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Abstract. The declarative language Picat has recently entered the scene
of constraint logic programming, in particular thanks to the efficiency
of its planning library that exploits a clever implementation of tabling,
inherithed in part from B-Prolog. Planning benchmarks, used in compe-
titions, are defined in the language PDDL and this implied that Picat
users were forced to reimplement those models within the language. In
this paper we present an automatic compiler from PDDL to Picat plan-
ning models. The compiler is written in Picat and tested on standard
PDDL benchmarks.
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1 Introduction

Solving planning problems is a central task of Al since the birth of this discipline.
Ideally, an autonomous agent should be able to take his own decisions, in order to
achieve a given goal, affecting a portion of the world. In automated planning, this
is modeled using a set of variables to describe the state of the world, and a set of
possible actions, each of them applicable if some preconditions hold, and affecting
the values of the variables if applied. A suitable sequence of actions leading to the
goal is a (successful) plan. Languages for reasoning on this problem have been
proposed (action languages, see, e.g., [7]) and solvers for these languages based on
encoding to SAT, Answer Set Programming, or Constraint Programming have
been proposed (see, e.g. [4,3,2]). The increasing popularity of planning gave
birth to the IPC (International Planning Competition) [15], an event where
the participants test their planners on a set of benchmarks. To this aim the
Planning Domain Definition Language (PDDL [9]) has been introduced as a
standard encoding (action) language that all solvers willing to participate to the
competition should understand.

Picat [13] is a recently designed declarative programming language, offer-
ing a large number of different features inherited from several programming
paradigms, from the classic imperative, to scripting, and logic and constraint
programming. One of the most successful features of Picat up to now is the



planner module that performs well on IPC benchmarks (see, e.g., [1,11]). One
of the key ideas of the planner module is to exploit a clever implementation
of tabling, partially inherithed from the B-Prolog implementation and already
proved to behave well in hard planning benchmarks (such as the sokoban prob-
lem [12]).

However, in the above papers, PDDL encodings have been ported in Picat
by hand, one domain at a time, while one might be interested in having an
automatic Picat model from PDDL benchmarks. The subject of this paper is
the development of a compiler from PDDL to Picat, in order to enable the latter
to solve automatically competition instances. The compiler is written directly
in Picat. After a brief survey on PDDL evolution, we explain the main ideas of
the translator and we compare the running time of the translated code in Picat
with a state-of-the-art PDDL solver and with Picat with ad-hoc encodings of
the same problems. Since Picat is a Turing complete programming language (not
simply a modeling language) extra features exploiting the problem structure can
be programmed to speed-up the solution. This paper can be seen as a starting
point for future work where some of these features are automatically used to
improve the running time of the compiled domains.

2 Planning and PDDL

In classical planning, a domain model is a description of the world using variables
for representing the attributes of objects of interest in states, and of actions and
of how they might affect the state if their preconditions are satisfied. A planner
is an algorithm capable of finding a suitable sequence of actions that leads from
a given initial state to a goal state. This activity can be seen as the search of a
path in a directed graph, where every node represents a state of the world, and
every edge corresponds to an action. If s;11 = v(s;,a;) is the state obtained by
applying action a; to the state s;, and if for each ¢ € {0,...,n — 1} the action a;
is applicable to state s;, a plan is the sequence of actions (ag, ai, ..., a,—1) that
applied to the initial state sg yelds the final state s,,.

Modern planners have their roots in Shakey the robot [10], the first robot
that was able to reason about its own actions. It used the STRIPS (STanford
Research Institute Planner) automated planner [5], that became the formal spec-
ification language for planning and it is the base of modern action description
languages. Among them PDDL, proposed by Drew McDermott in 1998 [9], is
the language of the International Planning Competition (IPC [15]). PDDL was
improved many times, by adding new constructs, from the first version (1.1).
PDDL uses “physics only” principles to describe a domain, so it has no clue how
to reach the goal or resolve the problem, and this contributes to make PDDL
planners totally domain-independent, with separate files for describing the do-
main and the specific problem, the latter consisting of the description of the
initial and final state.

In PDDL modeling, domain and problem files are separated and both of them
should be invoked during execution. The problem file is structured as follows.



(define (problem <problem name>)
(:domain <domain name>)
(:objects [object declaration])
(:init [logical fact])

(:goal [precondition]))

The init and goal sections should contain the definitions of the properies that
should hold (i.e., predicates that must be true) in the initial (resp., final) state.
If the domain uses typing (see below), in the objects declaration the types of the
objects are defined. A generic PDDL domain file is composed by the definition
of predicates (logical facts that can be typed), constants, and of the descrip-
tion of a certain number of actions, every one characterized by: parameters, i.e
variables that may be instantiated with objects, preconditions, namely the con-
ditions that must be true to activate the action, and effects (post-conditions),
i.e., the predicates that will become true (or false) after the action execution.

2.1 Brief History of PDDL Evolution

PDDL 1.2 was used for the 1998 and 2000 IPC. It had basic numeric-value
support, that allowed numeric quantities to be assigned and updated, but in
those competitions numeric operations were avoided and therefore these features
were not exploited. It had also the possibility to define a object-type hierarchy
and constant objects.

Below we report the action drive of a simple depot domain that does not use
type hierarchy. Its aim is to move the truck from a place to another for loading
a cargo

(:action drive
:parameters ( ?x 7y 7z)
:precondition
(and (truck 7x)
(place 7y)
(place 7z)
(at 7x 7y))
reffect
(and (at ?x 7z)
(not (at 7x ?7y))))

The planner, for applying the action, tries to instantiate the three variables
with three objects from the input (problem) file: if it succeeds in finding three
objects satisfying the four preconditions, it can execute the action, reaching a
new state where the truck x drives to z (and it is therefore no longer in y).

The use of a type hierarchy allows the programmer to decrease the number
of predicates used in preconditions (e.g., predicates like place and truck in the
above example). This is possible with the following versions of PDDL such as
version 2.1, where numeric fluents, basic math functions like sum and quantifiers
both for pre-conditions and post-conditions are also allowed. Numeric fluents are



functions Object™ — R , that can be used for action costs management. This
release was the specification for IPC 2002 [6].

The action drive taken from the transport domain shows how numeric fluents
can be inserted in an action concerning the movement of a truck.

(:action drive
:parameters (7v - vehicle 7locl 7loc2 - location)
:precondition
(and (at ?v 7locl)
(road 7locl 7loc2))
:effect
(and (not (at ?v 7locl))
(at ?v 7loc2)
(increase (total-cost) (road-length 7locl 7loc2))))

There is a numeric function total-cost, without arguments, that is used to keep
memory of the costs of the actions, that depends on the distance of the two
locations: this information is returned by a function, road-length. Using these
functions the programmer can exploit optimization features (e.g., minimizing
the total distance of a path). This is achieved by the statement:

(:metric minimize (total-cost))

As anticipated, in this example there isn’t a predicate like truck to check if v
is a vehicle, since a type hierarchy is used to define the variables.

The PDDL language supports many different levels of expressiveness. The
smallest possible subset is STRIPS, from the language that gave birth to Au-
tomated Planning, but, since PDDL 2.1, a larger subset, namely the ADL set
(Action Description Language), is introduced to exploit the new features, such as
disjunction and negation in preconditions and quantifiers both in preconditions
and effects.

Version 3.1 is currently the latest release of PDDL.# It doesn’t include all
features offered by 2.1 version, but it offers some interesting new features such as
the possibility of having functions Object™ — Object that therefore can have
return types different from R.

Until now, we have seen only examples with a basic type hierarchy, where
all types are at the same level. PDDL permits to create relationships between
types, creating a Type Hierarchy that reminds a class-hierarchy in OOP. Let us
consider this example from the nomystery domain:

(:types movable location - object)
(:predicates
(at 7n - movable 71 - location)
(inPred 7c - movable 7t - movable)
(goal ?c - movable 7?1 - location)

4 Checked June 1st 2016.



(truck 7t - movable))

(:action move
:parameters (7t - movable 7?locl 7loc2 - location )
:precondition (and (truck ?t) (at 7t 7locl))
:effect (and (not (at 7t 7locl)) (at 7t 7loc2)))

In the next example we will define two types of movable objects: truck and cargo:

(:types movable loc - object
truck cargo - movable)
(:predicates
(at 7n - movable 71 - location)
(inPred ?c - cargo 7t - truck)
(goal ?c - cargo 7?1 - location))
(:action move

:parameters (7t - truck 7locl 7loc2 - location )
:precondition (at 7t ?locl)
reffect

(and (mot (at 7t 7locl))
(at 7t ?loc2)))

With this type hierarchy we can discriminate immediately between two movable
objects like a truck and a cargo. In this way, specifying in the parameters that 7t
must be a truck, we can omit the truck predicate and still use the at predicate for
all movable objects, without the need to create another predicate. The structure
of the type system must be kept when translating to Picat.

3 The Picat Language

Picat is a general-purpose programming language, developed in 2012 by Neng-
Fa Zhou, which aims to collect the features of various types of programming
languages [13]. It provides control flow features from imperative programming
together with more advanced features from logic programming, functional pro-
gramming and scripting, with the purpose of obtaining compact, intuitive and
easy to read programs. The Picat implementation is based on the B-Prolog en-
gine but, despite this, it is far more expressive and scalable, thanks to arrays,
loops, lists and array comprehension, allowing the solution of a problem with
fewer lines of code.

Picat is a dynamically-typed language, so type checking occurs at runtime.
Variables in Picat are identifiers that begin with a capital letter (or the under-
score), and they are uninstantiated until they are bound to a value. A value
in Picat can be primitive, such as Integer and Real, or compound such as lists
[t1,-..,tn] Or structures $identifier(t1,...,t,) (where identifier is the name of the
structure, and the ¢; are terms). The use of “$” is necessary to discriminate
structures from function calls. Other compound types are arrays, of the form
{t1,...,tn} (they are in fact a special kind of structure without name) and
maps, a hash-table of pairs of values and keys represented with a structure.



Picat provides list/array comprehension for defining lists/arrays in a compact
way.

Predicates and functions in Picat are defined with pattern-matching rules.
They take the form Head, Cond = Body in the deterministic case, and
Head,Cond 7 = Body if we want to make the rule backtrackable, i.e. able to
return multiple answers (the default in Prolog).

In the following we report the definitions of a deterministic function and of
a non-deterministic bacOktrackable predicate:

X.
X * power (X, N-1).

power (X,1) = Result => Result
power (X,N) = Result => Result

member (X, [Y|_]) ?7=> X =Y.
member (X, [_|List]) => member (X,List).

One of the most interesting features of Picat is tabling. Tabling guarantees re-
cursive programs with bounded-size terms to terminate, preventing infinite loops
and redundancy; morever, tabling can be exploited for implementing dynamic
programming when a parameter is declared to be minimized or maximized.

3.1 Planning in Picat

Picat includes a planner module that, combined with the expressiveness of the
language, allows the user to write domain models that are more sophisticated
and shorter than those in PDDL. The programmer is more aware and has more
control over the execution of the search process, thanks to features such as the
choice between determinism and non-determinism for an action or the fact that
a state can be represented by any kind of term provided by Picat. But the main
peculiarity of the Picat planner is the use of tabling to improve plan creation,
without user intervention. To achieve this goal, tabling brings some interesting
properties to the planner: for example, Picat is able to recognize if it is on an
already visited state, because it has previously memorized it, preventing loops;
this operation increases memory requirements, but significantly speeds up the
search process as much.

A predicate for checking whether a state is final must be defined:
final(State) => <goal_condition>.

The goal_condition can be defined by other predicates in Picat (analyzing the
content of the variable State). Let us observe that it must be deterministic.
Actions are instead defined as:

action(+State,-NextState,-Action,-Cost),
precondition,

[control_knowledge]
=>



description_of_the_next_state,
action_cost_calculation,
[heuristic_and_deadend_verification].

Taking the input State as the first parameter, if the preconditions are true, Pi-
cat might apply the action, changing the current state according to description_of
the_next_state. We must specify a cost for the action (computed with some algo-
rithm). In the optional parts control_knowledge and heuristic_and_deadend_verification
we can include extra domain-dependent knowledge or heuristics that allow Picat
to cut the search space when the resources used plus the action cost exceeds a
heuristic bound associated to the new state.

The basic search of the best plan is implemented by the predicate:

table (+,-,min)

path(S,Plan,Cost) ,final(S) =>
Plan=[],Cost=0.

path(S,Plan,Cost) 7=>
action(S,NextS,Action,ACost),
path(NextS,Planl,Costl),
Plan [Action|Plani],
Cost Costl1+ACost.

Tabling attributes have the following meaning: +/— denotes an “input/output”
argument, while min means “output argument that must be minimized”.

This basic schema is extended to allow resource-bounded search, possibly
looking for one generic plan or for the best one. Several variants are imple-
mented. Tabling and branch-and-bound are successfully merged. Besides the ba-
sic resource-bounded search, Picat provides variants such as iterative-deepening,
and branch-and-bound.

3.2 A remark on State Representation

A state can be represented in several different ways that might affect efficiency.
The so-called Factored Representation is the typical representation allowed by
PDDL: a state is defined by a set of (propositional) atoms. An atom can be
rigid if it represents a property that never changes or fluent, otherwise. In the
nomystery domain, for instance, a state can be represented (in Picat) by a list:

$[ at(cl,locl),at(c2,loc2),at(t,loc3),
connected(locl,loc2),connected(loc2,loc3),
truck(t) ]

This representation allows some variants. Various levels of speed-ups can be
obtained by keeping the list ordered, or using one list for each predicate (at,
connected, and truck in example).

An alternative representation, typical of Picat is the so-called Structured rep-
resentation. The structured representation is more compact and reduces sym-
metries: these features fit well with tabling. For example, consider two identical



trucks moving between locations: Picat during the search will consider the two
states: (truck; in loc; and trucks in locy) and (truck; in locy and trucks in locy)
as different states. Let us consider a representation abstracting from the specific
name of equivalent objects. We can represent the state as s(TruckLoc, TruckLoad,
Cargo), where TruckLoc is the position of the truck, TruckLoad is a list of the des-
tinations of the cargo loaded on the truck, and Cargo is a list of pairs (From, To)
representing cargo items to load.

4 The compiler

In this section we present the main contribution of the paper, namely the def-
inition and implementation of a tool for the automatic conversion of PDDL
domains and instances into Picat, written in Picat. It provides support for many
PDDL features, like object typing (not naturally supported by Picat planner),
functions (either numerical or not), action costs, quantifiers, and other features,
some of which unsupported by some PDDL planners (it includes also the pi2pdd|
parser written by Neng-Fa Zhou for problem instance conversion). The output
of the compiler is a Picat program, exploiting the planner library, which can be
used as a starting point for subsequent optimizations using Picat features. In the
description below, we will use = for representing the transformation of portions
of codes from PDDL to Picat.

The Factored State Representation is the one used in PDDL and thus the
one considered by our translator. A state is represented by a term s(vy,...,v,)
storing the tuple of values of the fluent variables p1, ..., p, defining it. To avoid
redundancy and to save memory for tabling Picat rigid facts are used for static
info. Since in PDDL there is no explicit distinction, rigid predicates are inferred
by a static analysis of the effect of all the actions.

Domains and problems are separated, so the parser must read the domain
file to collect all rigid facts. To complete this task we use list iterator:

Facts = [Fact : Fact in IFacts,
( Fact = $rigid_1(_); ... ;Fact = $rigid_n( ) )],
cl_facts(Facts, [1).

where |Facts is the list containing the input predicates and cl_facts/2 is the Picat
built-in predicate for storing rigid facts. PDDL functions are instead represented
with maps, using the input attributes as the key and the return value as the map
value.

4.1 A simple translated action

Let us start by showing the translation of a simple action, without typing, quan-
tifiers and action-costs. Translation of conjunctions and of function calls is the
same for both preconditions and effects.



— Conjunctions in Picat, as in Prolog, are written with commas, thus

and(—- ) () (o)) = () () ()

— Function calls:
(function(xy, . .., Xn)) = get(FUNCTION, (X4, ..., Xy), null) The third argument
of the call is the return value in case of search failure. Observe that FUNCTION,
X1,..., X, are written in capital letters according to the usual Logic Pro-
gramming syntax rules, inherited by Picat.

Precondition parsing

— Disjunctions are represented using semicolons:

— Negation is dealt with similarly: ((not(---)) = not(- - -). However, variables
need to be instantiated before a negated condition is analyzed in Picat, and
therefore some extra care is needed, as explained below.

— Predicate checking:

predicate(x, . .., Xn) = member((Xy,...,X,), PREDICATE)
If the effect of an action changes the values of some of its preconditions,
using select/2 instead of member/2 we can reduce (on average) the number
of accesses to the same list during computation. Therefore, if this case is
detected (by static analysis) select instead of member is used.

— Rigid Predicate checking:

(predicate(xq, . ..,x,)) = predicate(Xy, ..., Xy) In this case we do not need to
check a value in a state, but simply to call a predicate.

Effect parsing

— Adding a logical fact:
(predicate(xq,...,Xn)) =
PREDICATE_1 = insert_ordered_wod(PREDICATE_0, (Xy,...,Xn))
insert_ordered_wod/2 is built on the built-in insert_ordered/2 but it avoids to

inserting duplicates.
— Removing a logical fact (if it wasn’t already done by select/2 in the

preconditions):
(not(predicate(x_1,...,xn)) =
PREDICATE_1 = delete(PREDICATE.O, (X1, ..., Xn))

Since select/2, insert_ordered_wod/2 and delete/2 require an empty list for the
return value, subscripts are added to create auxiliary variables. An example, the
translation of a variant of action drive (see section 2.1) is:

action(s(AT_O,CARRIED_O,DEST_0),NextState, Action, Cost),
truck(T),
AT_1 = select((T,LOC1),AT_0),
connected(LOC1,L0C2)
7=>
AT_2 = insert_ordered_wod(AT_1,(T,L0C2)),
NextState = s(AT_2,CARRIED_O,DEST_O)
Action = $move(T,LOC1,L0C2),
Cost=1.



4.2 Typing

If all the objects are at the same level in PDDL, we can safely ignore the typing
in Picat. Instead, if the PDDL domain has a hierarchy tree with more levels,
some actions may not work properly. For instance a move action designed for
trucks can be converted in a Picat program that could move cargos (if they are
in the correct location for a move) without first connecting them to a truck. This
issue can be solved by adding extra information about input objects using rigid
facts, e.g.:

$location(locl), $truck(t), $cargo(cl),

Thus, with static analysis, the compiler retrieves all the types from the PDDL
problem file and adds them as rigid predicates. The check on type is added only
when there is the risk of ambiguity. Since in PDDL you need to specify the
types of the arguments used in the action, if we use the fuel predicate in the
precondition ((fuel?t — truck?g — gas) is the predicate definition) together with
the (7t — movable) declaration on the parameters section , the t variable would
be bound to be a truck and not a generic movable, so a cargo would not match
with t.

4.3 Action - costs

One of the most important features introduced in PDDL 2.1 is the concept of
numeric-fluent. In the IPC, the rules require using :action-costs. This is a subset
of numeric-fluents, and it permits the usage in effect of a 0-ary function, :total-
costs, to store and modify the actual cost, depending on the action. Its value can
be incremented with a non negative number, by either specifying it or calling a
numeric fluent, as in the following examples:

(increase (total-cost) 10)
(increase (total-cost) (road-length 711 ?712) )

Exploiting the Cost parameter of Picat, the translation is the following:
Cost = 10,

Cost_1 = Cost_0 + get(ROAD_LENGTH, (L1,L2),null).

4.4 Quantifiers

The translation of the forall quantifier makes use of the Picat built-in foreach.
Let us start analyzing the preconditions part. We first compute a list of elements
of the correct type (using list comprehension) and then loop on list elements:

( forall (?t - type) [preconditions] )

becomes (actually, the list is created once and stored as a rigid fact statically).



type_list(TYPE_list),
foreach(T in TYPE_list)

[preconditions]
end

This approach cannot be used in the effect part, since lists need to be modified
within the loop. The problem is solved by definining and invoking an auxiliary
recursive predicate updating the state.

4.5 Avoid floundering

In Logic Programming with Negation as Failure, when a negative atom is pro-
cessed with some of its variables not bounded to ground terms the computation
is said to flounder [8, pp. 88], possibly leading to unsoundness. This problem is
inherited by Picat. Therefore, by applying static analysis, the compiler moves
negative literals in preconditions after the others. The problem arises more gen-
erally when a variable occuring in the parameters section is not yet instantiated
when the program enters the effect section. Consider this example drawn from
the maintenance domain:

(raction workat
:parameters (7day - day 7airport - airport)
:precondition (today ?7day)
:effect (and (not (today 7day))
(forall (?plane - plane)
(when (at ?7plane 7day 7airport)
(done 7plane)))))

In this case, PDDL binds airport even if it is not affected by any precondition,
so the done facts become true only for the planes placed in that airport today.
In Picat the variable corresponding to airport will be instead unbound so the
member((PLANE, DAY, AIRPORT), AT_0) predicate will be true for each plane
placed in any airport today.

To fix this issue, a grounding of the variables used in effects and not in the
preconditions is imposed by the compiler by adding “type” predicates for them.
For this example the translation is:

action(s(AT_0,DONE_O,TODAY_O) ,NextState, Action, Cost),
select ((DAY) ,TODAY_O,TODAY_1),
airport (AIRPORT)
?=>
plane_list(PLANE_list),
PLANE_1 = [PLANE : PLANE in PLANE_list,member ((PLANE,DAY,AIRPORT),AT_0)],
DONE_1 = sort (DONE_O ++ PLANE_1),
NextState = $s(AT_O,DONE_1,TODAY_1),
Action = $act_workat (AIRPORT,DAY),
Cost=1.



4.6 Input problem handling and final state checking

The parser not only encodes state transitions, but also adds a section for handling
the input and launch the search of a plan, besides final state checking. For
example, in the nomystery domain:

pddl (IFacts,GFacts) =>
initialize_table,
AT_INIT = sort([(L,0) : $at(L,0) in IFacts]),
FUEL_INIT = sort([(LEVEL,T) : $fuel(LEVEL,T) in IFacts]),
IN_INIT = sort([(P,T) : $in(P,T) in IFacts]),
AT_GOAL = sort([(L,0) : $at(L,0) in GFacts]),
FUEL_GOAL = sort([(LEVEL,T) : $fuel(LEVEL,T) in GFacts]),
IN_GOAL = sort([(P,T) : $in(P,T) in GFacts]),
Facts = [Fact : Fact in IFacts, (

Fact = $location(_); Fact = $cargo(_);

Fact = $truck( ); Fact = $connected(_,_) )],
cl_facts([$goal (AT_GOAL,IN_GOAL) |Facts], [1),
best_plan_bb($s(AT_INIT,IN_INIT),99999999,Plan,PlanCost),
writeln(plan=Plan), writeln(cost=PlanCost).

IFacts and GFacts contain the Init and the Goal facts as they are written in the
problem file, besides the types of the objects inserted by a modified version of
the instance parser (the original one doesn’t consider them). For each non-rigid
predicate, we create two lists collecting the objects which satisfy the property
respectively for the initial and the final state. As said above, Facts collects rigid
facts and object types. Then the goal condition lists are stored in a goal rigid
predicate, and the branch and bound search is executed. To know if the final
state is reached, all we need is to check if the goal preconditions lists are subsets
of the current ones:

final(s(AT,IN)), goal(AT_GOAL,IN_GOAL),
subset (AT_GOAL,AT), subset(IN_GOAL,IN) => true.

5 Experimental results

We report on experimental results made on some benchmarks from the IPC
web site [14]. We used the PDDL encodings available there and run them with
Metric - FF 2.1, a state-of-the-art PDDL planner declared Top Performer in the
STRIPS Track of the 3rd International Planning Competition. We automatically
converted them to Picat with our compiler and run Picat on them. Moreover, we
also compared some of them with a direct, structured encoding in Picat retrieved
from Picat web site. Tests are executed on a notebook with a CPU Intel Core 15
4210h at 3.42 Ghz and 8 gigabytes of RAM. We used the domains (descriptions
are retrieved from official competition website):

Nomystery (nomys) (a complete version, using typing and action costs) A



truck moves in a weighted graph where a set of packages must be transported
between nodes. Actions move the truck along edges and load /unload packages.
Each move consumes the edge weight in fuel. The edge weights are uniformly
drawn between 1 and an integer w. The initial fuel supply is set to C- M where
M is the minimum required amount of fuel, calculated using a domain-specific
optimal solver, and C' > 1 is a (float) input parameter that denotes the ratio
between the available fuel vs. the minimum amount required. The closer C' to
1, the more constrained the problem. If C' = 1 only the optimal plan solves the
problem.

Hiking (hik) Imagine you want to walk with your partner a long clockwise
circular route over several days (e.g. in the “Lake District” in NW England),
and you do one leg each day. You want to start at a certain point and do the
walk in one direction, without ever walking backwards. You have two cars which
you must use to carry your tent/luggage and to carry you and your partner
to the start/end of a leg, if necessary. Driving a car between any two points is
allowed, but walking must be done with your partner and must start from the
place where you left off. As you will be tired when you have walked to the end of
a leg, you must have your tent up ready there so you can sleep the night before
you set off to do the next leg the morning.

Maintenance (maint) There are mechanics who on any day may work at one
of several cities where the airplane maintenance company has facilities. There
are airplanes each of which has to be maintained during the given time period.
The airplanes are guaranteed to visit some of the cities on given days. The
problem is to schedule the presence of the mechanics so that each plane will get
maintenance.

Tetris (tet) This is a simplified version of the well-known Tetris. All the pieces
(1x1,2x1, L) are randomly distributed on a N x N grid. The goal is to move
them in order to free the upper half of the grid. The pieces can be rotated or
translated. Each movement action has a different cost, accordingly to the size of
the piece.

Results are reported in Tables 1 and 2. Different rows are used for different
instances. Columns in Table 1 identify different Picat search techniques on the
translated code. Table 2 shows the results of the the tests with FF, Picat on
the automatically obtained code and Picat with a structured encoding (iterative
deepening is used). For each test we report the value of the best result found
and the running time in seconds. OOM stands for “Out of Memory”.

In nomystery, after testing of the automatically translated code of the first
PDDL domain, we tried a slightly different version, where load and unload actions
are a little (more) deterministic in order to avoid situations in which the truck
passes through a location where there is something to load (or to unload) without
loading (or unloading) it (this change can be made at the PPDL level as well).
Thanks to this change we obtained far better results, even if not at the same
level of the structured version. We characterize these instances by adding letter
“d”. In Table 2 the “d” is within brackets to denote that this is the version used



branch and iterative first plan best plan

problem bound deepening unbounded unbounded
bound | time | bound | time | bound | time | bound | time
nomys_p01 18 0.132 18 0.194 25 0.0 18 0.063
nomys_p02 21 0.781 21 0.807 31 0.0 21 0.24
nomys_p03 34 100 34 133 59 0.0 34 23.01
nomys_p04 - OOM - OOM 110 0.0 - OOM
nomys_d_p01 18 0.015 18 0.016 25 0.0 18 0.0
nomys_d_p02 21 0.022 21 0.046 31 0.0 21 0.016
nomys_d_p03| 34 0.36 34 0.67 59 0.0 34 0.14
nomys_d._p04| 48 13.61 48 22.75 110 0.0 48 4.75

hik p_1.2.3 11 0.247 11 0.051 155 0.002 11 0.04
hik p_-1.2.5 31 29.13 25 1.495 1876 0.078 25 0.859

hik p_1.2_8 - OOM 45 43.47 | 15110 | 1.625 45 14.06

maint_p01 7 3.975 7 7.145 10 0.235 7 4.187

maint_p02 6 4.74 6 6.316 10 0.063 6 7.125
tet_p01 10 2.401 10 0.13 526 0.0 10 2.5
tet_p02 11 46.716 11 4.448 | 87973 | 0.593 11 131

Table 1. Picat search techniques comparison on the automatically obtained code

for the “Automatic” column only. FF times are better, but Picat returned the
optimal plans in all the instances.

In Hiking the FF planner wins once again in search time, but fails in finding
the best plan, except for the first instance. Since we need groups of actions to
move from a place to another, it could happen that with a bound b the problem
is resolvable, but with b — 1 it is not, making the planner think that b is the
optimal bound when exploiting branch and bound search. In fact, this is the only
case in which Picat did not return an optimal plan, except of course for the first
plan search. Anyway, the best plan unbounded seems to be the best choice for
this domain also from the performance perspective.

The maintenance domain, with its only action, is particularly favorable for
FF, with all the instances executed almost immediately, but again it didn’t
always find the optimal plans.

Regarding the last domain, Tetris, the translated domains beat the FF plan-
ner in the first instance using iterative deepening. Focusing on the structured
version, powered with a heuristic computing the shortest path for a block allow-
ing the planner to cut off a lot of states, we also see that the iterative deepening
search acts very well, beating FF in all the instances.

6 Conclusions

We have presented a compiler that translates PDDL domains into Picat. Results
can be used as a base by Picat programmers to create more compact and more
performing encodings, using all the features that this language offers. It can be
seen, in a sense, as a good starting point for the automation of optimization
stages, in order to obtain immediately fast Picat programs. At the moment, the



Picat Factored Picat

problem FE (Automatic) Structured
bound | time | bound | time | bound | time

nomys_p01 (d) 18 0.02 18 0.016 18 0.0

nomys_p02 (d) 23 0.04 21 0.016 21 0.0
nomys_p03 (d) 44 0.04 34 0.15 34 0.016
nomys_p04 (d) 74 0.02 48 5.2 48 0.444
hik p-1.2.3 11 0 11 0.040 11 0.016
hik_p-1.2.5 32 0.18 25 0.859 25 0.48
hik_p-1.2.8 61 0.52 45 14.060 45 10.47
maint_p01 7 0 7 3.975 7 0.021
maint_p02 7 0 6 4.740 6 0.040
tet_pO1 10 0.58 10 0.130 10 0.008
tet_p02 11 0.52 11 4.448 11 0.014

Table 2. Picat vs FF

execution on the translated programs is still much slower than state-of-the-art
planner on the PDDL encodings, but we made a first step in the right direction
of automatically getting Picat programs that perform similarly or better than
state of the art PDDL planners.
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