
Polynomial Datalog Rewritings for Ontology
Mediated Queries with Closed Predicates?

(Extended Abstract)

Shqiponja Ahmetaj, Magdalena Ortiz, and Mantas Šimkus

Institute of Information Systems, TU Wien, Austria

In ontology-mediated queries (OMQs), a database query is enriched with an
ontology, providing knowledge to obtain more complete answers from incomplete
data. OMQs are the focus of intensive research, particularly when the ontology is
expressed in Description Logics (DLs) or in rule-based formalisms like existential
rules and Datalog±, see e.g., [5, 4, 10] and their references. The open-world
semantics of these formalisms makes them suitable for handling incomplete
knowledge, but viewing all data as incomplete can result in too few certain
answers. For this reason, closed predicates have been advocated as a powerful
tool to combine complete and incomplete knowledge, by explicitly specifying
predicates assumed complete, thus given a closed-world semantics [8, 13]. For
example, take the following self-explanatory ontology T (formally, a DL TBox):

BScStudv Student,Studentv ∃attends.Course,BScStudv ∀attends.¬GradCourse

and the following set of facts A (an ABox):

Course(c1), Course(c2), GradCourse(c2), BScStud(a)
The instance query q(x, y) = attends(x, y) mediated by T does not retrieve (a, c1)
as a certain answer, but if c1 and c2 are known to be the only courses, then we
can declare Course a closed predicate, and then (a, c1) becomes a certain answer.

We investigate the relative expressiveness of OMQs in terms of more traditional
query languages like Datalog. More precisely, we are interested in the following
problem: given an OMQ Q (specified by a query and a TBox, possibly with closed
predicates), obtain a Datalog query Q′—in a suitable fragment—such that, for
any ABox A, the certain answers to Q and Q′ coincide. The existence of such a Q′

and its size are crucial for understanding the expressive power and succinctness
of different families of OMQs. It is also very relevant in practice, since it allows
to reuse existing database technologies to support OMQ answering. For example,
the research into OMQs that can be rewritten into first-order (FO) queries has
produced the successful DL-Lite family [6], which has been extensively studied,
and laid the base for developing other FO-rewritable query languages, e.g., [9, 11].
Many DLs are not FO-rewritable, but can be rewritten into monotonic Datalog
queries, leading to implemented systems, e.g., [17, 7, 19]. The pioneering work
in [12] showed that instance queries in an expressive extension of ALC (without
closed predicates) can be rewritten into a disjunctive Datalog program, using a
constant number of variables per rule, but exponentially many rules. For union

? This work was supported by the Austrian Science Fund (FWF) projects P25207,
T515 and W1255.

of conjunctive queries in ALC, the existence of exponential Datalog rewritings
was shown recently [5]. A polynomial Datalog translation of instance queries
was proposed in [16], but for a so-called Horn-DL that lacks disjunction; to our
knowledge, this was the only polynomial rewriting for a DL that is not FO-
rewritable until now. In the presence of closed predicates, the only rewritability
results are FO-rewritability for the core fragment of DL-Lite [14], and a rewriting
algorithm for queries that satisfy some strong definability criteria [18]. Other
works on OMQs with closed predicate have focused on the complexity of their
evaluation, e.g., [15, 13, 8]; since answering these queries is coNP-hard in data
complexity for most lightweight DLs, the existence of FO-rewritings is ruled out.

We consider OMQs of the form (T , Σ, q), where q is an instance query and T
is a TBox in the very expressive DL ALCHIO with closed predicates Σ. Observe
that these queries are non-monotonic: if Σ = {Course} are the closed predicates
in the above example, then (a, c1) is a certain answer to (T , Σ, q) over A, but it
is not a certain answer over A′ = A∪{Course(c3)}. This shows that these queries
cannot be rewritten into monotonic variants of Datalog, like positive Datalog
(with or without disjunction). The main contribution of this paper is a polynomial
time translation of queries in Q into disjunctive Datalog extended with negation
as failure Datalog∨¬ . Our translation is modular: if no closed predicates are
present—i.e., for regular instance queries in ALCHIO—our translation yields
a positive disjunctive Datalog program of polynomial size. To our knowledge,
this is the first polynomial time translation of an expressive (non-Horn) DL into
Datalog. The full version of this abstract can be found in [1] and a simplified
version of the translation for ALCHI can be found in [2].

1 OMQs with Closed Predicates

We assume familiarity with DLs [3]. We use p for role names in the set NR, A(i)

for concept names in NC, and a, b for individuals in NI. ALCHIO knowledge bases
(KBs) with closed predicates take the form K = (T , Σ,A), where Σ ⊆ NR ∪ NC

are the closed predicates, T is a (normalized) TBox with axioms of the forms:

(N1) B1 u · · · uBn vBn+1 t · · · tBk
(N2) A1 v ∃r.A2 (N3) A1 v ∀r.A2 (N4) r v s

where B(i) are concept names or nominals {a}, and r and s are roles of the form
p or p−; the ABox A is a set of assertions of the forms A(a) and p(a, b). Models
of axioms, assertions, TBoxes and ABoxes are defined as usual. For an ABox A
and a set of closed predicates Σ, we write I |=Σ A if: (a) I |= A, (b) for all
concept names A ∈ Σ, if e ∈ AI , then A(e) ∈ A, and (c) for all role names r ∈ Σ,
if (e1, e2) ∈ rI , then r(e1, e2) ∈ A. For a KB K, we write I |= K if the following
hold:1 (i) a ∈ ∆I and aI = a for each a ∈ NI occurring in K, (ii) I |= T , and
(iii) I |=Σ A. For an assertion α, we write K |= α if I |= α for all I such that
I |= K. Finally, an (ontology mediated) instance query is a triple Q = (T , Σ, q),
where q ∈ NC ∪ NR. Let a ∈ NI in case q ∈ NC, and a ∈ N2

I otherwise. Then a is
a certain answer to Q over an ABox A if (T , Σ,A) |= q(a); note that if Σ = ∅,
this boils down to the usual DL instance checking problem.

1 We make the standard name assumption (SNA)for the individuals occurring in K.

2 Rewriting OMQs into Datalog∨¬

Assume a KB K = (T , Σ,A) and an assertion q. Deciding K 6|= q amounts to
deciding whether there exists a counterexample (for the entailment of q from K),
which is an I with I |= K and I 6|= q. In this section we give a brief explanation
of how this can be decided, and reduced to evaluating a Datalog∨¬ query.

Below, a core interpretation for K is an interpretation I with domain NI(K)
such that I |=Σ A, and which satisfies some additional conditions (e.g., it models
the TBox axioms of the forms (N1), (N3), (N4), and also (N2) when the role is
closed); see [1]. Intuitively, core interpretations fix how the individuals participate
in concepts and roles, and models of K can be seen as core interpretations
extended by adding anonymous objects to satisfy all TBox axioms.

To decide the existence of a counterexample, we proceed in two steps:

(1) Guess a core interpretation I for K, such that I 6|= q.
(2) Check that I can be extended to satisfy all axioms in T . Since the ex-

tension coincides with I on the assertions they entail, this preserves the
non-entailment of q.

Given T , Σ and q, defining Datalog∨¬ rules that do (1) for any input A is not
so hard. For example, rules like the following ‘guess’ how individuals participate

in concepts and roles: A(x) ∨A(x) ← ind(x) ← A(x), A(x)

r(x, y) ∨ r(x, y) ← ind(x), ind(y) ← r(x, y), r(x, y)
and other rules then verify the additional conditions in the definition of core
interpretation. The latter simulate the TBox axioms in a rather direct way (e.g.,
an axiom r v s becomes s(x, y) ← r(x, y)). Their only interesting feature is
that, to ensure that no instances are added to closed predicates in the exten-
sion of I, we use constraints with negative body atoms. For example, we use
← r(x, y), not s(x, y) instead of the rule above if s is closed.

Now, step (2) is harder: given T , Σ, and I, verifying whether I can be
extended into a full model of T while respecting Σ is ExpTime-hard already for
fragments of ALCHOI (as it is a generalization of consistency testing). In order
to obtain a polynomial set of rules that solves this ExpTime-hard problem, we
characterize it as a game, revealing a simple algorithm that admits an elegant
implementation in Datalog∨¬ .

The game is played over a set LC(T , Σ, I) of locally consistent types, which
are sets of atomic concepts satisfying conditions such as having no explicit
inconsistencies and satisfying all axioms of type (N1) in T . Additionally, a type
τ that contains a nominal {a} must be the type realized by a in A, that is, τ is
exactly the set of all B such that a ∈ BI . Moreover, τ must be realized in I by
some individual whenever it contains a closed concept, or a concept occurring on
the left-hand-side of an axiom (N2) that has closed role on the right.

We now describe the game, which is played by Bob (the builder), who wants
to extend I into a model, and Sam (the spoiler), who wants to spoil all Bob’s
attempts. The game on I starts by Sam choosing an individual a ∈ ∆I , and
τ = type(a, I) is set to be the current type. Then:

(�) If τ 6∈ LC(T , Σ, I), then Sam is declared winner. Otherwise, Sam chooses an
inclusion Av ∃r.A′ ∈ T with A ∈ τ ; if there is no such inclusion, Bob wins
the game. Otherwise, Bob chooses a new type τ ′ such that:

(C1) A′ ∈ τ ′, and
(C2) for all inclusions A1 v ∀s.A2 ∈ T :

• if r v s ∈ T and A1 ∈ τ then A2 ∈ τ ′,
• if r− v s ∈ T and A1 ∈ τ ′ then A2 ∈ τ .

τ ′ is set as current type is and we go back to � to continue with a new round.

It can be proved that a core I can be extended into a model iff Bob has
a non-losing strategy for the game played on I. To decide the existence of a
non-losing strategy, we implement in Datalog∨¬ a procedure to mark all types
from which there is no non-winning strategy. The rules that do this can be found
in the full version. Here we discuss a few sample rules. For example, a rule

Marked(x)← Type(x), B1 ∈ x, . . . , Bn ∈ x, B′1 6∈ x, . . . , B′n 6∈ x
marks types that violate axioms of type (N1), where Type is a k-ary relation that
contains (bit vectors denoting) the different combinations of the k concepts occur-
ring in T , and B ∈ x (resp. B 6∈ x) is shortcut for the atom testing if B is (not) in
this type. For testing the local consistency conditions that involve realized types,
we use a k-ary predicate RealizedType that gathers all types realized in I. Then,

for example, a rule Marked(x)← Type(x), A ∈ x, not RealizedType(x)
marks all non-realized types that contain a closed A, and similar rules handled
enforces s-neighbors with closed s and nominals {a}. The most interesting part
is to go beyond the local consistency, propagating the markings to types that
don’t allow Bob to pick an unmarked successor type. We need to mark a type τ if
A ∈ τ for some α = Av ∃r.A′ ∈ T , and each type τ ′ has either been marked, or
violates one of (C1) and (C2). We use an auxiliary (2k + 1) relation MarkedOne

to collect all such τ ′: MarkedOne(x, aα,y)← Type(x),Marked(y)
and similar rules for collecting types that violate (C1) or (C2). We now want
to ensure that Marked(t) in case MarkedOne(t, aα,v) is true for all types v.
This needs a set of rules that generate a linear order over types, and use it
to iterate over all types. If we manage to reach the last type, the current type
is marked. To this end, we need another (2k+1)-ary relation MarkedUntil. We add:

MarkedUntil(x, aα, z)← MarkedOne(x, aα, z), first(z)

MarkedUntil(x, aα,u)← MarkedUntil(x, aα, z), next(z,u),MarkedOne(x, aα,u)

Marked(x)← MarkedUntil(x, aα, z), A ∈ x, last(z)
Finally, there is a set of rules that check that all types realized in the core are
not marked. Putting all the rules together, we can show the following:

Theorem 1. For an instance query (T , Σ, q), where T is an ALCHIO TBox,
we can build in polynomial time a Datalog∨¬ program P such that:

(i) The certain answers to (T , Σ, q) and (P, q) coincide for any given ABox A
over the signature of T .

(ii) If Σ = ∅, then P is a positive program.
(iii) If Σ = ∅ and T is an ALCHI TBox, then P is a positive program with no

occurrences of the 6= predicate.

References

1. S. Ahmetaj, M. Ortiz, and M. Simkus. Polynomial datalog rewritings for expressive
description logics with closed predicates. In Proc. of IJCAI 2016. AAAI Press,
2016.

2. S. Ahmetaj, M. Ortiz, and M. Simkus. Polynomial disjunctive datalog rewritings of
instance queries in expressive description logics. In Proc. of DL 2016. CEUR-WS.org,
2016.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, second edition, 2007.

4. M. Bienvenu and M. Ortiz. Ontology-mediated query answering with data-tractable
description logics. In Reasoning Web, volume 9203 of Lecture Notes in Computer
Science, pages 218–307. Springer, 2015.

5. M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A
study through disjunctive datalog, csp, and MMSNP. ACM Trans. Database Syst.,
39(4):33:1–33:44, 2014.

6. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: The DL-Lite family.
J. Autom. Reasoning, 39(3):385–429, 2007.

7. T. Eiter, M. Ortiz, M. Šimkus, T. Tran, and G. Xiao. Query rewriting for Horn-SHIQ
plus rules. In Proc. of AAAI 2012. AAAI Press, 2012.

8. E. Franconi, Y. A. Ibáñez-Garćıa, and I. Seylan. Query answering with DBoxes is
hard. Electr. Notes Theor. Comput. Sci., 278:71–84, 2011.

9. G. Gottlob, S. Kikot, R. Kontchakov, V. V. Podolskii, T. Schwentick, and M. Za-
kharyaschev. The price of query rewriting in ontology-based data access. Artif.
Intell., 213:42–59, 2014.

10. G. Gottlob, M. Manna, and A. Pieris. Polynomial rewritings for linear existential
rules. In Proc. of IJCAI 2015. AAAI Press, 2015.

11. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecursive
datalog programs. In Proc. of KR 2012. AAAI Press, 2012.

12. U. Hustadt, B. Motik, and U. Sattler. Reasoning in description logics by a reduction
to disjunctive datalog. J. Autom. Reasoning, 39(3):351–384, 2007.

13. C. Lutz, I. Seylan, and F. Wolter. Ontology-based data access with closed predicates
is inherently intractable(sometimes). In Proc. of IJCAI 2013. IJCAI/AAAI, 2013.

14. C. Lutz, I. Seylan, and F. Wolter. Ontology-mediated queries with closed predicates.
In Proc. of IJCAI 2015. IJCAI/AAAI, 2015.

15. N. Ngo, M. Ortiz, and M. Šimkus. The combined complexity of reasoning with
closed predicates in description logics. In Proc. of DL 2015. CEUR-WS.org, 2015.

16. M. Ortiz, S. Rudolph, and M. Šimkus. Worst-case optimal reasoning for the
Horn-DL fragments of OWL 1 and 2. In Proc. of KR 2010. AAAI Press, 2010.

17. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and
rewriting under description logic constraints. J. Applied Logic, 8(2):186–209, 2010.

18. I. Seylan, E. Franconi, and J. de Bruijn. Effective query rewriting with ontologies
over DBoxes. In Proc. of IJCAI 2009, 2009.

19. D. Trivela, G. Stoilos, A. Chortaras, and G. B. Stamou. Optimising resolution-based
rewriting algorithms for OWL ontologies. J. Web Sem., 33:30–49, 2015.

