
A Query-driven and Incremental Process for Entity
Resolution

Priscilla Kelly M. Viera1, 2, Ana Carolina Salgado1, Bernadette Farias Lóscio1

1 Federal University of Pernambuco, Center for Informatics, Recife, Pernambuco, Brazil

{pkmv, acs, bfl}@cin.ufpe.br

2 Federal Rural University of Pernambuco, Recife, Pernambuco, Brazil

1 Introduction

Companies and governmental organizations around the world publish a huge volume
of data, which can be stored in multiple data sources. In order to access and analyze
these data, strategies for data integration are needed. The aim of data integration is to
combine heterogeneous and autonomous data sources for providing a single view to the
user [1]. An important component of the data integration process is the Entity
Resolution (ER) task [2]. The ER goal is to identify tuples referring to the same real-
word entity (in this work, tuple is synonymous of instance and record). This problem is
known by a variety of names: Record Linkage, Entity Resolution, Object Reference,
Reference Linkage, Duplicate Detection or Deduplication. In this paper, we adopt the
term Entity Resolution (ER) [2].

Often, companies and organizations have to deal with dynamic data sources with a
large volume of data. In this context, the ER process can be very challenging because
most current available ER techniques process all the entities at one time [3]. This occurs
because most of these techniques are based on batch algorithms, which resolve all
tuples instead of resolving those related to a single query [4, 5, 6]. Then, arises the need
of new techniques to support real-time ER for dynamic and large databases.

For example, suppose a set of data sources of bibliographic data and a query to
retrieve all papers from a given author (e.g. "Getoor"). To answer this query, it is not
necessary to look for other author’s papers and to perform the ER considering the whole
set of papers. In this case, it would be better to focus on the tuples describing just papers
from the author specified in the query.

In this paper, we propose a QUery-Driven and Incremental process for Entity
Resolution (QuID). The QuID process considers query results on multiple data sources.
It is an incremental process, i.e., for each new query result, QuID reuses the previous
ER clusters to answer future queries. In our approach, ER is considered as a clustering
problem [7], in which each cluster corresponds to tuples of a single real-world entity.
During the ER, the results of queries are analyzed, and each tuple of the query result is
inserted incrementally in a cluster. Our solution holds an index for the tuples, and
performs incremental clustering, resulting in clusters of tuples that refer to the same
real-world entity. The rest of the paper is organized as follows. In Section 2 we discuss
related work. In Section 3 we formally define the problem and describe the QuID
process and in Section 4 we conclude.

2 Related Work

Bhattacharya and Getoor [4] proposed a strategy adjusted for query-time entity
resolution by identifying and resolving only those database references that are the most
helpful for processing a given query. Altwaijry [5] proposed a query-driven approach
to ER, exploiting the specificity and semantics of the given SQL query. Both papers do
not propose to reuse previous results of the ER process. The solution proposed by
Gruenheid [3] uses an incremental clustering algorithm to perform ER. Each inserted
tuple is compared with existing clusters, either putting the tuple into an existing cluster,
or creating a new cluster for it, using extra information from the data updates to fix
previous cluster problems. This solution does not consider query results during the ER
task. Different from the mentioned approaches, the process proposed in this paper is
incremental and query-driven. To the best of our knowledge there are no other
approaches that combine these two features.

3 Problem Statement

In this section we formally define the problem of query-driven and incremental ER
(Section 3.1). We then describe our Query-Driven and Incremental process for Entity
Resolution (QuID) (Section 3.2).

3.1 Problem Definition

Given a set of tuples, the ER process is essentially a clustering problem, in which each
cluster contains tuples that represent a single real-world entity. If we consider the ER
problem in multiple data sources, each tuple can be from a different source.

In this paper, our focus is on incremental clustering algorithms. The goal of the
incremental clustering approach is to make the ER process faster than other processes
that do not use this strategy. The main goal of using the query results is to reduce the
volume of tuples. This strategy will also reduce the number of comparisons made
between tuples.

Formally, we denote S = {S1, S2, ..., Sn} a set of data sources and Q = {Q1, Q2, ..., Qm}
a set of queries running on S. Each source has a set of entities Si.E, where E = {E1, E2,
..., Ew}. Each entity Ej from Si.E has a set of tuples Si.Ej.T = {t1, t2, ..., tn}, where each tp
is an instance of the entity Ej. A tuple tp is defined as follows.

Definition 1. Each tuple tp belonging to Si.Ej.T, is represented by a set of pairs of
attributes (Ak) and values (vk), tp = (𝑆#. 𝐸&. 𝐴(, 𝑣(, 𝑆#. 𝐸&. 𝐴+, 𝑣+ , … , (𝑆#. 𝐸&. 𝐴-, 𝑣-)}.
Each attribute Ak belongs to an entity (Ej) of a data source (Si), denoted by Si.Ej.Ak. Each
tuple tp has a pair (𝑆#. 𝐸&. 𝐴0, 𝑣0), which represents a single identifier of the tuple (Id).

A query Qi may not contain all the attributes necessary (relevant) to define whether
two tuples represent the same real-world entity. Thus, the query is submitted to an
expansion process for collecting the relevant attributes [8] that were not informed in
the initial query. This expansion generates a query Qi’. The input of the QuID process
is the result of the query Qi’, defined as follows.

Definition 2. A query result, Qi’.R, is represented by a set of tuples (Definition 1)
that belongs to an entity Ej. . The attributes that describes the tuples of the result Qi’.R
includes the set of relevant attributes (Ar), Si.Ej.Ar, where Si.Ej.Ar ⊆ Si.Ej.A.

For each new received query result, the ER process reuses the results of previous ER
tasks, i.e., previous generated clusters, to respond the query.

3.2 QuID

In this section, we describe the proposed process (QuID). Fig. 1 shows the flow of
information in QuID. The input of the process is a query result (Q’i.R’). The process
starts with the Indexing step, which aims to reduce the number of comparisons between
pairs of tuples. During this step, two indexes are used: the Similarity Index and the
Cluster Index. The first one maintains incrementally the similarity values between each
pair of tuples. The second one maintains incrementally a set of clusters of tuples
identifiers.

Fig. 1. Proposed process (QuID)

Our approach, uses two types of clusters: global clusters and local clusters. Global
Clusters (Gc) are created only once and updated, incrementally, at each query result
Qi’.R’. A Gc offers support to the query-driven process reusing previous results in
future queries. A global cluster is defined in the following.

Definition 3. A Global Cluster (Gc) is defined by a set of triples, 𝐺2 =
𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑, 𝑆#. 𝐸&, 𝑆#. 𝐸&. 𝑡=. 𝐼𝑑 , where ClusterId is an identifier of the cluster, Si.Ej

is the entity and the data source of the tuple tp and Si.Ej.tp.Id is the tuple identifier.
Local Clusters (Lc) are created for each query result Qi’.R’. The output of the ER

process is the Lc containing the duplicated tuples detected in the query result. Lc will
use previously classified information from the global cluster Gc. We define local cluster
as follows.

Definition 4. A Local Cluster (Lc) is defined by a set of pairs, 𝐿2 =
{ 𝑆#. 𝐸&. 𝑡0, 𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐼𝑑 }, where Si.Ej.tk is a tuple and ClusterId is the identifier of the
cluster which the tuple belongs to.

After the Indexing step, the local cluster (Lc) is initialized from Gc, reusing the results
of previous ER tasks. After the initialization of Lc, the tuples not processed previously
will be processed during the Tuple Pair Comparison step. In this step, similarity values
are recovered from the Similarity Index, or new similarity values between two tuples
are calculated.

After the Tuple Pair Comparison phase, the next step is the Incremental Clustering.
The input of this task is a similarity graph, where nodes are tuples, and similarity values
between tuples are edges. The goal of the Incremental Clustering is to insert into the
local cluster (Lc) and global cluster (Gc) the tuples not processed before. Finally, after
the Incremental Clustering, the output of QuID is Lc and Gc already updated for reuse
in the next ER tasks.

4 Conclusions

In this short paper, we introduced and motivated an incremental and query-driven
Entity Resolution process, denoted QuID. We also presented the main components of
QuID and some important definitions related to our proposal. In the current state of our
work, we implemented the two proposed indexes (cluster index and similarity index).
Currently, we are investigating and evaluating the impact of the incremental clustering
algorithm [3, 4] in the context of the proposed process. As future work, we will
instantiate and evaluate the complete process.

References

1. Lenzerini, M. Ontology-based Data Management. In: international conference on
Information and knowledge management (CIKM’11). New York, NY, USA, pp. 5-6, 2011.

2. Christen, P. Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer. 2012.

3. Gruenheid, A.; Dong, X. L.; Srivastava, D. Incremental Record Linkage. In: VLDB’2014.
Hangzhou, China. 2014.

4. Bhattacharya, I., Getoor, L. Query-time Entity Resolution. Journal of Artificial Intelligence
Reserche. 2007.

5. Altwaijry, H., Kalashnikov, D. D., Mehrotra, S. Query-Driven Aproach to Entity Resolution.
VLDB 2013, Italy. 2013.

6. Su, W., Wang, J., Lochovsky, F, H. Record Matching Over Query Results from Multiple
Web Databases. IEEE Transactions on Knowledge and Data Engineering. Vol. 22, No. 4.
2010.

7. Berkhin, P. A Survey of Clustering Data Mining Techniques. Grouping Multidimensional
Data: Recent Advances in Clustering. Pp 25 – 71. Springer Berlin Heidelberg. 2006.

8. Whang, S. E.; Marmaros, D.; Garcia-Molina, H. Pay-As-You-Go Entity Resolution. In: IEEE
Transactions on Knowledge and Data Engineering. Volume 25 Issue 5. 2013.

