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Abstract. We present a method for verifying relational program prop-
erties, that is, properties that relate the input and the output of two
programs. Our verification method is parametric with respect to the
definition of the semantics of the programming language in which the
programs are written. That definition consists of a set Int of constrained
Horn clauses (CHC) that encode the interpreter of the programming lan-
guage. Then, given the programs and the relational property we want to
verify, we generate, by using Int, a set of constrained Horn clauses whose
satisfiability is equivalent to the validity of the property. Unfortunately,
state-of-the-art solvers for CHC have severe limitations in proving the
satisfiability, or the unsatisfiability, of such sets of clauses. We propose
some transformation techniques that increase the power of CHC solvers
when verifying relational properties. We show that these transformations,
based on unfolding and folding rules, preserve satisfiability. Through an
experimental evaluation we also show that in many cases CHC solvers are
able to prove the (un)satisfiability of sets of clauses obtained by applying
the transformations we propose, whereas the same solvers are unable to
perform those proofs when given as input the original sets of constrained
Horn clauses.

1 Introduction

During the process of software development it is often the case that several
versions of the same program are produced. This is due to the fact that the
programmer, for instance, may want to replace an old program fragment by a
new one with the objective of improving efficiency, or adding a new feature, or
modifying the program structure. In these cases, in order to prove the correctness
of the whole program, it may be desirable to consider relational properties of
those program fragments, that is, properties that relate the semantics of the
old fragments to the semantics of the new fragments. A particular example of
a relational property is program equivalence, but many other relations may be
considered (see [5,29] for other significant examples).



It has been noted that proving relational properties between two structurally
similar program versions is often easier than directly proving the desired correct-
ness properties for the new program version [5,21,29]. Moreover, in order to au-
tomate the proof of such properties, it may be convenient to follow a transforma-
tional approach so that one can use the already available methods and tools for
proving correctness properties of individual programs. For instance, in [5,29,35]
the authors propose program composition and cross-product techniques such
that, in order to prove that a given relation between program P1 and P2 holds,
it is sufficient to show that suitable pre- and post-conditions for the composition
of P1 and P2 hold. The validity of these pre- and postconditions is then checked
by using state-of-the-art verification tools (e.g., Boogie [4] and Why [22]). A
different transformational approach is followed by [21]. The authors of [21] in-
troduce a set of proof rules for program equivalence, and from these rules they
generate verification conditions in the form of constrained Horn clauses (CHCs)
which is a logical formalism recently suggested for program verification (see [7]
for a survey of the techniques which use CHCs). The satisfiability of the ver-
ification conditions, which guarantees that the relational property holds, can
be checked by using CHC solvers, such as Eldarica [25], MathSAT [11], and
Z3 [18] (obviously, no complete solver exists because most properties of interest,
including equivalence, are in general undecidable).

Unfortunately, all the above mentioned approaches enable only a partial reuse
of the available verification techniques, because one has to develop specific trans-
formation rules for each programming language and each proof system in use.

In this paper we propose a method to achieve a higher parametricity with
respect to the programming language and the class of relational properties con-
sidered, and this is done by pushing further the transformational approach.

As a first step of our method, we formalize a relational property between
two programs as a set of CHCs. This is done by using an interpreter for the
given programming language written in clausal form as indicated in [17,31]. In
particular, the properties of the data domain in use, such as the integers and the
integer arrays, are formalized in the constraint theory of the CHCs.

Now, it is very often the case that this first step is not sufficient to allow state-
of-the-art CHC solvers to verify the properties of interest. Indeed, the strategies
for checking satisfiability employed by those solvers deal with the sets of clauses
encoding the semantics of each of the two programs in an independent way,
thereby failing to take full advantage of the interrelations between the two sets
of clauses. In this paper, instead of looking for a new, smarter strategy for sat-
isfiability checking, we propose some transformation techniques for CHCs that
compose together, in a suitable way, the clauses relative to the two programs, so
that their interrelations may be better exploited. This transformational approach
has the advantage that we can use existing techniques for CHC satisfiability as
a final step of the verification process. Moreover, since the CHC encodings of
the two programs do not explicitly refer to the syntax of the given programs,
we are able to prove relations that would be difficult to infer by the above men-



tioned, syntax-driven approaches. Our approach has been proved to be effective
in practice, as indicated in Section 5.

The main contributions of the paper are the following.
(1) We present a method for encoding as a set of CHCs a large class of rela-
tional properties of programs written in a simple imperative language. The only
language-specific element of our method is that we need a CHC interpreter that
provides a formal definition of the semantics of the programming language in
use.
(2) We propose an automatic transformation technique for CHCs, called pred-
icate pairing, that combines together the clauses representing the semantics of
each program with the objective of increasing the effectiveness of the subsequent
application of the CHC solver at hand. We prove that predicate pairing guaran-
tees equisatisfiability between the initial and the final sets of clauses. The proof
is based on the fact that this transformation can be expressed as a sequence of
applications of the unfolding and folding rules [20,33].
(3) We report on an experimental evaluation performed by a proof-of-concept
implementation of our transformation technique by using the VeriMAP sys-
tem [15]. The satisfiability of the transformed CHC is then verified by using the
solvers Eldarica [25], MathSAT [11], and Z3 [18]. Our experiments show that
the transformation is effective on a number of small, but nontrivial examples.
Moreover, our method is competitive with respect to some special purpose tools
for checking equivalence [21].

The paper is organized as follows. We start off by presenting in Section 2
a simple introductory example. Then, in Section 3 we present the translation
of a relational property between two programs into constrained Horn clauses.
In Section 4 we present the various transformation techniques and we prove
that they preserve satisfiability (and unsatisfiability). The implementation of
the verification method and its experimental evaluation is reported in Section 5.
Finally, in Section 6, we discuss the related work.

2 An Introductory Example

In this section we present an example to illustrate the main ideas developed in
this paper. Let us consider the two programs of Fig. 1.
Program sum_upto computes the sum of the first x1 non-negative integer num-
bers and program prod computes the product of x2 by y2 by summing up x2
times the value of y2. Thus, we have the following property Leq: if x1=x2 and
x2≤y2, then the two programs return the values z1 and z2, respectively, such
that z1≤ z2. By using the method we will present in Section 3 (and the CHC
specialization of Section 4.1), the property Leq relating the computations of the
two programs is translated into the set of constrained Horn clauses listed in
Fig. 2, written in the syntax of Constraint Logic Programming (CLP) [26].
Clause 1 specifies the relational property Leq, where primed logical variables
refer to the final values of the corresponding imperative variables. In particular,



void sum_upto() {
z1=f(x1);

}
int f(int n1){

int r1;
if (n1 <= 0) {

r1 = 0;
} else {

r1 = f(n1 - 1) + n1;
}
return r1;

}

void prod() {
z2 = g(x2,y2);

}
int g(int n2, int m2){

int r2;
r2=0;
while (n2 > 0) {

r2 += m2;
n2--;

}
return r2;

}

Relational property Leq: {x1=x2, x2≤y2} sum_upto ∼ prod {z1≤z2}

Fig. 1. The programs sum_upto and prod, and the relational property to be proved.

1. false ← X1=X2, X2≤Y 2, Z1′ >Z2′, su(X1, Z1′), p(X2, Y 2, Z2′)
2. su(X1, Z1′)← f(X1, Z, X1, R, N1, Z1′)
3. f(X, Z, N, R, N, 0)← N≤0
4. f(X, Z, N, R, N, Z1)← N≥1, N1=N−1, Z1=R2+N, f(X, Z, N1, R1, N2, R2)
5. p(X2, Y 2, Z2′)← g(X2, Y 2, Z, X2, Y 2, 0, N, P, Z2′)
6. g(X, Y, Z, N, P, R, N, P, R)← N≤0
7. g(X, Y, Z, N, P, R, N2, P 2, R2)← N≥1, N1=N−1, R1=P +R,

g(X, Y, Z, N1, P, R1, N2, P 2, R2)

Fig. 2. Translation into constrained Horn clauses of the relational property Leq.

note that the constraint Z1′ > Z2′ is the negation of the property we want
to prove. Clauses 2–4 and 5–7 encode the input-output relations computed by
programs sum_upto and prod, respectively. The relational property Leq holds iff
clauses 1–7 are satisfiable.

Unfortunately, state-of-the-art solvers for constrained Horn clauses with lin-
ear integer arithmetic (such as Eldarica [25], MathSAT [11], and Z3 [18])
are unable to prove the satisfiability of clauses 1–7. This is due to the fact that
those solvers reason on the predicate su and p separately, and hence, to prove
that clause 1 is satisfiable (that is, its premise is unsatisfiable), they should dis-
cover quadratic relations among variables (in our case, Z1′ = X1×(X1−1)/2
and Z2′=X2×Y 2), and these relations cannot be expressed by linear arithmetic
constraints.

In order to deal with this limitation one could extend constrained Horn
clauses with solvers for the theory of non-linear integer arithmetic constraints [8].
However, this extension has to cope with the additional problem that the satis-
fiability problem for non-linear constraints is undecidable [30].

In this paper we propose an approach based on suitable transformations of
the clauses that encode the property Leq into an equisatisfiable set of clauses,
which, as shown in the sequel, are hopefully easier to solve. In our example, the
clauses of Fig. 2 are transformed into the ones shown in Fig. 3.

The predicate fg(X,Z,N,R,N1, Z1, Y 2, V,W,N2, P2, Z2) is equivalent to
the conjunction f(X,Z,N,R,N1, Z1), g(X,Y 2, V,N, Y 2,W,N2, P2, Z2). The ef-



false ← X1≤Y 2, Z1′ >Z2′, fg(X1,Z,X1,R, N1, Z1′, Y 2, Z, 0, N2, P 2, Z2′)
fg(X, Z, N, R, N, 0, Y 2, V, Z2, N, P 2, Z2)← N≤0
fg(X, Z, N, R, N, Z1, Y 2, V, W, N2, P 2, Z2)←

N≥1, N1=N−1, Z1=R2+N, M =Y 2+W,
fg(X, Z, N1, R1, S, R2, Y 2, V, M, N2, P 2, Z2)

Fig. 3. Transformed clauses derived from the clauses 1–7 in Fig. 2.

fect of this transformation is that it is possible to infer linear relations among
a subset of the variables occurring in the conjunctions of predicates, without
having to use in an explicit way their non-linear relations with other variables.
In particular, one can infer that fg(X1, Z,X1, R,N1, Z1′, Y 2, Z, 0, N2, P2, Z2′)
enforces the constraint (X1>Y 2) ∨ (Z1′≤Z2′), and hence the satisfiability of
the first clause of Fig. 3, without having to derive quadratic relations. Indeed,
after this transformation MathSAT (and, after further transformation, also El-
darica and Z3) is able to prove the satisfiability of the clauses of Fig. 3, which
implies the validity of the relational property Leq.

3 Specifying Relational Properties in CHC

In this section we introduce the notion of a relational property relative to two
programs written in a simple imperative language and we show how a relational
property can be translated into constrained Horn clauses.

3.1 Relational properties

We consider a C-like programming language manipulating integers and inte-
ger arrays via assignments, function calls, conditionals, while loops, and goto’s.
A program is a sequence of labeled commands (or commands, for short), and
in each program there is a unique halt command that, when executed, causes
program termination.

The semantics of our language is defined by a binary transition relation,
denoted by =⇒, between configurations. Each configuration is a pair 〈〈` :c, δ〉〉 of
a labeled command ` : c and an environment δ. An environment δ is a function
that maps every variable identifier x of a set V of identifiers to its value v in the
integers (for integer variables) or in the set of the finite sequences of integers
(for array variables). Given an environment δ, dom(δ) denotes its domain. The
definition of the relation =⇒ corresponds to the multistep operational semantics,
that is: (i) the semantics of each command, other than a function call, is defined
by a pair of the form 〈〈` :c, δ〉〉 =⇒ 〈〈`′ :c′, δ′〉〉, and (ii) the semantics of a function
call is recursively defined in terms of the reflexive, transitive closure =⇒∗.

In particular, the semantics of an assignment is:
(R1) 〈〈` :x=e, δ〉〉 =⇒ 〈〈at(nextlab(`)), update(δ, x, JeK δ)〉〉
where: (i) at(`) denotes the command whose label is `, (ii) nextlab(`) denotes the
label of the command which is immediately after the command with label `, (iii)



update(δ, x, v) denotes the environment δ′ that is equal to the environment δ,
except that δ′(x) = v, and (iv) JeK δ is the value of the expression e in the
environment δ.

The semantics of a call to the function f is:
(R2) 〈〈` :x=f(e1, . . . , ek), δ〉〉 =⇒ 〈〈at(nextlab(`)), update(δ′, x, JeK δ′)〉〉

if 〈〈at(firstlab(f)), δ〉〉 =⇒∗ 〈〈`r : return e, δ′〉〉
where: (i) firstlab(f) denotes the label of the first command in the definition
of the function f , and (ii) δ is the environment δ extended by the bindings for
the formal parameters, say x1, . . . , xk, and the local variables, say y1, . . . , yh, of
f (we assume that the identifiers xi’s and yi’s do not occur in dom(δ)). Thus,
we have that δ = δ ∪ {x1 7→ Je1K δ, . . . , xk 7→ JekK δ, y1 7→ v1, . . . , yh 7→ vh}, for
arbitrary values v1, . . . , vh. We refer to [17] for a more detailed presentation of
the multistep semantics.

A program P terminates for an initial environment δ and computes the final
environment η, denoted 〈P, δ〉 ⇓ η, iff 〈〈`0 :c, δ〉〉 =⇒∗ 〈〈`h :halt, η〉〉, where `0 :c is
the first labeled command of P . 〈〈`0 :c, δ〉〉 and 〈〈`h :halt, η〉〉 are called the initial
configuration and the final configuration, respectively.

Now, we can formally define a relational property as follows. Let P1 and P2 be
two programs with global variables in V1 and V2, respectively, with V1∩V2 = ∅.
Let ϕ and ψ be two first order formulas with variables in V1∪V2. Then, by using
the notation of [5], a relational property is specified by the 4-tuple {ϕ}P1∼P2 {ψ}.
For instance, the relational property Leq presented in Section 2 is specified by:
{x1=x2, x2≤y2} sum_upto ∼ prod {z1≤z2}.

We say that {ϕ} P1 ∼ P2 {ψ} is valid iff the following holds: if the inputs of P1
and P2 satisfy the pre-relation ϕ and the programs P1 and P2 both terminate,
then upon termination the outputs of P1 and P2 satisfy the post-relation ψ. The
validity of a relational property is formalized by Definition 1 below, where given
a formula α and an environment δ, by α [δ] we denote the formula α where every
free occurrence of a variable has been replaced by its values in δ.

Definition 1. A relational property {ϕ} P1 ∼ P2 {ψ} is said to be valid, denoted
|= {ϕ} P1 ∼ P2 {ψ}, iff for all environments δ1 and δ2 with dom(δ1)⊆V1 and
dom(δ2)⊆V2, the following holds:

if |= ϕ [δ1∪ δ2] and 〈P1, δ1〉 ⇓ η1 and 〈P2, δ2〉 ⇓ η2, then |= ψ [η1∪ η2].

3.2 Formal Semantics of the Imperative Language in CHC

In order to translate a relational program property into constrained Horn clauses,
first we need to specify the operational semantics of our C-like language by a
set of constrained Horn clauses. We follow the approach presented in [17] which
now we briefly recall.

The transition relation =⇒ between configurations and its reflexive, transitive
closure =⇒∗ are specified by the binary predicates tr and reach, respectively. We
only show the formalization of the semantic rules R1 and R2 above, consisting
of the following clauses D1 and D2, respectively. For the other rules of the
multistep operational semantics we refer to [17].



(D1) tr(cf (cmd(L, asgn(X, expr(E))),Env), cf (cmd(L1, C),Env1))←
eval(E,Env, V ), update(Env, X, V,Env1),nextlab(L,L1), at(L1, C)

(D2) tr(cf (cmd(L, asgn(X, call(F,Es))),Env), cf (cmd(L2, C2),Env2))←
fun_env(Es,Env, F,FEnv),firstlab(F,FL), at(FL, C),
reach(cf (cmd(FL, C),FEnv), cf (cmd(LR, return(E)),Env1)),
eval(E,Env1, V ), update(Env1, X, V,Env2),nextlab(L,L2), at(L2, C2)

The predicate reach is recursively defined by the following two clauses:
reach(C,C)
reach(C,C2)← tr(C,C1), reach(C1, C2)

Configurations are represented by using terms of the form cf (cmd(L,C),Env),
where: (i) L and C encode the label and the command, respectively, (ii) Env
encodes the environment. The term asgn(X, expr(E)) encodes the assignment
of the value of the expression E to the variable X. The predicate eval(E,Env, V )
holds iff V is the value of the expression E in the environment Env. The term
call(F,Es) encodes the call of the function F with the list Es of the actual pa-
rameters. The predicate fun_env(Es,Env, F,FEnv) computes from Es and Env
the list Vs of the values of the actual parameters of the function F and builds
the new initial environment FEnv for executing the body of F . In FEnv the local
variables of F are all bound to arbitrary values. The other terms and predicates
occurring in clauses D1 and D2 have the obvious meaning which can be derived
from the above explanation of the semantic rules R1 and R2.

Given a program Prog, represented as a set of at(L,C) facts, its input/output
relation is represented by a predicate prog defined as follows:

prog(X,X ′)← initConf (C,X), reach(C,C ′),finalConf (C ′, X ′)
where initConf (C,X) and finalConf (C ′, X ′) hold iff the tuples X and X ′ are
the values of the global variables of Prog in the initial and final configurations C
and C ′, respectively.

3.3 Translating Relational Properties into CHC

Let us consider a relational property {ϕ} P1 ∼ P2 {ψ}. We assume that ϕ
and ψ are quantifier-free formulas of the theory A of linear integer arithmetic
and integer arrays [9]. A quantifier free formula of A is also called a constraint.

More complex theories of constraints may be used for defining relational
properties. For instance, one may consider theories with nested quantifiers [2].
Our approach is, to a large extent, parametric with respect to those theories. In-
deed, the transformation rules on which it is based only require that satisfiability
and entailment of constraints be decidable (see Section 4).

The validity of a relational property is translated into a set of constrained
Horn clauses, that is, implications of the form: A0 ← c, A1, . . . , An, where (i)
A0 is either an atomic formula (or atom) or false, (ii) c is a constraint, and
(iii) A1, . . . , An is a possibly empty conjunction of atoms. A set S of clauses is
A-satisfiable or, simply, satisfiable iff A ∪ S is satisfiable.



The relational property of the form {ϕ} P1 ∼ P2 {ψ} is translated into the
following clause:
(Prop) false ← pre(X,Y ), p1(X,X ′), p2(Y, Y ′),neg_post(X ′, Y ′)
where: (i) X and Y are the disjoint tuples of global variables of P1 and P2,
respectively (in the translation we use capital letters for variable identifiers);
(ii) X ′ and Y ′ are primed versions of X and Y , respectively;
(iii) pre(X,Y ) is ϕ;
(iv) the predicates p1(X,X ′) and p2(Y, Y ′) are defined by a set of clauses derived
from P1 and P2, respectively, by using a formalization of the the operational
semantics of the programming language, as explained in Section 3.2; and
(v) neg_post(X ′, Y ′) is ¬ψ, with all variables replaced by their primed versions.

Note that we can always eliminate negation from the atoms pre(X,Y ) and
neg_post(X ′, Y ′) by pushing negation inward and transforming negated equal-
ities into disjunctions of inequalities. Moreover, we can eliminate disjunction
from constraints and replace clause Prop by a set of clauses with false in the
head. Although these transformations are not strictly needed by the techniques
described in the rest of the paper, they may be helpful for the constraint solving
tools we use when automating our verification method.

Let RP be a relational property and TRP be the set of constrained Horn
clauses generated by the translation process described above, then TRP is correct
in the following sense.

Theorem 1 (Correctness of the CHC Translation). RP is valid iff TRP
is satisfiable.

The proof of this theorem directly follows from the fact that the predicate
reach is a correct formalization of the semantics of the programming language.

4 Transforming Specifications of Relational Properties

The reduction of the validity problem, that is, the problem of testing whether or
not {ϕ} P1 ∼ P2 {ψ} is valid, to the problem of verifying the satisfiability of a set
TRP of constrained Horn clauses allows us to apply reasoning techniques that are
independent of the specific programming language in which programs P1 and P2
are written. In particular, we can try to solve the satisfiability problem for TRP by
applying one of the available solvers for constrained Horn clauses. Unfortunately,
as shown by the example in Section 2, it may be the case that these solvers fail
to prove satisfiability (or unsatisfiability). In Section 5 the reader will find an
experimental evidence of this limitation. However, a very significant advantage
of having reduced the validity problem to a CHC satisfiability problem is that
we can now transform the set TRP by applying any satisfiability preserving
algorithm, before submitting the new, transformed satisfiability problem to a
CHC solver.

In this section we present some transformations of constrained Horn clauses
that have the objective of increasing the effectiveness of the subsequent uses



of CHC solvers. These transformations, called transformation strategies, are:
(1) CHC specialization, and (2) predicate pairing.

These strategies are variants of techniques developed in the area of logic
programming for improving the efficiency of program execution [19,32]. We will
show that these techniques are very effective for the class of verification problems
we are considering here.

The above CHC Specialization and Predicate Pairing strategies are realized
as sequences of applications of some elementary transformation rules, collectively
called unfold/fold rules, proposed in the field of CLP [20].

Now we present the version of those rules we need in our context here. Those
rules allow us to derive from an old set Cls of constrained Horn clauses a new
set TransfCls of constrained Horn clauses.
Definition Rule.We introduce a definition clauseD of the form newp(X)← c,G,
where newp is a new predicate symbol, X is a tuple of variables occurring
in {c,G}, c is a constraint, and G is a non-empty conjunction of atoms. We
derive the set of clauses TransfCls = Cls ∪ {D}. We denote by Defs the set of
all definition clauses introduced in a sequence of application of the unfold/fold
rules.
Unfolding Rule. Given a clause C in Cls of the form H ← c, L,A,R, where H is
either false or an atom, A is an atom, c is a constraint, and L and R are (possibly
empty) conjunctions of atoms, let us consider the set {Ki ← ci, Bi | i = 1, . . . ,m}
made out of the (renamed apart) clauses of Cls such that, for i=1, . . . ,m, A is
unifiable with Ki via the most general unifier ϑi and A |= ∃X.(c, ci)ϑi where
X is the tuple of variables in (c, ci)ϑi. By unfolding C w.r.t. A using Cls, we
derive the set of clauses TransfCls = (Cls−{C})∪U(C), where the set U(C) is
{(H ← c, ci, L,Bi, R)ϑi | i = 1, . . . ,m}.
Folding Rule. Given a clause E of the form: H ← e, L,Q,R and a clause D in
Defs of the form K ← d,G such that: (i) for some substitution ϑ, Q = Gϑ, and
(ii) A |= ∀X. (e→d ϑ) holds, where X is the tuple of variables in e→d ϑ, then
by folding E using D we derive the set of clauses TransfCls = (Cls − {E}) ∪
{H ← e, L,Kϑ,R}.

By using the results in [20], which ensure that the transformation rules pre-
serve the least model of a set of constrained Horn clauses, if any, we get the
following result.

Theorem 2 (Soundness of the Unfold/Fold Rules). Suppose that from a
set Cls of constrained Horn clauses we derive a new set TransfCls of clauses
by a sequence of applications of the unfold/fold rules, where every definition
clause used for folding is unfolded during that sequence. Then Cls is satisfiable
iff TransfCls is satisfiable.

4.1 CHC Specialization

Specialization is a transformation technique that has been proposed in various
programming contexts to take advantage of static information to simplify and



customize programs [27]. In the field of program verification it has been shown
that the specialization of constrained Horn clauses can be very useful to simplify
clauses before checking their satisfiability [13,28].

We will use CHC specialization to simplify our initial set of clauses TRP .
In particular, starting from clause Prop of Section 3.3, we introduce two new
predicates p1sp and p2sp, defined by the clauses:

(S1) p1sp(V, V ′)← p1(X,X ′) (S2) p2sp(W,W ′)← p2(Y, Y ′)
where V, V ′,W,W ′ are the sub-tuples of X,X ′, Y, Y ′, respectively, which occur
in pre(X,Y ) or neg_post(X ′, Y ′). Then, by applying the folding rule, we can
replace p1 and p2 in clause Prop, by p1sp and p2sp, thereby obtaining:
(Propsp) false ← pre(V,W ), p1sp(V, V ′), p2sp(W,W ′),neg_post(W,W ′)
Now, by applying the specialization strategy of [13] starting from the set of
clauses (TRP −{Prop})∪ {Propsp, S1, S2}, we derive specialized versions of the
clauses that define the semantics of programs P1 and P2. In particular, in those
clauses there are reference to neither the predicate reach, nor the predicate tr,
nor the terms encoding configurations.

For instance, let us consider again our example of Section 2. The translation
of the relational property Leq: {x1 = x2, x2 ≤ y2} sum_upto ∼ prod {z1 ≤ z2}
is as follows:

false ← X1=X2, X2≤Y 2, Z1′>Z2′,
sum_upto(X1, Z1, X1′, Z1′), prod(X2, Y 2, Z2, X2′, Y 2′, Z2′)

where predicates sum_upto and prod are defined in terms of the predicate reach
as shown in Section 3.2. By specialization we get clauses 1–7 of Fig. 2, where su
and p are the specialized versions of sum_upto and prod, respectively.

CHC specialization is performed by applying the unfold/fold rules, and hence
by Theorem 2 the following property holds.

Theorem 3. Let Tsp be derived from TRP by specialization. Then TRP is satis-
fiable iff Tsp is satisfiable.

4.2 Predicate Pairing

The core of our verification method is the predicate pairing transformation strat-
egy (see Fig. 4), which composes pairs of predicates q and r into one new predi-
cate t equivalent to their conjunction. As suggested by the example of Section 2,
this transformation may ease the discovery of relations between variables oc-
curring in the two original predicates, and thus it may ease the satisfiability
test.

Let us see the predicate pairing strategy in action by considering again the
example of Section 2.

First Iteration of the while loop.
Unfolding: The strategy starts off by unfolding su(X1, Z1′) and p(X2, Y 2, Z2′)
in clause 1 of Fig. 2, hence deriving the following new clause (in which we have
also replaced X2 by X1, by applying the equality X1=X2):



Input: A set Q ∪R ∪ {C} of clauses where: (i) C is of the form false ← c, q(X), r(Y ),
(ii) q and r occur in Q and R, respectively, and (iii) no predicate occurs in both Q
and R.
Output: A set TransfCls of clauses.

Initialization: InCls := {C}; Defs := ∅; TransfCls := Q ∪R;
while there is a clause C in InCls do

Unfolding: From clause C derive a set U(C) of clauses by unfolding C with respect
to every atom occurring in its body using Q ∪R;
Rewrite each clause in U(C) to a clause of the form H ← d, A1, . . . , Ak, such
that, for i = 1, . . . , k, Ai is of the form p(X1, . . . , Xm), where X1, . . . , Xm are, not
necessarily distinct, variables;

Definition&Folding:
F (C) := U(C);
for every clause E ∈ F (C) of the form H ← d, G1, qi(Vi), G2, ri(Wi), G3 where qi

and ri occur in Q and R, respectively, do
if in Defs there is no clause of the form newp(Z)← qi(Vi), ri(Wi), where Z is

the tuple of distinct variables in (Vi, Wi)
then add newp(Z)← qi(Vi), ri(Wi) to InCls and to Defs;
F (C) := (F (C)− {E}) ∪ {H ← d, G1, newp(Z), G2, G3}

end-for
InCls := InCls− {C}; TransfCls := TransfCls ∪ F(C);

end-while

Fig. 4. The predicate pairing transformation strategy.

8. false ← X1≤Y 2, Z1′>Z2′,
f(X1, Z,X1, R,N1, Z1′), g(X1, Y 2, Z,X1, Y 2, 0, N2, P2, Z2′)

Definition&Folding: A new atom with predicate fg is introduced for replac-
ing the conjunction of the atoms with predicates f and g in the premise of
clause 8:
9. fg(X1, Z,N,R,N1, Z1′, Y 2, V,W,N2, P2, Z2′)←

f(X1, Z,N,R,N1, Z1′), g(X1, Y 2, V,N, Y 2,W,N2, P2, Z2′)
and that conjunction is folded, hence deriving:
10. false ← X1≤Y 2, Z1′>Z2′, fg(X1, Z,X1, R,N1, Z1′, Y 2, Z, 0, N2, P2, Z2′)

Second Iteration of the while loop.
Unfolding: Now, the atoms with predicate f and g in the premise of the newly
introduced clause 9 are unfolded, and the following new clauses are derived:
11. fg(X,Z,N,R,N, 0, Y, V,W,N2, Y, Z2)← N≤0
12. fg(X,Z,N,R,N,Z1, Y 2, V,W,N2, P2, Z2)←

N≥1, N1=N−1, Z1=R2+N,M=Y 2+W,
f(X,Z,N1, R1, S,R2), g(X,Y 2, V,N1, Y 2,M,N2, P2, Z2)

Definition&Folding: No new predicate is needed, as the conjunction of the
atoms with predicate f and g in clause 12 can be folded using clause 9. We get:



13. fg(X,Z,N,R,N,Z1, Y 2, V,W,N2, P2, Z2)←
N≥1, N1=N−1, Z1=R2+N,M=Y 2+W,
fg(X,Z,N1, R1, S,R2, Y 2, V,M,N2, P2, Z2)

Clauses 10, 11, and 13, which are the ones shown in Fig. 3, constitute the final
set of clauses we have derived.

The predicate pairing strategy always terminates because the number of the
possible new predicate definitions is bounded by the number γ of conjunctions
of the form qi(Vi), ri(Wi), where qi occurs in Q and ri occurs in R and, hence,
the number of executions of the while loop of the strategy is bounded by γ.

Thus, from the fact that the unfold/fold transformation rules preserve satis-
fiability (see Theorem 2), we get the following result.

Theorem 4 (Soundness of the predicate pairing strategy). Let the set
Q ∪ R ∪ {C} of clauses be the input of the predicate pairing strategy. Then the
strategy terminates and returns a set TransfCls of clauses such that Q∪R∪{C}
is satisfiable iff TransfCls is satisfiable.

5 Implementation and Experimental Evaluation

We have implemented the techniques presented in Sections 3 and 4 by using the
VeriMAP transformation and verification system [15]. The satisfiability of the
constrained Horn clauses derived by transformation has been checked by using
the SMT solvers Eldarica [25], MathSAT [11], and Z3 [18].

We have considered 90 problems4. referring to relational properties of small,
yet non-trivial, C programs mostly taken from the literature [5,6,21]. The prop-
erties we have considered belong to the following categories. All programs act
on integers, except for those in the arr category which act on integer arrays.
The ite (respectively, rec) category consists of equivalence properties between
pairs of iterative (respectively, recursive) programs, that is, we have verified
that for every pair of programs, the two programs in the pair compute the same
outputs when given the same inputs. The i-r category consists of equivalence
properties between an iterative and a recursive (non-tail recursive) program. For
example, we have verified the equivalence of iterative and recursive versions of
programs computing the greatest common divisor of two integers and the n-
th triangular number Tn =

∑n
i=1 i. The arr category consists of equivalence

properties between programs acting on integer arrays. The leq category con-
sists of inequality properties stating that if the inputs of two programs satisfy
some given precondition, then their outputs satisfy an inequality postcondition.
For instance, we have verified that for all non-negative integers m and n: (i) if
n≤m, then Tn≤n×m (see the example of Section 2), and (ii) n2≤n3. The mon
(respectively, inj) category consists of properties stating that programs, under
some given preconditions, compute monotonically non-decreasing (respectively,
injective) functions. For example, we have verified monotonicity and injectivity
4 The C sources are available at http://map.uniroma2.it/cilc16/sources.tar.gz

http://map.uniroma2.it/cilc16/sources.tar.gz


Cat n Tr Eld Z3 PP Eld MS Z3 CP+Eld CP+MS CP+Z3
ite 21 0.04 7 (5.61) 6 (1.06) 1.23 13 (5.10) 19 (7.39) 6 (1.08) 4 (0.07) 1 (0.10) 15 (2.55)
rec 18 0.06 7 (4.16) 8 (3.10) 1.82 7 (5.19) 11 (1.09) 6 (0.94) 7 (0.06) 0 7 (0.08)
i-r 4 0.05 0 0 0.58 0 3 (8.16) 0 4 (0.35) 1 (0.08) 4 (0.35)
arr 5 0.05 0 1 (0.78) 1.02 1 (4.29) 1 (0.78) 4 (0.81) 1 (5.81) 1 (2.26) 1 (0.75)
leq 6 0.03 1 (2.83) 1 (0.77) 0.29 1 (4.76) 6 (2.52) 1 (0.80) 2 (1.74) 0 3 (0.64)
mon 18 0.02 4 (4.60) 4 (0.90) 2.78 11 (5.55) 16 (1.61) 8 (0.98) 0 1 (3.12) 6 (0.81)
inj 11 0.02 0 0 1.87 0 11 (1.70) 4 (1.10) 7 (1.71) 0 6 (0.63)
fun 7 0.02 5 (4.49) 5 (0.80) 3.90 6 (4.77) 7 (1.03) 5 (0.91) 0 0 2 (0.69)
Tot 90 0.04 24(4.67) 25(1.61) 1.84 39(5.16) 74(3.30) 34(0.97) 25(0.93) 4(1.39) 44(1.20)

Table 1. Timings are in seconds. The timeout occurs after 60 seconds.

of programs computing the Fibonacci numbers, the square of a number, and the
triangular numbers (for non-negative input values). The fun category consists of
properties stating that, under some given preconditions, some of the outputs of
the given programs are functionally dependent on a proper subset of the inputs.

The results of our experimental evaluation are summarized in Table 1. All
experiments have been performed on a single core of an Intel Core Duo E7300
2.66Ghz processor with 4GB of memory running Ubuntu. Timings are in seconds.
A time limit of 60 seconds has been set for all problems.

The first two columns (Cat) and (n) report the names of the categories and
the number of problems in each category, respectively. The third column (Tr)
reports the average time taken for generating the set of CHC encoding the rela-
tional property by applying the method presented in Section 3 (including CHC
specialization). Columns 4 (Eld) and 5 (Z3 ) report the number of problems that
were solved by applying Eldarica and Z3, respectively, on the CHC encoding
of the relational property. Between parentheses we have indicated the average
time taken for each solved problem. There is no column for MathSAT because
it is unable to deal with clauses containing multiple atoms in their premise. Col-
umn 6 (PP) reports the average time taken for applying the predicate pairing
transformation strategy presented in Section 4.2. Predicate pairing terminates
before the timeout for all problems. Columns 7 (Eld), 8 (MS), and 9 (Z3 ) report
the results obtained by applying Eldarica, MathSAT, and Z3, respectively, on
the CHC derived by applying the predicate pairing strategy. We indicate the
number of solved problems and the average solving time5.

If a CHC solver is unable to solve a problem after predicate pairing, we apply
CHC specialization again with the goal of propagating the constraints occurring
in the clauses and discovering invariants by means of the widening and convex-
hull operators [13]. In some cases this constraint propagation produces a set
of CHC without constrained facts (that is, clauses of the form A ← c), and
hence satisfiable. If the other cases, we apply again the solvers on the clauses
obtained after constraint propagation. Columns 10 (CP+Eld), 11 (CP+MS),
and 12 (CP+Z3 ) report the results obtained by applying constraint propagation,
5 More details about the results of our experimental evaluation are reported in the
online appendix available at http://map.uniroma2.it/cilc16/appendix.pdf
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possibly followed by Eldarica, MathSAT, and Z3, respectively, in the cases where
the predicate pairing and the CHC solvers were unable to deliver an answer. As
usual, we report the number of problems solved and the average solving time.
The solving times include the time spent for constraint propagation.

The use of the predicate pairing and constraint propagation strategies signif-
icantly increases the number of problems that have been solved. In particular,
the number of problems that can be solved by Eldarica increases from 24 (see
Column 4) to 64 (sum of Columns 7 and 10). Similarly for MathSAT from zero
to 78 (sum of Columns 8 and 11), and for Z3 from 25 (see Column 5) to 78 (sum
of Columns 9 and 12). The number of problems that can be solved by using any
of the considered CHC solvers is 86.

We observe that the application of the predicate pairing strategy is very
effective in increasing the number of solved problems. For instance, it allows
Eldarica to solve 15 more problems (see Columns 4 and 7). For problems that can
already be solved without using the pairing strategy the performance overhead
is almost always tolerable. However, for three problems out of the 90 we have
considered, Z3 is unable to prove the property within the considered time limit
after the application of the pairing strategy (although one of these problems can
be solved after the constraint propagation phase).

Also the application of constraint propagation turns out to be very useful for
solving additional problems. For instance, for Z3 constraint propagation allows
the solution of additional 44 problems (see Column 12).

It is worth noticing that for the problems in the ite and rec categories our
verification method is competitive with the approach to the proof of program
equivalences presented in [21]. As regards the categories mon, fun, arr, and
leq, consist of pairs of programs with a similar control structure and therefore
the approach presented in [21] is generally expected to perform well. However,
that approach cannot be directly applied to problems in the i-r category).

6 Related Work

Various logics and methods for reasoning about program relations have been pre-
sented in the literature. Their main purpose is the formal, possibly automated,
validation of program transformation and program analysis techniques.

A Hoare-like axiomatization of relational reasoning for simple while programs
has been proposed in [6], which however does not present any technique for
automating proofs.

A partial automation of relational reasoning has been proposed in [5], which
introduces a notion of a program product that allows the reduction of a relational
verification problem to a standard program verification problem. The method
requires human ingenuity to generate program products via ad-hoc refinements
and also to provide suitable invariants to the program verifier. Similarly to [5],
the Differential Assertion Checking technique proposed in [29] makes use of the
notion of a program composition to reduce the relative correctness of two pro-
grams to a suitable safety property of the composed program.



The idea of using program transformations to help the proof of relational
properties between higher-order functional programs has been explored in [3].
The main difference between the approach in [3] and ours is that, besides the
difference of programming languages, we transform the logical representation
of the property to be proved, rather than the two programs under analysis.
Our approach allows higher parametericity with respect to the programming
language, and also enables us to use very effective tools for CHC solving.

Our notion of the predicate pairing is related to that of themutual summaries
presented in [24]. Mutual summaries relate the summaries of two procedures,
and can be used to prove relations between them, including relative termination
(which we do not consider in our technique). Similarly to the above mentioned
papers [5,29], this approach requires human ingenuity to generate suitable proof
obligations, which can then be discharged by automated theorem provers.

Program equivalence is one of the relational properties that has been exten-
sively studied (see [10,12,21,23,34] for some recent work). Indeed, during soft-
ware development one may want to modify the program text and prove that its
semantics has not changed (this kind of proofs is sometimes called regression
verification). Among the various approaches to prove program equivalence, the
one which is most related to ours is the one reported in [21], which proposes proof
rules for the equivalence of simple imperative programs that are then translated
into constrained Horn clauses. The satisfiability of these clauses is then checked
by state-of-the-art CHC solvers. However, our method can be applied to a larger
class of programs without requiring any special purpose proof rules.

Finally, we want to mention that in the present paper we have used (vari-
ants and extensions of) transformation techniques for constrained Horn clauses
proposed in previous work in the area of program verification (see, for in-
stance, [1,13,14,16,17,28,31]). However, the goal of that previous work was the
verification of partial and total correctness of single programs, and not the ver-
ification of relations between two programs which has been the objective of our
study in this paper.

7 Conclusions
We have presented a method for verifying relational properties of programs writ-
ten in a simple imperative language with integer and array variables. The method
consists in: (i) translating the property to be verified into a set of constrained
Horn clauses, then (ii) transforming these clauses to better exploit the interac-
tions between the predicates which represent the computations evoked by the
programs, and finally, (iii) using state-of-the-art constrained Horn clause solvers
to prove satisfiability.

Although we have considered imperative programs, the only language-specific
element of our method is the constrained Horn clause interpreter that we have
used to represent in clausal form the program semantics and the property to
be verified. Indeed, our method can also be applied to prove relations between
programs written in different programming languages. Thus, our approach is
basically independent of the programming language used.



Finally, we think that our approach can be refined and improved by taking
advantage of the progress that in the future could be made in the development
of techniques and tools for reasoning about constrained Horn clauses.
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