workload-heuristic

find-insertion-pos

workload-heuristic

find-insertion-pos

workload-heuristic

find-insertion-pos

workload-heuristic

find-insertion-pos

workload-heuristic

find-insertion-pos

find-insertion-pos

find-insertion-pos

Root
scheduler: l.c.s

switching: 1-3

Switch
id: Switch1

state: RUNNING

Worker
id: Cubie3

state: RUNNING

Worker
id: Cubie3

state: RUNNING

Worker
id: Cubie3

state: RUNNING

Request
id: Request1

size: 123.45

deadline: 12:00:00

Request
id: Request1

size: 123.45

deadline: 12:00:00

Request
id: Request3

size: 123.45

deadline: 12:00:00
Switch
id: Switch1

state: OFF

Worker
id: Cubie5

state: OFF

Worker
id: Cubie5

state: OFF

Request
id: Request4

size: 100.00

deadline: 11:11:00

Root

Switch

WorkerWorkerWorker

RequestRequestRequestRequest

Switch

WorkerWorker

2. calls
1. reads

rewrite-insert

original model rewritten model

new request

Fig. 1: Scheduler selection and scheduling of a request. Terminals are contained in
non-terminal boxes, some selected attributes are attached. Terminals not relevant
for the example are left out, l.c.s is the load consolidating scheduler.

4 A Case Study

To investigate the applicability of RACR to self-adaptive systems, we implemented
the distributed indexing of Wikipedia pages using a network of system-on-a-chip
workers [9]. These are Cubieboards having a 1 Ghz CPU, 1GB of RAM, running
Linux, and are connected to a master via switches and Ethernet links. Every
worker and switch is powered by a USB charging hub, which enables the switching
and energy measurement of individual devices.

We developed an adaptation and two scheduling strategies, each written with
RACR. The adaptation strategy controls the number of powered on workers. Our
solution checks periodically for idle workers to be switched off while ensuring
a minimum number of online workers to secure stable performance in case of
load peaks. A round-robin scheduler always chooses the shortest queue, and a
load-consolidating scheduler tries to use as few workers as possible.

The solution is evaluated in a small-scale case study, whose structure and the
scheduling of a request on it are depicted in Figure 1. To analyze our approach’s
scalability, we developed a simulation environment that simulates the execution of

15

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Fig. 2: Power consumption when scheduling a workload with a round-robin (top)
and a load-consolidating (bottom) scheduler. The dashed line shows the average
power consumption.

tasks and their associated energy consumption based on models we acquired from
our physical use case. The simulated use case comprises 315 workers connected
via 63 switches fulfilling 4,600 requests within an hour. Figure 2 shows the power
consumption of the two scheduling strategies, using a different color for each
worker. The load-consolidating scheduler (shown at the bottom) uses 6.4% less
energy than the round-robin scheduler while using less workers.

As the model can be modified with rewrites, it permits addition and removal
of workers and the exchange of scheduling and adaptation strategies during
runtime.

5 Conclusion and Outlook

In this work, we showed the applicability of RAG-controlled rewriting for self-
adaptive systems in a distributed data processing use case. In addition, we plan
to conduct more case studies exploring the scalability and adding heterogeneity.
Another case study involves an extended runtime model with included software
structure, in which the presented concepts are applied to iteratively transform
the model to code describing a constraint problem. First measurements show
very short response times for every transformation after the initial one.

16

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

In conclusion, RACR enables incremental evaluation for large runtime models
with high update rates, hence offering opportunities for the usage in adaptive,
resource aware systems, such as Big Data systems.

Acknowledgments

This work is partly supported by the German Research Foundation (DFG)
in the SFB 912 “Highly Adaptive Energy-Efficient Computing”, the cluster of
excellence cfaed, and within the Research Training Group “Role-based Software
Infrastructures for continuous-context-sensitive Systems” (GRK 1907).

References

1. R. Lemos et al., “Software Engineering for Self-Adaptive Systems: A Second Re-
search Roadmap,” in Software Engineering for Self-Adaptive Systems II, ser. LNCS,
R. Lemos, H. Giese, H. A. Müller, and M. Shaw, Eds. Springer, 2013, vol. 7475.

2. Y. Chen, J. Dunfield, M. A. Hammer, and U. A. Acar, “Implicit Self-adjusting
Computation for Purely Functional Programs,” in ICFP. New York, NY, USA:
ACM, 2011.

3. J. Kephart and D. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, Jan. 2003.

4. G. Blair, N. Bencomo, and R. B. France, “Models@run.time,” Computer, vol. 42,
no. 10, Oct. 2009.

5. S. Götz, T. Ilsche, J. Cardoso, J. Spillner, T. Kissinger, U. Aßmann, W. Lehner, W. E.
Nagel, and A. Schill, “Energy-Efficient Databases Using Sweet Spot Frequencies,”
in Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and
Cloud Computing. IEEE Computer Society, 2014.

6. G. Hedin, “Reference attributed grammars,” Informatica (Slovenia), vol. 24, no. 3,
2000.

7. C. Bürger, “Reference Attribute Grammar Controlled Graph Rewriting: Motivation
& Overview,” in SLE. ACM, 2015.

8. F. Baader and T. Nipkow, Term rewriting and all that. Cambridge university press,
1999.

9. C. Bürger, J. Mey, R. Schöne, S. Karol, and D. Langner, “Using Reference Attribute
Grammar-Controlled Rewriting for Energy Auto-Tuning,” in 10th International
Workshop on Models@run.time, Ottawa, Canada, Sep. 2015.

17

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Search Space Reduction for E/E-Architecture
Partitioning

Andreas Ettner

Robert Bosch GmbH, Corporate Reasearch,
Robert-Bosch-Campus 1, 71272 Renningen, Germany

andreas.ettner@de.bosch.com

Abstract. As the design of electrical/electronic (E/E)-architectures is
becoming more complex, multi-objective optimization algorithms such
as evolutionary algorithms (EAs) have been proposed for generating
resource optimized architectures. In this paper we extend existing ap-
proaches by excluding infeasible solutions from the search space and
thereby enhance the quality and runtime behavior of the optimization.

Keywords: E/E-Architecture Partitioning, Design Space Reduction, Evo-
lutionary Algorithm

1 Introduction

Due to the introduction of new safety and comfort functions related to advanced
driver assistance, highly automated driving, and car-to-x connectivity, the num-
ber and interconnections of functions in vehicles has been growing over the last
decades and is going to grow further over the next years. As a result, distributed
vehicle system architectures consisting of heterogeneous computing resources be-
come more complex and power consuming. Thereby, also the complexity of the
allocation task problem is growing, which is defined as assigning functions to
Electronic Control Units (ECUs) while fulfilling various design constraints, such
as safety requirements and resource restrictions (see Figure 1).

In recent years, several optimization methods with the aim of supporting
engineers in power and resource aware design of E/E-architectures have been
proposed. While Walla [6] presented a mixed-integer linear programming (MILP)
approach to optimize function partitioning with respect to energy efficiency,
EAs have proven useful for concurrent optimization of multiple objectives, such
as performance, cost, and reliability [1], [3], [4]. However, when increasing the
number of design constraints, EAs might fail in producing feasible solutions and
in converging toward a global maximum. Common approaches to overcome this
problem have been compared by Moser [5] and the results showed that repairing
infeasible solutions is superior to penalizing and constrain-dominance methods.
Yet, the search space still contains all infeasible solutions for each of which the
repair function would be invoked. In order to overcome this drawback and to
decrease the amount of infeasible solutions, we present an approach to reduce
the search space in advance of the optimization run. Thereby, we enhance the
quality and runtime behavior of the optimization.

18

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

2 Search Space Reduction for E/E-Architecture Partitioning

Fig. 1. Function Allocation

2 Concept

2.1 Models and Representation

Figure 1 exemplary shows the two input models to the optimization. The function
model consists of a set F of functions with inter-dependencies being represented
by directed edges. The architecture is modelled by a set E of ECUs connected
by bus structures. Properties describe the available resources on the ECUs and
the resource demands as well as functional requirements of the functions. For
example, the computing requirements for each function are represented by rf
and the available computing resources for each ECU by re, respectively.

The allocation of vehicle functions to the ECUs is represented by a mapping
vector m indicating for each function fi the corresponding ECU identifier ej .
By default, each function can be allocated to each ECU, such that the set of all
possible ECUs for fi is M = {e1, ..., eJ} and the number of possible solutions is
S = |E||F |.

2.2 Objective Functions and Constraints

In our approach, we optimize three objective functions: network communication,
safety, and the collection of functions with certain properties on a minimum
number of ECUs. As the search space reduction is independent of the objective
functions, we will concentrate on the constraints in the following:

– Location constraints either define a set of ECUs CI,i - where function fi will
be mapped to one element of this set - or exclude a set of ECUs CE,i.

19

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Search Space Reduction for E/E-Architecture Partitioning 3

– Colocation constraints either forbid two functions to be allocated to the same
ECU (Cban : e(fi) 6= e(fj)) or force two functions to reside on the same ECU
(Cforce : e(fi) = e(fj)).

– Some functions demand certain components or functional requirements reqf,
which have to be provided by the corresponding ECU (reqe). Therefore,
function fi can only be allocated to one ECU of the set Creq,i = {e|reqe ≥
reqf}.

– Some resources, such as the memory and computing units, are shared among
all functions allocated to the ECU. Therefore, re,j ≥

∑
rf,i with (e(fi) = ej)

has to hold for each ECU.

2.3 Genetic Algorithm

For the optimization, we use the NSGA-II algorithm presented by Deb [2]. Its
structure is shown in Figure 2. During initialization, a population of solutions is
generated by assigning one element of set M to each of the functions resulting
in one mapping vector for each solution. Afterwards, the population iteratively
improves by creating new solutions, evaluating these solutions with regard to
the constraints and the objective functions (see Fig. 3), and finally selecting the
best solutions for the next generations based on Pareto-optimality.

Fig. 2. Structure of Evolutionary Algorithm

New solutions are generated by variation operators such as mutation, which
assigns an element of set M to a random number of functions. Thereby, a huge
amount of solutions violating the constraints defined in chapter 2.2 might be
generated that would have to be either repaired or discarded. As an approach
to reduce this number, we reduce the sets Mi for each function fi in advance of
the optimization by analyzing the design constraints and use those sets during
initialization and mutation to generate new individuals.

20

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

4 Search Space Reduction for E/E-Architecture Partitioning

Fig. 3. Evaluation of individuals

2.4 Search Space Reduction (SSR)

Figure 4 presents the SSR for each function. In a first step, the sets Mi are
initialized with either the ECUs defined in CI,i (1a) or, in case CI,i is not defined,
with all ECUs from M (1b). Afterwards, Mi is reduced by CE,i (2), by the ECUs
that do not fulfil the constraints on functional requirements (3), and by the ECUs
that do not provide sufficient resources for function fi (4). Step (5) ensures that
the sets Mi and Mj of two functions to be forced together contain the same ECU
elements. Finally, if functions to be banned from fi are already allocated to a
certain ECU, this ECU is removed from Mi (6).

Fig. 4. Reduction sequence

3 CASE STUDY AND RESULTS

Table 1 and Table 2 exemplary show the property values for the optimization
problem presented in Figure 1.

f1 f2 f3 f4 f5 f6
rf 6 2 3 1 2 3

f reqf 8 0 4 4 2 1

Table 1. Function requirements

e1 e2 e3 e4 e5
re 10 10 5 10 10

f reqe 8 4 8 2 1

Table 2. ECU properties

21

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Search Space Reduction for E/E-Architecture Partitioning 5

original (1) (2) (3) (4) (5) (6)

15,625 9,375 7,500 810 405 243 162

100 % 60 % 48 % 5.2 % 2.6 % 1.6 % 1 %

Table 3. Size of search space after each reduction step

Furthermore, let CI,2 = {e1, e2, e3}, CE,5 = {e1}, and consider force(f5, f6)
and ban(f1, f2). Applying SSR to the optimization problem results in M1 = {e1},
M2 = {e2, e3}, M3 = {e1, e2, e3}, M4 = {e1, e2, e3}, M5 = {e2, e3, e4} and
M6 = {e2, e3, e4}. As shown in Table 3, the search space could be pruned to about
1 % of its original size. This has also an impact on the number of generations for
finding the optimal solutions. With a population size of 10, we commonly find the
five Pareto-points after 15 generations, whereas an EA with repair mechanism
needs 150 generation and an EA without repair function and mapping sets more
than 5000 generations. For a larger use case with 32 functions, 10 ECUs, location
constraints on 28 functions, and a population size of 50, Figure 5 shows the mean
hypervolume values over 25 optimization runs. Whereas the standalone NSGA-II
finds first feasible solutions after 60 generations and then slowly increases, the
NSGA-II with SSR converges after 140 generations.

Fig. 5. Hypervolume with SSR (black) and without (blue)

References

1. Blickle, Tobias, Jrgen Teich, and Lothar Thiele. ”System-level synthesis using evo-
lutionary algorithms.” Design Automation for Embedded Systems 3.1 (1998): 23-58.

2. Deb, Kalyanmoy, et al. ”A fast and elitist multiobjective genetic algorithm: NSGA-
II.” Evolutionary Computation, IEEE Transactions on 6.2 (2002): 182-197.

3. Hardung, Bernd. Optimisation of the allocation of functions in vehicle networks.
Shaker, 2006.

4. Moritz, Ralph, Tamara Ulrich, and Lothar Thiele. ”Evolutionary exploration of
e/e-architectures in automotive design.” Operations Research Proceedings 2011.
Springer Berlin Heidelberg, 2012. 361-366.

5. Moser, Irene, and Sanaz Mostaghim. ”The automotive deployment problem: A prac-
tical application for constrained multiobjective evolutionary optimisation.” Evolu-
tionary Computation (CEC), 2010 IEEE Congress on. IEEE, 2010.

6. Walla, Gregor, et al. ”An automotive specific MILP model targeting power-aware
function partitioning.” Embedded Computer Systems: Architectures, Modeling, and
Simulation (SAMOS XIV), 2014 International Conference on. IEEE, 2014

22

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Evaluation of Autotuning Techniques for the
Compiler Optimization Problems

Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

Politecnico di Milano,
Milan, Italy

{amirhossein.ashouri,ginaluca.palermo,cristina.silvano}@polimi.it

Abstract. Diversity of today’s architectures have forced programmers
and compiler researchers to port their application across many different
platforms. Compiler auto-tuning itself plays a major role within that
process as it has certain levels of complexities that the standard opti-
mization levels fail to bring the best results due to their average per-
formance output. To address the problem, different optimization tech-
niques has been used for traversing, pruning the huge space, adaptability
and portability. In this paper, we evaluate our different autotuning ap-
proaches including the use of Design Space Exploration (DSE) techniques
and machine learning to further tackle the both problems of selecting and
the phase-ordering of the compiler optimizations. It has been experimen-
tally demonstrated that using these techniques have positive effects on
the performance metrics of the applications under analysis and can bring
up to 60% performance improvement with respect to standard optimiza-
tion levels (e.g. -O2 and -O3) on the selection problem and up to 4%
w.r.t. to LLVM’s standard optimization on the phase-ordering problem.

1 Introduction

Conventional software applications are first developed in the desired high-level
source-code (e.g. C, C++) and then are passed through the compilation phase to
build the executable. The later phase includes compiler optimization process in
which the target metrics such as execution time, code-size, power, etc are opti-
mized depending on the desired scenario. Compiler optimizations are playing an
important role to transform the source-code to an optimized variation. Usually,
open-source/industrial compiler platforms are coming off-the-shelf with some
standard optimization levels (e.g. -O1, -O2, -O3 or -Os) to bring the average-
good results for conventional platforms. However, quite often they fail to bring
the optimal results for specific applications, architectures and platforms. In the
short paper, two different techniques for compiler auto-tuning , namely, DSE
and Machine Learning based techniques have been proposed to accommodate
and address the problem of selecting the best compiler optimization for a given
application.

23

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

2 Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

Fig. 1: Approach (I): DSE Proposed Methodology

2 Approach (I): DSE Approach

Design Space Exploration (DSE) refers to the activity of exploring the design
parameters alternatives before the actual design. It deals with pruning and ex-
ploring the design space efficiently. The proposed work targets the exploration of
compiler options parameters, in order to automatically explore the design space
and analyze the compiler-architecture co-design. We experimentally assessed the
proposed methodology in Very-long-Instruction-Word (VLIW) architecture by
applying random Design of Experiment (DoE) and an automatic tool-chain in-
cluding our Multi-Objective System Tuner tool (MOST), a wrapper and a com-
piler/simulator; namely, LLVM and VLIW-EXample (VEX). It enables to au-
tomatically explore, optimize and analyze the optimizations by using several
standard benchmarks for both high-end embedded and signal processing appli-
cations [1]. Analytically, we show that the adoption of the specific methodology
either in a cross-architecture and/or cross-application manner, can deliver signif-
icant application specific insights thus enabling the designer to guide through de-
cisions regarding the architecture and the compilation optimization strategy [2].
Figure 1 represents the proposed methodology for compiler co-exploration with
DSE. The work-flow starts by inferring the Pareto-optimal architectural design
space and then feeding the found architectural properties to the compiler frame-
work. Statistical analyses will be applied at the end to assess the correlation
between utilizing the certain compiler options and the observed performance
metrics. Figure 2 is showing different distributions derived by applying the pro-
posed DSE.

24

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Eval. of Autotuning Techniques for Compiler Opt. 3

(a) (b)

Fig. 2: Visualization of (a) licm’s significant positive effect, (b) reassociate’s no
significant effect

3 Approach (II): Machine Learning Approach

Diversity in applications and architecture, simply makes it barely possible to
manually optimize and port the source-codes for each application/architecture.
Random Iterative Compilation fails to efficiently bring the optimal results due
to its high demand on time and number of iterations. In order to improve the
portability of compiler optimization with respect to the handcrafted approaches,
machine learning has been used to address both the selection of compiler opti-
mization options and phase-ordering problem [3] to predict the right optimization
to be applied given an unseen application [4].

3.1 The Problem of Selecting the Right Set of Compiler
Optimizations

Addressing the issue on the second approach, we propose a Machine Learn-
ing based autotuning framework that maximizes the performance of a target
application. COBAYN: Compiler Autotuning Framework Using Bayesian Net-
works, starts by applying statistical methodology with Bayesian Networks to
infer the probability distribution of the compiler optimizations to be enabled to
achieve the best performance. We start to drive the iterative compilation process
by sampling from the probability distribution. Likewise most machine learning
approaches, here we use a couple of sets of training applications to learn the sta-
tistical relations between application features and the compiler optimizations.
Given a new unseen application, its features are fed into the machine leaning
algorithm as evidence on the distribution. This evidence imposes a bias on the
distribution. Since compiler optimizations are correlated with the software fea-
tures, we can redo the process of sampling for the new target application. Figure
3 demonstrates the second proposed approach that is assessed on an embedded
ARM device with GCC compiler. The obtained probability distribution is in-
deed application-specific and effectively exploits the use of iterative compilation
process as it only drives with the most promising compiler optimizations [5, 6].
Figure 4, represents the result of our proposed methodology, COBAYN, against
GCC’s standard optimization levels -O2 and -O3 when using cBench suite. It
represents significant speedup factor over the the experimentally tested applica-
tions with the average 56% and 47% improvement, respectively against -O2 and

25

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

4 Amir Hossein Ashouri, Gianluca Palermo and Cristina Silvano

(a) (b)

Fig. 3: Approach (II): Overview of the proposed M.L Methodology a) training
phase b) predicting phase

Fig. 4: Performance improvement of our Bayesian Networks w.r.t -O2 and -O3

-O3. COBAYN, led to reach a factor of 3× exploration speedup compared with
the random iterative compilation having a fixed number of predictions.

3.2 The Phase-ordering Problem

when taking into considerations the order of the appearance of the compiler
optimizations, the so-called phase-ordering problem comes into play. The space
gets enormously bigger and simple classic supervised techniques are not able to
tackle accurate models for prediction. Addressing the phase-ordering problem,
we propose an intermediate speedup predictor that is able to predict the current
optimization to be applied given the state of the code being optimized. We
used predictive models and dynamic software characterization to construct the
application specific models in cross-validation manner. In order to speedup the
exploration on the space, we defined two traversing heuristics , depicted in Figure
5, that use Depth First Search (DFS) and exhaustive search within the prediction
space. The proposed approach reaches up to 4% speedup w.r.t LLVM’s default
compilation performance [3].

26

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

An Eval. of Autotuning Techniques for Compiler Opt. 5

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 50 100 150 200 250 300 350

s
p

e
e

d
u

p
 v

s
.

o
ri
g

in
a

l

unique program variant

averaged

Actual
Greedy DFS policy

Exhaustive search policy
-O1

Fig. 5: Performance improvement of our proposed speedup prediction models
against LLVM

4 Conclusion

This paper presents two main approaches for the compiler autotuning problem
using DSE and machine learning. The experimental results is shown speedup on
the performance metrics while classifying the effective compiler optimizations
derived by DSE approach and 40% - 60% speedup with against GCC’s -O2 and
-O3 on an ARM embedded-board using COBAYN.

References

1. A. H. Ashouri, “Design space exploration methodology for compiler parameters in
vliw processors,” 2012, http://hdl.handle.net/10589/72083.

2. A. H. Ashouri, V. Zaccaria, S. Xydis, G. Palermo, and C. Silvano, “A framework for
compiler level statistical analysis over customized vliw architecture,” in Very Large
Scale Integration (VLSI-SoC), 2013 IFIP/IEEE 21st International Conference on.
IEEE, 2013, pp. 124–129.

3. A. H. Ashouri, A. Bignoli, G. Palermo, and C. Silvano, “Predictive modeling
methodology for compiler phase-ordering,” in Proceedings of 7th Workshop on Par-
allel Programming and Run-Time Management Techniques for Many-core Architec-
tures and 5th Workshop on Design Tools and Architectures for Multicore Embedded
Computing Platforms. ACM, 2016.

4. F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. O’Boyle, J. Thom-
son, M. Toussaint, and C. K. Williams, “Using machine learning to focus iterative
optimization,” in Proceedings of the International Symposium on Code Generation
and Optimization. IEEE Computer Society, 2006, pp. 295–305.

5. A. H. Ashouri, G. Mariani, G. Palermo, E. Park, J. Cavazos, and C. Silvano,
“Cobayn: Compiler autotuning framework using bayesian networks,” ACM Trans-
actions on Architecture and Code Optimization (TACO), vol. 13, no. 2, p. 21, 2016.

6. A. H. Ashouri, G. Mariani, G. Palermo, and C. Silvano, “A bayesian network ap-
proach for compiler auto-tuning for embedded processors,” in Embedded Systems
for Real-time Multimedia (ESTIMedia), 2014 IEEE 12th Symposium on. IEEE,
2014, pp. 90–97.

27

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

A Combined Fault Detection and Discrimination
Strategy for Resource-Sensitive Platforms

Richard McWilliam, Philipp Schiefer, and Alan Purvis

School of Engineering and Computing Sciences, Science Laboratories,
Durham University, Durham, DH1 3LE, United Kingdom

{r.p.mcwilliam,philipp.schiefer,alan.purvis}@durham.ac.uk

http://www.dur.ac.uk/ces

Abstract. This paper presents a combined fault detection and discrimi-
nation strategy for CMOS logic incorporating active resource mitigation
and monitoring. The approach is demonstrated for a NOR gate using
a dual redundant gate design with selective mitigation and analogue or
digital detection. The potential benefits of the approach are discussed
with respect to resource awareness and management within fine-grained
logic.

Keywords: Self-repair, fault detection, redundancy.

1 Introduction

Fault detection and mitigation within CMOS logic structures is a long-standing
challenge that is seeing new a emphasis for nanoscale and printable electronics.
The possibility for intrinsic resource awareness and management without ob-
fuscating management at higher design levels is an attractive proposition but
requires new gate and transistor level strategies. This paper presents ongoing
work into a combined fine-grained redundancy and active mitigation approach
with minimal resource overhead that enables selective fault detection, masking
and discrimination close to the point of fault manifestation.

1.1 Existing Methods

On-line fault strategies have been discussed at length for future nanoscale elec-
tronics where massive redundancy concepts become feasible [1]. However, resource-
sensitive platforms typically involve more conservative duplicate gate and/or in-
terconnect structures combined with majority signal generation in order to mask
faults and prevent their manifestation at critical outputs. Practical examples in-
volving triple and quad redundancy are illustrated in Fig. 1a-b. Combined logic
interleaving and quad-transistor structures have also been investigated [2]. While
the use of regular cell structures is attractive, typical methods incur between 3–8
times resource overhead and do not achieve fault detection or discrimination. It
could be argued that fault detection triggers may be generated within quad-
transistor majority logic but determination of the specific fault location and its

28

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

2 A Combined Fault Detection and Discrimination Strategy

c

Fig. 1. Traditional fault-tolerant designs. a) Quadded logic. b) Triple-modular redun-
dancy with voter. c) pseudo-CMOS with redundancy.

type becomes abstracted by the internal process of converting critical faults to
sub-critical faults.

Fine-grained fault tolerant strategies are beginning to feature in future nano-
scale CMOS logic design with the principal aim of combating manufacturing
defects. This includes psueo-CMOS redundancy, a simple example of which is
illustrated in Fig. 1c. Another approach is reported in [3] wherein defects present
in either N-type or P-type networks invokes switched active pull up or pull-down
loads. In this case, however, defect detection is not part of the repair method
and instead would be provided by additional built-in self-test (BIST) logic and
possibly external test equipment. Hard-fault mitigation approaches have been
proposed that are based on active switching matrices [4]. However, self-detection
is once again not included as a part of the strategy.

Field-programmable gate arrays (FPGA) provide flexible platforms featur-
ing configurable cellular architectures that support full or partial configuration.
Since their total resource utilisation rarely approaches 100%, there are opportu-
nities to provision redundant resources for fault mitigation. Even so, it is not yet
clear how spare resources may be reallocated to support online fault detection
and discrimination without resorting to external supervisory hardware/software
as typified in [5]. While solutions based on custom programmable architectures
have been proposed that aim to address this limitationby enabling dynamic re-
source allocation [6] , fault detection is still achieved through data error detection
and correction (EDC) hardware that is abstracted from the hardware fault.

2 Proposed Method

The proposed strategy relies upon an alternative method referred to here as
Stuck-At Fault Resilient (SAFR) design, wherein fixed dual redundancy is com-
bined with a fault triggering mechanism [7]. An example logic NAND gate im-
plemented by the SAFR approach in comparison to the standard NAND gate
design is shown in Fig. 2, where dual redundancy is employed within the P- and
N-type networks. This is in contrast to quad redundant strategies (Fig. 2c).

29

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

A Combined Fault Detection and Discrimination Strategy 3

Fig. 2. Stuck-at fault resilient design. a) traditional NAND. b) proposed design. c) full
quad-transistor design.

2.1 Detection Strategy

The dual redundancy strategy permits masking of any single stuck-off fault and
selective fault triggers for stuck-on faults depending upon the state of the inputs.
Of particular note is the fact that fault discrimination is not retained when higher
redundancy factors are used i.e., triple- and quad-transistors. Hence, a resource
trade-off between fault masking capacity and fault identification is present in
this approach.

2.2 Discrimination and Mitigation

Selective fault masking allows for the detection of stuck-on faults considered to
be critical due to potential high current flow between VDD and GND. Examina-
tion of the gate output response under fault condition, summarised in Table 1,
shows that at there is at least one input combination that generates current flow
between VDD and VSS for every single stuck-on fault. This may be exploited
to achieve discrimination of fault type by monitoring current imbalance in the
CMOS network or else periodic exercising of the gate inputs via digital test. The
P- and N-networks are combined with the switching network for a NOR gate
implementation are shown in Fig. 3, which includes weak active pull-up/down
loads typically used for defect repair [3], but which are used here for selective
online fault discrimination.

3 Resource Awareness and Management

Resource considerations will be important for emerging printable and nanoscale
electronics due to their differing densities and scope for building redundancy
structures based upon multi-gate and/or sub-gate nano-structures. Resource
management extending to the fine-grained levels should be explored for both
defect tolerance and hard-fault mitigation. Combining the above approach with
weak active pull-up/down loads creates an efficient active mitigation mecha-
nism that, when further combined with dual redundancy within the P- and

30

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

4 A Combined Fault Detection and Discrimination Strategy

T1

T4T3

T2

T5 T6 T7 T8

A

B

A+B

VDD

GND

N
-N
et
w
o
rk

P
-N
et
w
o
rk

VDD

VDD

S1

S2 S4

S3

(a) (b)

Fig. 3. Gate design strategy. (a) Example of redundancy scheme for NOR gate employ-
ing P- and N-type networks. (b) Potential implementation for active fault mitigation
according to [3].

Table 1. Stuck-High Fault Response of CMOS Network

Input Stuck-on fault locationa

AB T1 T2 T3 T4 T5 T6 T7 T8

00 1 1 1 1 X X X X

01 0 0 X X 0 0 0 0

10 X X 0 0 0 0 0 0

11 0 0 0 0 0 0 0 0

a Output error denoted by ’X’

N-networks, creates further resource awareness opportunities in the presence of
faults. Once a fault has been detected, partial isolation proceeds by switching
to pseudo-NMOS or PMOS mode wherein the nature of the fault may be fur-
ther characterised. For example, assuming a stuck-at high fault occurring within
the P-network (Transistors T1-T4 in Fig. 3a), the location of the fault is not
known a-priori. The circuit may first be switched to pseudo-NMOS mode (set-
ting switches S1 and S3 in Fig. 3b) and, due to the complimentary nature of
the design, a second analogue/digital test will would reveal the same fault be-
haviour summarised in Table 1. However, depending on the value of the weak
pull-down resistance of transistor T9, the digital test may pass without error
and the adapted circuit may continue to be used in a degraded state. Alterna-
tively, the circuit may be switched into pseudo-PMOS mode (switches S2 and S4)
whereupon the error no longer persists. Hence the state of the P- and N-networks
may be individually ascertained. The reverse situation of a fault occurring within
the N-network would proceed in identical fashion as described above. At all times
stuck-at low fault events are intrinsically masked.

31

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

A Combined Fault Detection and Discrimination Strategy 5

An further extension of resource awareness concerns continual resource mon-
itoring in the presence of intermittent faults. For the above case of the pseudo-
PMOS configuration being activated in response to a stuck-high fault within
the P-network, a further option would be to periodically switch to the pseudo-
NMOS configuration and check the P-network response to determine whether
the fault persists. This serves two functions: first, intermittent faults may be
handled in a graceful manner and with specific knowledge of their locality. Sec-
ond, disappearance of the fault allows for restoration of the full CMOS network
and non-degraded performance.

4 Conclusions

Fault detection and discrimination remains a fundamental challenge in resource
management for integrated fault mitigation. The proposed dual redundancy
SAFR method achieves a combination of fault discrimination between stuck-
high/stuck-low fault events and selective masking, thus reserving active mitiga-
tion for stuck-high faults. Fine-grained resource mitigation proceeds by combin-
ing redundancy with weak pull-up/down networks. Ongoing work is investigating
further logic gate configurations and functional logic built from such gates.

Acknowledgement

This work was supported by the UK EPSRC Centre for Innovative Manufactur-
ing in Through-life Engineering Services (EP/I033246/1).

References

1. J. Von Neumann, “Probabilistic logics and the synthesis of reliable organisms from
unreliable components,” Automata studies, vol. 34, pp. 43–98, 1956.

2. J. Han, E. Leung, L. Liu, and F. Lombardi, “A Fault-Tolerant Technique Using
Quadded Logic and Quadded Transistors,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–1, 2014.

3. M. Ashouei, A. Singh, and A. Chatterjee, “Reconfiguring CMOS as Pseudo
N/PMOS for Defect Tolerance in Nano-Scale CMOS,” in 21st International Con-
ference on VLSI Design, 2008. VLSID 2008, 2008, pp. 27–32.

4. R. Kothe, H. Vierhaus, T. Coym, W. Vermeiren, and B. Straube, “Embedded Self
Repair by Transistor and Gate Level Reconfiguration,” in Design and Diagnostics
of Electronic Circuits and systems, 2006 IEEE, 2006, pp. 208 –213.

5. J. Emmert, C. Stroud, and M. Abramovici, “Online Fault Tolerance for FPGA
Logic Blocks,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 15, no. 2, pp. 216–226, Feb. 2007.

6. P. Bremner, Y. Liu, M. Samie, G. Dragffy, A. G. Pipe, G. Tempesti, J. Timmis,
and A. M. Tyrrell, “SABRE: a bio-inspired fault-tolerant electronic architecture,”
Bioinspir. Biomim., vol. 8, no. 1, p. 016003, Mar. 2013.

7. P. Schiefer, R. McWilliam, and A. Purvis, “Fault Tolerant Quadded Logic Cell
Structure with Built-in Adaptive Time Redundancy,” Procedia CIRP, vol. 22, pp.
127–131, 2014.

32

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Auto-tuning Fault Tolerance Technique for
DSP-Based Circuits in Transportation Systems

Ihsen Alouani, Smail Niar, Yassin El-Hillali, and Atika Rivenq

1 I. Alouani and S. Niar LAMIH lab
University of Valenciennes

France
firstname.name@univ-valenciennes.fr
2 Y. El-Hillali and A. Rivenq IEMN lab

University of Valenciennes
France

firstname.name@univ-valenciennes.fr

Abstract. As new technologies use a reduced transistor size to improve
performance, circuits are becoming remarkably sensitive to soft errors
that become a serious threat for critical applications reliability. Most
of the existing reliability enhancing techniques lead to costly hardware.
The masking phenomenon is fundamental to accurately estimating soft
error rates (SER). The first contribution of this paper is a new cross-
layer model for input-dependent Single Event Transient (SET) masking
mechanisms combining Transistor Level Masking (TLM) and System
Level Masking (SLM). We, secondly, use this model to build an auto-
tuning fault tolerant circuit dedicated to obstacle detection systems in
railway transportation. Based on our input-dependent masking model,
the proposed architecture evaluates the effective circuit’s vulnerability at
runtime and accordingly adapts the reliability boosting strategy, leading
to a reliable circuit with optimized overheads. When compared to the
Triple Modular Redundancy, our technique reduces the number of FPGA
LUTs (resp. DSP slices) by up to 45% (resp. 33%).

1 Introduction and Related Works

Technology scaling has enabled fabulous improvements in embedded systems per-
formance. Nevertheless, as transistor gate dimensions decrease to the nanometer
scale, electronic systems become highly susceptible to environmental-factors-
induced errors. Soft errors are caused by particle strikes that temporarily cor-
rupt data stored in memory cells, or change the state of internal combinational
circuit nodes. The masking phenomenon is one of the most important funda-
mentals involved in failure rates estimation within semiconductor circuits. In
the existing works, three masking mechanisms preventing combinational circuits
from soft errors have been considered [1]: Logical Masking, Electrical Masking
and Latching-Window Masking. The most widely used reliability enhancement
techniques in the literature are: spatial redundancy and temporal redundancy.

33

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

2 Ihsen Alouani, Smail Niar, Yassin El-Hillali, and Atika Rivenq

In this paper, we present ARDAS for Auto-tuning Redundancy in DSP-based
Architectures for Soft errors resiliency, an architecture that uses auto-tuning
redundancy of DSP blocks to protect the vulnerable circuit parts instead of
protecting the whole circuit. The vulnerability analysis is performed through
design-time simulations that implement the proposed masking models (TLM
and SLM).

2 TLM: Transistor-Level Masking Mechanism

TLM occurrence is led by the affected transistor locality within the struck gate
as well as the input combination during the transient event. In fact, the par-
ticle strike temporarily corrupts combinational elements by affecting the state
of the hit transistor. However, the event can be simply unnoticed at the out-
put if the transistor behavior corruption doesn’t affect the overall state of pull-
up/pull-down network. Let be Di a binary variable set to 1 if the error due to
a particle strike hitting a transistor Qi is masked by a TLM mechanism. Pi is
the probability that Qi is the hit transistor within the struck gate by the par-
ticle. Hence, the probability that the error resulting from a radiation strike in
gate j is masked for a given input combination in gate j is then expressed by:

PTLM (j) =
∑Nj

i=1(Pi × Di). For simplicity, we assume the equiprobability of
gates’ transistors to be hit by a particle. Let Nm be the number of cases the
error is masked for a given input combination. Hence, PTLM (j) = Nm

Nj
.

The probability of soft error masking in the output bit Si of a combinatorial
circuit for given input signals is:

P i
masking =

n∑
j=1

Wj · (PTLM (j) + (1− PTLM (j)) ·Dij) (1)

Where n is the number of gates in the circuit, PTLM (j) is the probability of
TLM at gate j and Wj is the weight assigned to gate j, expressed as the number
of the gate’s transistors divided by the total number of transistors in the circuit.
Finally, Dij is a binary variable set to 1 if the error at gate j does not propagate
to output Si and to 0 otherwise.

3 SLM: System-Level Masking Mechanism

In a threshold-based system, the comparison of the intermediate result with a
beforehand fixed threshold gives the overall system decision. A transient error
in the intermediate result may keep the overall system decision unchanged de-
pending on the detection threshold value.

We consider a widely used signal processing element in detection/recognition
applications, namely a correlator. We built a simulation tool that tracks the prop-
agation of event-induced errors happening within the correlator nodes and evalu-
ated their impact on obstacle detection accuracy. The correlator is implemented

34

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Title Suppressed Due to Excessive Length 3

using DSP48E1 slices [2]. A soft error is modeled by injecting a bit flip in a node
(i, j) corresponding to the output bit i of the DSPj . Hence, the system behavior
can be monitored under fault injection through System Failures (SFs) detection.
A SF corresponds either to a ”False Alarm”, or a ”No Alarm”. To identify SFs,
we introduce the variable δij that is expressed by: δij = (Cij

∗ − Y0) · (C − Y0),
where Cij

∗ is the correlation result under fault injection in node (i, j), C is the
error-free result and Y0 is the correlation threshold. A SF occurs when δij < 0.
However, if δij ≥ 0 we have a System Level Masking (SLM).

4 ARDAS: Proposed Approach

We define Vj , the vulnerability of a DSPj by:

Vj =

∑Nj

i=1 ηij · (1− Pij)

Nj
(2)

Where: Nj is the number of output bits of DSPj , Pij is the probability of TLM
relative to bit i of DSPj and ηij is a variable set to 0 if a fault at node (i, j) is
masked by SLM, i.e. δij ≥ 0 and is equal to 1 otherwise. We localize vulnerable
DSPs as those with Vj > V0 and define αj as follows: αj = 0 if Vj > V0
and αj = 1 if Vj ≤ V0. As [Vj] vector depends on the applied input signals,
the redundancy distribution corresponding to the vulnerability map has to be
dynamically tunable and self adaptive. The main idea is to judiciously use the
redundant DSP slices to carry out an auto-tuning partial TMR instead of a full
TMR. The system adapts the redundancy to the actual vulnerability map of the
circuit using the circuit’s [αj],∀j ∈ [1;Ndsp].

DSP1

DSP2

Redundant
DSP1

Redundant
DSP2

Voter

select

O_correct

O_dsp1

O_dsp2

dsp1_datapath

dsp2_datapath

in1
in2
in3
in4

Additional Resources

Fig. 1. An illustrative circuit of the auto-tuning redundancy used in ARDAS

The reconfiguration process used to change the redundancy mapping at run-
time is taken from our previous work [3] and an example is illustrated in Figure
1. The circuit mapping is configured by a single control word according to a
redundancy map obtained offline through design-time simulations.

35

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

4 Ihsen Alouani, Smail Niar, Yassin El-Hillali, and Atika Rivenq

5 Experimental Results

We compare the SER of ARDAS-protected to a TMR-protected correlation cir-
cuit. As the reliability level is tuned via V0, Figure 2 represents the normalized
SER and the number of used DSP slices in ARDAS in terms of the tolerated
DSP vulnerability threshold. As seen in Figure 2, the reliability level provided
by ARDAS is comparable to TMR reliability level with lower HW resource uti-
lization.

Table 1. Resource utilization, power and maximum frequency.

Original TMR ARDAS ARDAS DTR
V0=0.55 V0=0.7

DSPs 79 237 189 159 79
LUTs 0 1798 1619 1207 1413
Pw(mW) 430 691 542 533 459
Max freq 422 247 347 347 410
(MHz)

In addition to the reliability, we investigate the impact of ARDAS on power
consumption, resource utilization and the maximum clock frequency of each
circuit for two vulnerability threshold values: 0.55 and 0.7. The circuit is syn-
thesized for a Xilinx Virtex 7 board. The power consumption is estimated using
the Xilinx XPower Analyser tool. Table 1 shows that our architecture reduces
the reliability cost in terms of resource utilization, power and performance. In
fact, ARDAS decreases the number of used LUTs by 10% for V0 = 0.55 and by
32% for V0 = 0.7 compared to TMR. On the other hand, while using TMR slows

0	

20	

40	

60	

80	

100	

120	

140	

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

0	 0.1	 0.2	 0.3	 0.4	 0.5	 0.6	 0.7	 0.8	 0.9	 1	

N
um

be
r	
of
	 r
ed

un
da

nt
	 D
SP
s	
(A
R
D
A
S)
	

N
or
m
al
iz
ed

	 S
ER

	

Vulnerability	 Threshold	

Full	 TMR	 SER	 ARDAS	 SER	 Raw	 Circuit	 SER	 Number	 of	 redundant	 DSPs	

Fig. 2. Normalized SER (left axis), used DSP resources vs V0 (right axis)

36

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Title Suppressed Due to Excessive Length 5

down the circuit frequency by 42%, ARDAS performance penalty is less than
18% compared to the unprotected circuit.

6 Conclusion

In this paper, a self adaptive reliability approach is proposed to cope with the
increasing error rates in new technologies with the lowest possible overheads. AR-
DAS relies on an auto-tuning redundancy architecture to protect the vulnerable
parts of the system rather than the whole circuit. Due to its quick reconfigura-
bility, ARDAS offers high reliability with reduced overheads. Moreover, it allows
designers to choose the desired reliability level depending on the application
requirements and its criticality.

References

1. P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event upset
in digital microelectronics,” IEEE Tran onNuclear Science, June 2003.

2. 7 series dsp48e1 slice user guide. [Online]. Available:
www.xilinx.com/support/documentation/user-guides/ug479-7Series-DSP48E1.pdf

3. I. Alouani, M. A. R. Saghir, and S. Niar, Reconfigurable Computing: Architectures,
Tools, and Applications: 10th International Symposium, ARC 2014, Vilamoura,
Portugal, April 14-16, 2014. Proceedings, ch. ARABICA: A Reconfigurable Arith-
metic Block for ISA Customization, pp. 248–253.

37

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Automatic Pruning of Autotuning Parameter
Space for OpenCL Applications

Ahmet Erdem, Gianluca Palermo6, and Cristina Silvano6

Department of Electronics, Information and Bioengineering
Politecnico di Milano

Abstract. OpenCL standard reaches more wider audience due to in-
creasing the number of devices supporting it. This situation puts devel-
opers who want performance on large range of platforms in a difficult
position. To solve this problem, autotuning frameworks are deployed.
But the problem of design exploration space is seriously large because
of OpenCL parameters. In this work, we introduce an approach which
uses constraint programming to prune the design space before employing
intelligent or exhaustive techniques to explore.

1 Introduction

The recent advances in computer architecture made heterogeneous computer
systems available to not only data centers and supercomputers but also to com-
mercial personal computers. Especially, with the advent of AMD APUs and Intel
CPUs which include integrated GPUs, the heterogeneity of modern machines has
increased. Furthermore, enabling discrete GPUs for general purpose computing
has added another type of computation device to the system. While each sys-
tem has provided different granularity of parallelism which needs to be properly
exploited, the communication between various computation units must also be
handled according to the needs of application as well.

Open Computing Language (OpenCL) which is maintained by Khronos con-
sortium [3] is an open standard for developing parallel applications on heteroge-
neous systems by abstracting the underlying compute machine. OpenCL adopts
data parallel approach by describing the parallel computations as a group of
work-items, called work-groups. This hierarchical parallelism has been realized
by launching kernel functions with a number of work-groups including a set of
work-items. Kernel function describes how each work-item defines the operations
that is to be carried out on a single data. Therefore the collection of work-items
under all work-groups together expresses the data parallelism for an application.
Although OpenCL defines the execution of the application that is portable be-
tween the devices conforming the OpenCL standard, it does not guarantee the
performance to be optimal. Especially, moving applications to different types of
architectures like from CPU to GPU may result significant loss of performance,
this is the reason why OpenCL is not considered performance portable. On het-
erogeneous performance portability represents a challenging research issue.

38

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

One naive solution to performance portability is to develop separate ker-
nel functions for each device the application is supposed to run. This solution
makes development of application dramatically complicated when the system
is heterogeneous, because of explicit management of multiple command queues
and contexts in the presence of multiple vendors on the system.

Performance portability problem of OpenCL applications has been approached
either by tuning of significant parameters described as in [6] or by introducing
Domain-specific languages to annotate kernel and OpenCL code generation [2].

From another perspective, it is not always possible to access these parameters
to tune if they are not being exposed by developers. The work of [1] tackles this
problem by coalescing work-groups using compiler transforms while preserving
the correctness of application.

In this work, we introduce an automation of extraction of OpenCL platform
parameters and usage of the information that is gathered to aid the tuning
process described in [6].

2 Proposed Methodology

The procedure of autotuning of an OpenCL application in order to get optimum
performance without concerns of underlying architecture of the platform requires
a set of parameters that define characteristics of the machine. In the case of
OpenCL, these platform specific parameters are stated by the OpenCL standard
itself. Furthermore, it is possible to gather them using the querying framework
which is provided by the OpenCL standard. With these information gathered,
it is possible to determine the size of the exploration space and then using
intelligent methods for searching optimum design space.

Outside of platform parameters, there might be also application specific pa-
rameters that can be tightly related to platforms capabilities. An example of
this situation is well-known tiled version of the matrix multiplication. Size of
the tiles are considered as an application parameters and due to nature of the
algorithm there is a sharing of information between work-items on the elements
of the same tile. Due to OpenCL architecture design, this kind of communication
requires local memory to be used. Therefore tile size is directly related to local
memory usage which is a limited resource of the platforms.

There are some problems regarding with this approach; design space is larger
for even simple applications, for instance, Nvidia Fermi architecture allows up
to 1024 work-items for first and second dimensions and 64 work-item for the
third dimension, resulting a 226 different configurations already. Most of the
configurations are not feasible in the sense that the kernel may not even launch
or may fail during execution, due to illogical configurations parameters. Moreover
these failed attempts of kernel launches do not provide any information about
the sample that has been taken from design space. Hence effort and time are
wasted on these ill-advised configurations.

In order to address this issue, the work in [6] presented a design space ex-
ploration flow that includes constraint programming to prune the design space

39

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

and eliminate infeasible solutions. This helps reduction of space while only us-
ing samples which makes sense within the scope of OpenCL standard. Fig. 1
demonstrates this idea simply.

Our work aims to improve the pruning phase by automating the extraction
of platform specifications, to find constraints that are valid for all platforms,
so that application programmer only needs to insert constraints related to ap-
plication itself. For constraint programming, we used MiniZinc [4] constraint
modelling language as it is used in [6]. Using OpenCL querying framework, for
each OpenCL compliant device available on the machine we generated MiniZinc
data files which include the following information about the device:

– maximum work-group size for each three dimensions.
– maximum number of total work-group a kernel launch may contain.
– number of compute units on the device.
– local memory size of the device.

In addition to these, a set of constraints that can be deduced from standard
[3] has been used to generate platform constraint model, thus together with
application constraints provided by programmer can prune the design space
effectively. The generated platform constraints are as follows:

– total number of work-groups launched must be less than or equal to maxi-
mum work-group size.

workgroupx ∗ workgroupy ∗ workgroupz <= max total wg (1)

– each global work-item dimensions must be multiple of corresponding work-
group dimension size.

globalx%workgroupx == 0

globaly%workgroupy == 0

globalz%workgroupz == 0

(2)

– total number of work-groups should be equal or greater than number of
compute units. Otherwise there will be idle compute units.

globalx/workgroupx + globaly/workgroupy+

globalz/workgroupz >= num compute units
(3)

3 Use Case Example

In order to test our approach, we used a machine with Intel i7-2630QM which is a
quad-core CPU at 2.0Ghz and Nvidia GeForce GT 550M which is a mobile GPU
with 96 CUDA cores. For testing purposes, tiled version of matrix multiplication
is used and tile size is given as a application parameter and it is been set the

40

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Fig. 1. Pruning of configuration design space

interval of [1 : 256]. Furthermore, we have taken into account that application
global work size and set it to 4096x4096 matrix for this experiment.

Given this setting, the design space for CPU is 234 and for GPU it is 247. But
after the pruning of infeasible configurations, there are only 367 configurations
left for CPU and 421 configurations for GPU. Considering the result of prun-
ing for the use case given, it is even possible to search exhaustively all possible
configurations left to find the optimal one. However the given example is too el-
ementary to deduce this conclusion for broader range of applications. Hence, the
next step is to introduce tools to at least one of the industry-proven benchmarks
like OpenDwarfs [5], Rodinia [7] and shoc [8]. Moreover, testing with more di-
verse and recent hardware platforms is necessary to prove generality of the work.
Additionally, besides platform specific and application specific parameters, there
is a possibility of adding compiler-supported parameters like coalescing factor
that has been explored in [1].

References

1. G. Agosta, A. Barenghi, G. Pelosi, and M. Scandale. Towards transparently tackling
functionality and performance issues across different opencl platforms. In In proceed-
ings of the Second International Symposium on Computing and Networking Across
Practical Development and Theoretical Research (CANDAR 2014), Dec. 2014.

2. N. Chaimov, B. Norris, and A. Malony. Toward multi-target autotuning for accel-
erators. In Parallel and Distributed Systems (ICPADS), 2014, pages 534 – 541.

3. Khronos Group. The open standard for parallel programming of heterogeneous
systems. [Online; Accessed: Nov. 2015].

4. MiniZinc. Medium-level constraint modelling language minizinc. [Online; Accessed:
Dec. 2015].

5. OpenDwarfs. Opendwarfs. [Online; Accessed: Jan. 2016].
6. E. Paone, F. Robino, G. Palermo, V. Zaccaria, I. Sander, and C. Silvano. Cus-

tomization of OpenCL applications for efficient task mapping under heterogeneous

41

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

platform constraints. In Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pages 736–741. EDA Consortium, 2015.

7. Rodinia. Rodinia:accelerating compute-intensive applications with accelerators.
[Online; Accessed: Jan. 2016].

8. Shoc. Scalable heterogeneous computing (shoc). [Online; Accessed: Jan. 2016].

42

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

Application Adaptation at Runtime through
Dynamic Knobs Autotuning

Davide Gadioli1, Gianluca Palermo1, and Cristina Silvano1

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioigegneria
name.surname@polimi.it

Abstract. Several classes of applications expose a set of parameters
that influence their extra-functional properties, such as the quality of
the result or the size of the output. This leads the application designer
to tune these parameters in order to find the configuration that produces
the desired outcome.
From the architectural point of view, the trend in modern systems is
to expose an high level of parallelism, often involving heterogeneous re-
sources. To exploit the full potential of the hardware, the application
designer must take into account resource-related parameters in the tun-
ing process as well.
Since the requirements of the applications and the resources assigned
to each application might change at runtime, we argue that finding a
one-fit-all configuration is not a trivial operation.
For this reason we use a framework that enhances an application with
an adaptation layer in order to continuously tune the parameters of the
application according to the evolving situation, in a best effort fashion.

1 Introduction

One of the main tasks of an application designer is to reach the required perfor-
mance on the target system. Unfortunately, the performance of an application
is seldom defined by one metric, such as the execution time or its throughput.
The performance is instead composed by a collection of metrics that are usually
in contrast between them; for instance the time spent on elaborating the input
against the quality of the result or the power consumption.

A common approach is to write an algorithm that exposes a set of parameters,
also known as dynamic knobs[2] in literature, that influence the performance
of the application, such as the number of trials in a Monte Carlo solver or
the resolution of the output frame in a video encoder. The possible values of
these parameters define the design space of the application and in literature are
described several Design Space Exploration (DSE) techniques[4] that are able
to automatically and efficiently compute the Pareto set, which represent all the
optimal trade-off between the metrics of interest.

Since the application requirements may change at runtime – for instance if
the platform is at first powered by a battery, then plugged in a power supply –
and the system might vary the resources allocated to the application as well, we
argue that is not trivial to select a priori one-fit-all configuration.

43

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

For this reason we rely on the argo1 framework[1]: it is grounded on the
Monitor-Analyze-Plan-Execute (MAPE) feedback loop[3] and it is able to au-
tomatically tune the application parameters according to the evolution of the
system.

The main idea of the framework is to exploit design time knowledge of the
application, obtained through a DSE, to select the best configuration according
to the actual application requirements and the observed performance, both of
them composed by a collection of metrics of interest.

argo is implemented as an external library to be linked against the target
application. It takes autonomous decision without interacting with any other
element. For these reasons we are able to minimize the intrusiveness of the
integration, expressed in terms of lines of code to be changed.

Elaboration Goals

Monitors

Knowledge

Static

Goals

AS-RTM

Application

Execution environment

Fig. 1. The framework structure. The AS-RTM selects the best configuration according
to the runtime information provided by the monitors and the design-time knowledge.

2 Framework structure

The framework follows a modular approach, as showed in Figure 1. A monitor
infrastructure is used to gather insight on the actual performance of the appli-

1 The name argo, has been borrowed by Greek mythology. argo was the ship on
which Jason and the Argonauts sailed to retrieve the Golden Fleece. As that boat was
a means for achieving the Golden Fleece (their goal): it aims at letting applications
to reach their goals too.

44

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

cation (Monitor element). argoships with a monitor suite to observe the most
common metrics:

– The elapsed time or the application throughput.
– The resident set size of the virtual memory that the process is using.
– The process- and system-wide CPU usage.
– Low-level metrics exposed by the widely adopted PAPI framework[6].

Moreover, to observe application-specific metrics, such as the quality-related
ones, the object-oriented implementation enable the application designer to eas-
ily integrate a custom monitor, defining the methods that actually gather the
new data.

On the other side, argoembeds the design time knowledge in the list of
Operating Points (OPs), where each OP represents a configuration and the per-
formance reached by the application using that configuration. The framework
is agnostic about the technique used to perform the DSE, in the current imple-
mentation it parses the MULTICUBE[5] syntax.

The Application-Specific RunTime Manager is the main component of the
framework that selects the best configuration (Plan element), within the list of
OPs, according to a multi-objective constrained optimization that might involve
observed metrics (using Goals) or design time computed metrics (using Static
Goals).

Since the dynamic knobs are heavily application-dependent, is the application
itself that is in charge to apply the configuration selected by argo(Execute ele-
ment), closing the MAPE loop. In this way it is possible to deploy the framework
in a wide range of applications, while minimizing the integration effort. In fact,
we model the application as a sequence of different blocks of code that perform
the elaboration iteratively. The idea is that at the beginning of each iteration,
the application retrieves the configuration to use in the current iteration.

3 Framework integration

To employ separation of concerns, our workflow is based on three kind of files.
The source code of the application describes the functional behavior, while we
use two configuration files written in XML to express the adaptation layer: one
file describes the design time knowledge and the third one describes the monitor
infrastructure and the multi-objective optimization. argouses a tool that au-
tomatically generates the glue-code required to integrate the framework in the
target application.

To better clarify the required effort, Figure 2 provides an integration example
considering a toy application. It shows the original source code written in black,
while the integration code required to adopt argo is written in bold red. The
application itself is very simple: on lines 9-16 the elaboration block, named “foo”,
performs the loop over the available jobs, while the function do job (line 14)
actually performs the computation.

45

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

1 #include ‘‘argo.hpp’’

2

3 int param;

4

5 int main ()

6 {

7 argo::init();

8

9 while(work_to_do ())

10 {

11 argo:: block_foo

12 {

13 // do the computation

14 do_job(param);

15 }

16 }

17 }

Fig. 2. This example shows how to integrate argo in an existing application code that
exposes the elaboration as a loop, using the glue-code automatically generated by the
framework tool from an XML configuration file.

In this example, we suppose that the elaboration is influenced by the pa-
rameter param, expressing the amount of processed data and representing the
software knobs of the application. Since the code of toy application expose di-
rectly the elaboration loop, the integration requires only to include the created
header file, initialize the framework and then wrap the execution call with the
generated macro, highlighted in bold red. In this way the framework is able to
observe and tune the elaboration block. Since no assumptions are made on the
structure of the application code, the tool generates a hierarchy of methods to
interact with the application, that requires to write the glue-code using more fine
grained functions. In the worst case, the application designer is able to directly
use the framework API.

4 Conclusion

In this work we have described a framework that enhances an application with
an adaptation layer. In particular it adapts the knowledge base obtained at
design time with the information gathered by the monitor infrastructure. Using
this information, argo selects the best configuration according to the actual
requirement of the application.

46

Proceedings of 1st Workshop on Resource Awareness and Application Autotuning in Adaptive and Heterogeneous Computing (RES4ANT) 2016
	
	
	
	
	

References

1. D. Gadioli, G. Palermo, and C. Silvano. Application autotuning to support run-
time adaptivity in multicore architectures. In Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS), 2015 International Conference on,
pages 173–180. IEEE, 2015.

2. H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.
Dynamic knobs for responsive power-aware computing. In ACM SIGPLAN Notices,
volume 46, pages 199–212. ACM, 2011.

3. J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003.

4. G. Palermo, C. Silvano, and V. Zaccaria. Respir: a response surface-based pareto it-
erative refinement for application-specific design space exploration. Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, 28(12):1816–
1829, 2009.

5. C. Silvano, W. Fornaciari, G. Palermo, V. Zaccaria, F. Castro, M. Martinez, S. Boc-
chio, R. Zafalon, P. Avasare, G. Vanmeerbeeck, et al. Multicube: Multi-objective
design space exploration of multi-core architectures. In VLSI 2010 Annual Sympo-
sium, pages 47–63. Springer, 2011.

6. V. M. Weaver, D. Terpstra, H. McCraw, M. Johnson, K. Kasichayanula, J. Ralph,
J. Nelson, P. Mucci, T. Mohan, and S. Moore. Papi 5: Measuring power, energy,
and the cloud. In Performance Analysis of Systems and Software (ISPASS), 2013
IEEE International Symposium on, pages 124–125. IEEE, 2013.

47

	Using Reference Attribute Grammar-Controlled Rewriting for Runtime Resource Management

