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Abstract. We extend traditional functional dependencies (FDs) for data
quality purposes to accommodate ontological variations in the attribute
values. We begin by formally defining a novel class of dependencies called
ontological FDs, which strictly generalize traditional FDs by allowing
differences controlled by an ontology database. The ontology databases
contain information about synonyms. We then focus on designing the ef-
ficient algorithm for data verification over ontology FDs as well as discuss
current and future work.

1 Introduction

Poor data quality is a bottleneck in data analytics to make effective business de-
cisions. With the interest in data analytics at an all-time high, data quality has
become a critical issue in research and practice. Integrity constraints are com-
monly used to characterize and ensure data quality [1]. In particular, functional
dependencies (FDs) traditionally used in schema design, have been utilized for
data quality purposes. A traditional FD states that if two tuples agree on the
antecedent attributes, then they also must agree on the consequent attributes.

When integrating data from various sources, it is often that small variations
occur which cause traditional FDs to be violated. We introduce ontology FDs
to replace strict equality with a notion of similarity controlled by an ontology
database. To illustrate the utility of ontology FDs, consider the medical trials
dataset shown in Table 1, which was merged from various hospitals (and coun-
tries). In a table such as this, we would expect the FD {Country} → {Country
Code} to hold. However, different hospitals may use synonyms for country codes,
e.g., CA and CAD for the country Canada.

As another example, consider an FD {Disease, Country} → {Medicine}.
In this case, within the country Canada and disease Common cold, the pre-
scribed medicine Benz and Benzonatate are synonyms. Similarly within the
country United States and disease Common cold patients are prescribed Advil
and Ibuprofen that are also synonyms. In such settings, where traditional FDs
seem to be overly restrictive, we introduce synonym ontology FDs. Thus, on-
tology FDs strictly generalize FDs and can express the additional semantics of
ontological variations.

The remainder of this paper is organized as follows. In Section 2.1, we in-
troduce formally a novel class of data dependencies called ontology FDs, which
describe integrity constraints on tuples with ontologically similar attribute val-
ues which are useful in data quality. Next, we present efficient algorithms for



Patient ID Country Country Code Disease Medicine

1 Canada CA Common cold Benzonatate
2 Canada CAD Common cold Benz
3 Canada CAD Common cold Benz
4 United States USA Common cold Advil
5 United States US Common cold Ibuprofen
6 United States USA Common cold Ibuprofen

Table 1: Medical Trials Dataset

data verification over ontology FDs in Section 2.2. We implemented the data
verification algorithms and experimentally verified their efficiency in practice
over a medical trails dataset with 500K tuples (Section 2.2). We conclude the
paper and discuss current and future work in Section 3.

2 Verification Problem

2.1 Problem Statement

To accommodate ontological variations in attribute values, we define ontology
FDs. This is a departure from traditional FDs, which enforce equality on both
sides of a dependency. Before we define ontology FDs, we first define notational
conventions. Let R be a relation on which a set of dependencies is defined and
let r be a relation instance (table) of R. Capital letters near the beginning of
the alphabet represent single attributes, e.g., A and B. Calligraphic letters near
the end of the alphabet stand for sets of attributes, e.g., X and Y. Tuples are
marked with small letters in italics: t and s, where t [A] denotes the value of an
attribute A in tuple t.

We assume ontology databases contain a set of classes (concepts). We assume
the relation contains, as attribute values, string representations of classes called
string terms. Terms are string representations of classes in the ontology defined
with predicate synonyms(C). A class with multiple instances, i.e., |synonyms(C)|
> 1, contains alternative string representations for the class (synonyms). Also,
each term can appear in multiple classes. (It has multiple meanings.)

Let gx[X ] = {t | t ∈ r and t[X ] = x}.

Definition 1. A relation r satisfies a synonym ontology FD X s7→ Y, if for each
attribute A ∈ Y, for each x ∈ ΠX (r), there exists a class C, such that ΠA(gx[X ])
⊆ synonyms(C ).

By definition, ontology FDs can be normalized similarly as traditional FDs
to single attributes on the left side of a dependency. Synonym FDs subsume
traditional FDs, as an ontology database in which all classes have a single string
representation can be created (i.e., for all classes C, |synonyms(C)| = 1). In
the previous work, the authors have studied metric FDs in the context of data
verification [1] and data cleaning [2] . Metric FDs strictly generalize traditional
FDs by allowing small differences controlled by a metric distance. For instance,



Algorithm 1 Verify synonym ontology FD

Input: Relation r, set of attributes X and
an attribute A
Output: true if dependency X s7→ A holds,
otherwise false

1: for all x ∈ ΠX (r) do
2: t = ΠA(gx[X ])
3: Let t = {t1, . . . , tn}
4: if classes(t1) ∩ · · · ∩ classes(tn) = ∅

then
5: return false
6: end if
7: end for
8: return true

1

(a) Verify X s7→ A

# A B Classes for attr B

1 a b {C,D}
2 a c {D,F}
3 a d {C,F,G}

1

(b) Sample Table and Scalability

Fig. 1: Data Verification, Sample Table and Performance Evaluation

one source might report the movie A Beautiful Mind to have a running time of
135 minutes, while another source might report it as 138 minutes.

While metric FDs can be defined wrt two tuples [2, 1] (i.e., if the two tu-
ples agree on the antecedent attributes, then their consequent values must have
similar but not necessarily equal values wrt the metric distance), the definition
of ontology FDs must be prescribed over the entire partition identified by the
unique values of the antecedent attributes. This difference is illustrated in the
table in Figure 1b. The synonym ontology FD A

s7→ B is falsified in this table,
because even though all pairs of elements have a common class ({b,c}: D, {b,d}:
C, {c,d}: F ), the intersection among the entire partition over classes is empty.
Furthermore, ontological similarity is not a metric as it does not satisfy identity
of indiscernibles (e.g., for synonyms). Thus, ontology FDs are not a subclass of
metric FDs.

We study the problem of data verification for ontology FDs, that is deter-
mining whether a given ontology FD holds for a given relation.

2.2 Data Verification

In order to verify that the traditional FD X → Y holds in a relation instance,
for each x ∈ ΠX (r), we have to check whether |t| = 1, where t = ΠA(gx[X ]).
For ontology FDs, more complex algorithms are required. The choice of ontolog-
ical relation (in our case synonym relationship) directly impacts the complexity
of the verification algorithms. Although we study the algorithms for the data
verification problem for other classes of ontology FDs, due to the space limit,
we present the algorithm for synonym ontology FDs. (The remaining designed
algorithms will appear in the extended version of this paper.)

To verify that the synonym ontology FD holds over a relation instance r, we
first partition r over X (see Figure 1a). Then, for each value of x in ΠX (r), we
check whether the intersection of classes(t1), . . . , classes(tn) is not empty, where



t = {t1, . . . , tn} = ΠA(gx[X ]). If this condition is satisfied then the verification
algorithm returns true, otherwise it returns false. Therefore, the worst-case time
complexity of the verification algorithm is quadratic in the number of tuples
(similarly as for metric FDs [1]). We assume that the access to the synonym
ontology is indexed and can be achieved within a constant factor.

Our experiments were run on an Intel Xeon CPU E5-2630 v3, 2.40GHz with
8GB of memory. The algorithms were implemented in the Go language. We
present an evaluation of data verification algorithm for synonym ontology FDs
over medical trials dataset with 500K tuples. Our evaluation focuses on the
scalability and performance over different sizes of the dataset. From Figure 1b
it can be concluded that the algorithm allows for the efficient data verification
as well as it scales well for large datasets. (The running times are comparable to
the results achieved for data verification of metric FDs in [1].)

3 Summary and Future Work

In this work, we introduced a novel class of integrity constraints called ontology
FDs as well as presented the efficient algorithm for the data verification problem.
In the future work we are planning to investigate the following.

– We are currently working on developing effective algorithms for data re-
pairs [2, 4] over datasets that violate ontology FDs.

– However, we have also observed that ontological repositories may evolve over
the time as applications change (e.g., a new drug appears on the market). In
such environments, when an error with respect to ontology FDs arise, it is no
longer clear if there is an error in the data, and the data should be repaired, or
if the ontology semantics have evolved, and the ontological repositories (such
as UMLS, WordNet) should be repaired. We plan to extend our framework
by developing a model that allows data and ontological database repairs. We
will develop classification algorithms, driven by collected statistics over the
dataset that predict data versus ontological database repairs.

– We will investigate, similarly as for other constraints such as FDs and order
dependencies [3], a sound and complete axiomatization for ontology FDs. We
will also study the complexity of the inference problem for ontology FDs.
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