
Semi-structured Data Management in PostgreSQL: 

Competing with MongoDB's Performance 

Yudisney Vazquez Ortíz1,*, Lisleydi Mier Pierre1, Anthony R. Sotolongo León2 

1 University of Informatics Sciences, Havana, Cuba 

{yvazquezo, lmpierre}@uci.cu 
2 ARKADIOS K&T, Santiago de Chile, Chile 

asotolongo@gmail.com 

Abstract. The use of semi-structured data has been a trend in recent years, new 

tools have been emerging for its handling among which, the NoSQL managers 

are the most important ones, being documents store, and within them Mon-

goDB, the most widely used. However, these managers do not overlap with re-

lational systems, since each type ensures the functionalities for which they were 

developed. This is why many companies implement solutions that involve both. 

PostgreSQL has gradually incorporated non-relational features, which can be an 

advantage because it could avoid the need of a third tool. One step in this direc-

tion was the inclusion in its version 9.4 of the JSONB data type. The purpose of 

this paper is to evaluate the performance of PostgreSQL against MongoDB in 

regards to their response times, evaluating on loading data and querying, con-

cluding that PostgreSQL is making progress in the implementation of non-

relational features, making it an option to be considered for semi-structured data 

management. 

Keywords: json · jsonb · MongoDB · non-relational PostgreSQL features · 

semi-structured data 

1 Introduction 

The gradual use growth rate of databases NoSQL has been a trend in recent years; 

mainly due to the scalability and speed in their response times as well as variability of 

their schemes, higher than those that could offer relational systems [1]. These charac-

teristics are achieved, mainly, by not implementing the relational model, not allowing 

joins and having a distributed architecture, which impacts positively on their objec-

tives of offering flexible ways of manipulating data to gain in speed against the high 

volumes of data generated nowadays. 

Such growth has led to a diversity of tools that are classified according to the form 

of storage, among others, in data oriented per column, key-value, graphs and docu-

ments store databases. The documents store saves the data as documents; defines a 

unique key for each record; allows searches by key-value, indexed by its properties 

and the execution of more complex queries, reasons why they are widely used [2]. 

mailto:asotolongo@gmail.com


According to DB-Engines scale [4], the database NoSQL type with higher popu-

larity in recent times has been MongoDB [3]. MongoDB, implemented by 10gen [5] 

in C++, is scheme free, uses its own document system known as BSON and provides 

high performance, high availability and automatic scaling, offering fast response 

times that have become a highly valued and used option. 

PostgreSQL, meanwhile, has incorporated non-relational features to offer more 

options, getting closer from version 9.3 to the times offered by MongoDB, according 

to an experiment [6]. These features are extended in version 9.4, says EnterpriseDB 

[7], improving considerably the performance by incorporating the JSONB data type. 

The acceptance that has had MongoDB with its excellent response times is a good 

gauge for comparing PostgreSQL and to determine how close the system is coming, 

on non-relational features and semi-structured data management, to the top. Hence, 

the objective of this research is to evaluate the performance regarding this indicator 

against MongoDB. 

2 Methods for assessing the behavior of PostgreSQL 

PostgreSQL is an object-relational database management system that, thanks to its 

extensibility, has allowed the incorporation of new features designed to streamline 

and add flexibility to data management. 

HSTORE and JSON data types provide management options of data without 

scheme, with the advantage of meeting the ACID properties [7]. HSTORE was added 

in 8.2 version as a Contrib module that implements a data type, with the same name, 

to store key-value pairs within a single value of PostgreSQL; useful in situations such 

as rows with many attributes rarely examined or semi-structured [8]. 

The ephemeral storage was added in version 9.1 by implementing UNLOGGED 

tables, option specified when creating tables that details data stored in them are not 

written to the WAL, which makes them considerably faster than ordinary tables, but it 

does not guarantee the permanence of the data in case of failure [8]. 

JSON was added in version 9.2 to support data storage in its format and ensure 

validation. Since then, it has been improved, adding to version 9.3 functions to work 

with it and in version 9.4 the JSONB data type was improved in efficiency [8]. 

With these features, PostgreSQL allows the following elements, making Post-

greSQL a valid option for supporting applications requiring non-relational features: 

 Storing data in a fast way and data schema free. 

 Reading relational data from a table, returning it as JSON and vice versa. 

 The integration of SQL statements with JSON and HSTORE, executed in the same 

ACID transactional environment and based on the same planner and optimizer. 

2.1 Design of performance tests between PostgreSQL and MongoDB 

Being JSON one of the most popular data exchange formats in the web, supported by 

several NoSQL databases, we used it to determine the progress in non-relational ca-

pabilities offered by PostgreSQL against MongoDB. In the following table were de-



fined the indicators and metrics evaluated during the execution of comparison tests, 

they are essential elements in determining the performance of the database server. 

Table 1. Indicators and metrics defined for testing between PostgreSQL and MongoDB 

Indicator Metrics Unit of measurement 

Database size Database size Mb 

Database server response times Loading data Milliseconds 

Selection query Milliseconds 

To perform the tests: 

 Two instances of a PostgreSQL 9.4 database server and a MongoDB 3.0.2 database 

server, both with their initial configuration, were used. 

 One workstation was used with Intel Core i5 CPU to 2.8GHz, 4Gb RAM, 500Gb 

7200rpm hard disk and Windows 8 Pro operating system. 

 Five queries were defined which return 30 thousand to just over 80 thousand doc-

uments that comply with (1) one condition, (2) more than one condition, (3) more 

than one condition and ordered by any property, (4) at least one of the conditions 

and ordered by some property and (5) an aggregate function. 

The tests were performed 3 times, the times were averaged to obtain an approximate 

value (except the databases size), including: (1) load of 1, 2 and 4 million documents 

in both JSON database servers; (2) determining the databases size once loaded JSON 

documents and; (3) select query execution of random records in both databases. 

3 Results of the execution of performance tests 

Loading JSON files was performed in 6 collections in MongoDB (with and without 

data compression) and in 12 tables in PostgreSQL (with and without the 

UNLOGGED option and using JSON and JSONB data types). As shown in Figure 1, 

the PostgreSQL response times loading records are lower in all cases to MongoDB 

using compressed and uncompressed data, only the loading of the 1 and 2 million 

records JSONB outnumber MongoDB 5 and 11 seconds respectively. 

 

Fig. 1. Response times in load of 1, 2 and 4 million records JSON in both databases systems 



As shown in Figure 2, PostgreSQL only occupies 36.02% storing JSON data type and 

42.85% storing JSONB data space of that used by MongoDB without additional con-

figuration; while MongoDB using the snappy method can reduce to as much as 10% 

of the original size. 

 
Fig. 2. Database size with 7 million records JSON in both databases systems 

Select queries were executed in tables/collections of 4 million records. As shown in 

Figure 3, PostgreSQL response times on tables with the same options for recording 

data in the WAL and the same data type are similar, with no appreciable differences. 

However, there is a considerable improvement in the times obtained between JSON 

and JSONB, proving that JSONB is, indeed, more efficient to consult all the data 4.3 

times faster than using JSON. Meanwhile, even though MongoDB compression saves 

disk space, it does not achieve the same efficiency in return, since the not compressed 

option is 1.8 times faster. 

Analyzing each query and the times obtained in MongoDB without data compres-

sion and PostgreSQL using JSONB, it is evident that even if the new data type in-

creased considerably the efficiency of PostgreSQL, MongoDB is still faster (2.2 

times) in the return of data that meet certain conditions and ordered by some property. 

Not being the same when making groupings, where PostgreSQL is 5.9 times faster. 

 
Fig. 3. Response times for execution of random records selection query in databases systems 

4 Conclusions 

PostgreSQL extensibility has allowed the incorporation of non-relational features to a 

database system initially object-relational. Of these new features the most important 

ones include JSON data types and ephemeral storage, making the addition of JSONB 

a significant improvement in performance. These characteristics were evaluated 



against MongoDB, showing that version 9.4 of PostgreSQL has greatly improved its 

response times. 

It is needed to recognize that MongoDB is faster when selecting records that meet 

certain conditions and sorting options, but, PostgreSQL has come very close to the 

excellent response times of MongoDB. 

5 References 

1. Leavitt, N.: Will NoSQL Databases Live Up to Their Promise? In Computer 43 (2), pp. 

12-14 (2010). 

2. Tiwary, S.: Professional NoSQL. John Wiley, pp. 10-20. (2011). 

3. DB-engines. DB-engines ranking. DB-engines. http://db-engines.com/en/ranking. 

Accedido el 24 de noviembre de 2015. 

4. DB-engines. DB-engines ranking - Trend of MongoDB Popularity. DB-engines. http://db-

engines.com/en/ranking_trend/system/MongoDB.html. Accedido el 24 de noviembre de 

2015. 

5. MongoDB. Introduction to MongoDB. MongoDB. 

http://docs.mongodb.org/manual/core/introduction/?_ga=1.20983161.39009857.14285466

91#introduction-to-mongodb.html (2015). 

6. Sotolongo León A. R. ; Vazquez Ortíz Y.: Evaluación de características NoSQL en 

PostgreSQL. Semana Tecnológica de FORDES. 

http://semanatecnologica.fordes.co.cu/?q=node/856 (2013). 

7. EnterpriseDB. Using the NoSQL Capabilities in Postgres. EnterpriseDB. 

http://info.enterprisedb.com/rs/enterprisedb/images/EDB_White_Paper_Using_the_NoSQ

L_Features_in_Postgres.pdf (2014). Accedido el 26 de noviembre de 2015. 

8. PGDG. PostgreSQL 9.4.0 Documentation. PostgreSQL. 

http://www.postgresql.org/docs/9.4/static/index.html (2015). Accedido el 26 de noviembre 

de 2015. 

http://db-engines.com/en/ranking

