Strong-Cyclic Planning when Fairness is Not a Valid Assumption

Alberto Camacho
Department of Computer Science
University of Toronto, Canada
acamacho@cs.toronto.edu

Abstract

We address the class of fully-observable non-
deterministic (FOND) planning problems where
non-deterministic actions are not guaranteed to dis-
play fair behaviour. Typical solutions to FOND
planning problems either guarantee goal reachabil-
ity with a bounded number of transitions (so-called
strong acyclic solutions), or are predicated on a fair-
ness assumption that presumes each action effect
occurs infinitely often when the action is applied
infinite times in the same state (so-called strong-
cyclic solutions). We introduce the FOND™ plan-
ning model, that extends the FOND model with
a more informed description of the action tran-
sitions. Solutions to FOND™ problems guarantee
goal reachability, even when the classical fairness
assumption is not valid. We characterize different
topologies, or classes, of solutions showing that
typical strong acyclic, and fair strong-cyclic plan-
ning are particular cases. Moreover, we character-
ize a class of FOND™ solutions that also solve 1-
primary normative fault-tolerant problems, and are
robust to any finite number of faults during execu-
tion. We present algorithms to solve each class of
problems. Finally, we present the results of one of
our algorithms in the search for so-called norma-
tive solutions for a selection of blocksworld prob-
lems where the classical fairness assumption is not
valid.

1 Introduction

Most real-world dynamical systems are best modeled us-
ing non-deterministic action effects, reflecting our inability
to characterize, with certainty, the outcome of actions, and
in some cases to additionally model the effects of exoge-
nous events. A number of different frameworks have been
proposed to model and plan with non-deterministic transition
systems. For the purposes of this paper, we limit our discus-
sion to fully-observable systems. Markov Decision Processes
(MDPs) [Puterman, 1994], for example, model the effect of
an action in each state as a probability distribution over the
successor states. In contrast, many probabilistic planning sys-
tems (e.g. [Kolobov et al., 2009]) exploit a compact symbolic

Sheila A. Mcllraith
Department of Computer Science
University of Toronto, Canada
sheila@cs.toronto.edu

description of the actions and their effects that associates a
non-zero probability with alternative action outcomes. While
less expressive than MDPs, such systems are often easier to
solve and show better scalability.

In cases where the stochasticity of a system is not well
understood, or deemed unnecessary, Fully Observable Non-
Deterministic (FOND) planning [Cimatti ef al., 2003] pro-
vides a framework, similar to probabilistic planning, but with
the exception that the effects of actions are non-deterministic
without commitment to the probability of alternative action
effects. Solutions to FOND planning problems are policies
that map states into actions. Cimatti et al. [2003] identi-
fied three different classes of solutions to FOND problems:
weak, strong, and strong-cyclic. Weak solutions are plans that
achieve the goal, but without guarantees. Strong solutions
guarantee goal achievement in all executions. This condition
is too restrictive, as FOND problems often do not have strong
solutions. The class of strong-cyclic solutions is an alterna-
tive, and guarantees goal achievement provided that all exe-
cutions are fair. When the fairness assumption is not valid,
policy executions may not achieve the goal.

In 2004, Jensen et al. introduced the notion of fault-
tolerant planning, motivated by two observations. First, they
interpreted non-determinism in many real-world problems as
the consequence of infrequent errors (so-called faults) during
execution. Second, they claimed that in general, no action is
ever guaranteed to achieve non-faulty behaviour. The resul-
tant framework for fault-tolerant planning includes complete
knowledge about which state transitions are normative and
which are otherwise faulty. Solutions attempt to reach a pre-
scribed goal under the assumption that no more than « faults
will occur during execution.

In this paper we recognize that there exist non-
deterministic transition systems where the fairness assump-
tion does not hold, and the challenge we address is to find so-
lutions that guarantee goal achievement when strong FOND
solutions do not exist. To this end, we introduce the FONDT
planning framework as an extension to the FOND frame-
work that includes a more informed description of transitions.
The FOND™ framework makes it possible to find policies
that guarantee goal achievement when the classical fairness
assumption is not valid. Alternatively, the FOND™ frame-
work can be informed with a description of the normative
behaviour of the system. In this case, solutions to certain

FOND™ problems are also solutions to 1-primary normative
fault-tolerant planning problems. We define different classes
of solutions to FOND™ problems, and introduce algorithms
to find solutions for each class. We identify a continuum
of FOND™ solutions that includes strong, strong-cyclic, and
fault-tolerant planning solutions in extreme cases. This re-
sult is perhaps most related to the work done by Trevizan et
al. [2007], which defines a framework to deal simultaneously
with risk and uncertainty in an attempt to unify probabilis-
tic and non-deterministic planning. The results presented in
this paper open the door to further advancements in the uni-
fication of FOND, fault-tolerant, and probabilistic planning
frameworks.

2 Background

A non-deterministic planning domain is a tuple D =
(F,S, A, T), where F is a set of propositions; S C 27 is
a finite set of states, typically represented by the set of propo-
sitions that hold; A is a finite set of actions; and 7" : S x A —
2% is a transition function.

An actions a € A is defined in terms of its preconditions
Pre,, and effects Eff ,. Pre, C F is the set of propositions
that need to hold true in a state s for a to be applicable in s,
ie., Pre, C s. Eff, = (Effs,..., Eff?) is a finite set of
possible effects of a. Each effect e € Eff, is a tuple of the
form e = (Add,., Del,), where Add, and Del, are sets of
propositions to be added and deleted, respectively, when an
action transition is applied. The progression of s with respect
to action a and effect e is the updated state Prog(s,a,e) =
(s \ Del.) U Add,. Finally, the result of applying a in s is
one of the states in T'(s,a) = U cpg_Prog(s, a,e). A state

s’ € T(s,a) is said to be an outcome of a in s, and the triplet
(s,a,s’) is called the transition. An execution of domain D
in state s is a state-action sequence Sg, ag, S1,@1 - .. such
that a; is applicable in s; for each ¢ = 0,1..., and s;41 is
one of the outcomes of a; in s; chosen non-deterministically
by the system. When s’ = Prog(s,a,e), the regression
of s’ with respect to action a and effect e is the partial
state Regr(s',a,e) = (s’ \ Add.) U Pre,. Conceptually,
Regr(s',a,e) is the minimal subset of propositions that a
state s needs to entail so that s’ is an outcome of a in s. Ac-
tions can be applied in partial states, whose progression and
regression is defined as above (cf. [Muise et al., 2012]).

2.1 Fully Observable Non-Deterministic Planning

A fully-observable non-deterministic (FOND) planning
problem is a tuple P = (D, sg, Si), where D = (F, S, A, T)
is a non-deterministic planning domain, sg € S is the initial
state, and Sg C S is a set of goal states. Solutions to FOND
planning problems are policies that map states into actions.
We say that 7 is well-defined when 7(s) is defined in every
state reachable by . Executions of a well-defined policy 7
(also called plan executions) are executions sg, ag, S1, a1 - - -
where, for eachi = 0,1..., a; = 7(s;). When the execu-
tion finishes in a goal state s, € S¢, the sequence of actions
P =uag,a1,...,a,_1 is called a plan.

Definition 1 (adapted from [Cimatti et al., 2003]). We say
that an execution o is unfair when a state-action tuple s, a

appears infinitely often in o, but the transition (s, a,s’) oc-
curs a finite number of times for an outcome s' € T(s,a).
Executions that are not unfair are said to be fair.

Definition 2 (adapted from [Cimatti ef al., 2003]). A solution
to a FOND problem is strong cyclic when all executions result
in either finite sequences of states that terminate in a goal
state, or are infinite and unfair.

Cimatti et al. [2003] distinguish three classes of solutions
to a FOND planning problem: weak, strong, and strong cyclic.
Weak solutions are plans that lead the agent from the initial
state to a goal state, but with no guarantees due to the non-
determinism of the actions. Strong solutions are plans that
guarantee goal achievement. Necessarily, strong solutions are
acyclic, and achieve the goal in a bounded number of steps.
Finally, strong cyclic solutions are plans that are guaranteed
to achieve the goal, but predicated on the fairness assump-
tion given by Definition 1. The fairness assumption presumes
that, for each state s and each action a applicable in s, every
outcome of a occurs infinitely many times if a is applied in
s infinitely often. Strong solutions are also strong-cyclic, but
the opposite is not always true.

2.2 Fault-Tolerant Planning

A fault-tolerant planning problem is a tuple P =
(D, so,Sq, F, k), where D = (F,S,A,T) is a non-
deterministic planning domain, sy € S is the initial state,
Sc C S is a set of goal states, F is an exception model as
described in Definition 3, and « is a constant [Jensen et al.,
2004; Domshlak, 2013]. Informally, a fault-tolerant planning
task P requires planning for goal achievement under the as-
sumption that no more than x exceptions will occur during
plan execution.

Definition 3 (adapted from [Domshlak, 2013]). For a non-
deterministic planning domain D, an exception model is a
function F : \J,c 4 Eff , — N, computable in time polyno-
mial in the size of P. If, for each action a € A, |{e | e €
Eff .. F(e) = 0}| < o, then F is called a-primary. Likewise,
if, for each action a € A, |{e | e € Eff,,F(e) =0} > 0,
then F' is called normative.

In a fault-tolerant planning problem, actions have two types
of effects. Primary effects model the normative behaviour of
the system, while faulty effects model one or more failures
(faults) of the system. Primary effects, e, have F'(e) = 0,
whereas F'(e) > 0 when e is faulty. Intuitively, the exception
model F' maps each effect to the number of exceptions, or
faults, associated with it.

Solutions to a fault-tolerant planning problem P =
(D, s0,S¢, F, k) are k-plans, or policies that achieve the
goal under the assumption that no more than x faults
will occur during execution. Formally, a plan P is «-
admissible when its execution generates the state-effect se-
quence (S, €, - - -, S4, €, - . .) With 3; F'(e;) < k. A policy is
a k-plan when all plan executions are x-admissible and reach
the goal. Solutions to fault-tolerant planning problems do not
assume fairness as done in strong-cyclic FOND planning, and
are robust to occurrence of up to x faults. Note that the pa-
rameter x that sets the maximum number of exceptions in a

solution is part of the problem description, and needs to be
known, computed, or otherwise guessed in advance.

Jensen et al. [2004] introduced the model for fault-tolerant
planning, and addressed 1-primary normative models with the
rationale that these satisfactorily address non-determinism
originating from many real-world physical system models.
Fault-tolerant planning has found applications in the robot
community (e.g. [Lussier et al., 2007]). More recently, fault-
tolerant planning has been studied by Domshlak [2013] and
Delgrande and Levesque [2013]. Recent work by Pineda et
al. [2013] addressed the problem of fault-tolerant planning
under uncertainty, tackling the problem from the perspective
of a stochastic shortest-path (SSP) problem.

3 Planning with Unfair Non-Determinism

We seek to generate solutions to goal-oriented planning
problems with non-deterministic action effects where the fair-
ness assumption does not necessarily hold. Different notions
of fairness over executions have been discussed in the liter-
ature. In particular, D’Ippolito er al. [2011] defined strong
independent fairness, a notion that presumes it is known, for
each action, which outcomes are good and which ones are
failures (similar to the distinction made in fault-tolerant plan-
ning), and requires failures and assumptions — normally, tem-
porally extended constraints — on the environment behaviour
to be independent. Sardina and D’Ippolito [2015] defined dif-
ferent logical characterizations of fairness based on the no-
tions introduced by D’Ippolito et al. [2011]. Kupferman and
Vardi [1996] proved that verification of fair transition systems
is PSPACE-complete.

Our premise is that in many transition systems, and in con-
crete non-deterministic planning domains, it is known which
state-action pairs s, a are guaranteed to produce, eventually,
certain outcomes s’ if @ would be applied in s infinitely often.
While not true in general, it is a valid assumption for many
real-world transition systems. For example, it is known that
pressing the elevator’s button on the wall repeatedly causes
the elevator’s doors to open. On the other hand, it is known
there is no guarantee that a fixed number will be awarded in a
lottery, even if the lottery is played infinitely many times un-
der identical conditions. When fairness does not hold, solu-
tions need to be robust to non-determinism, and goal achieve-
ment in plan executions should not rely on a particular tran-
sition for which there is no guarantees of occurrence. A sim-
ilar argument can be made in non-deterministic domains that
have known normative behaviour. In the scope of this paper,
we focus our attention on 1-primary normative fault-tolerant
planning problems. In these problems, solutions need to be
robust to failures, and the goal needs to be achievable when-
ever the system manifests its normative behaviour.

The following example motivates the need for policy gen-
eration mechanisms that guarantee goal achievement in those
non-deterministic domains where the fairness assumption is
not valid. Further, it illustrates a parallelism between solu-
tions to goal-oriented planning problems where fairness gov-
erns the non-determinism of the actions, and those where the
non-deterministic actions have primary and faulty effects.

T

[4]
o

) A
rH rH

[7]

[=]5]

(a) Strong-Cyclic Solution (b) Normative Solution

Figure 1: Different policies for the blocks-world domain. The
pick-up action is non-deterministic, and may pick-up a certain
block or drop it on the table. The put-on-block and put-block-
on-table actions are deterministic.

Ilustrative Example

Consider the blocks-world domain, where block A is ini-
tially on top of block B, and the goal is to put A on the ta-
ble. The agent can pick up blocks and put them on top of
other blocks, or on the table. The pickup-block action is non-
deterministic and the gripper may drop the block onto the ta-
ble, but is guaranteed to eventually pick-up the block if tried
repeated times. The put-on-block (resp. put-block-on-table)
action is deterministic and puts the block held by the grip-
per on top of another block (resp. on the table). Strong-cyclic
FOND solutions that assume fairness may rely on the even-
tual occurrence of the faulty effect of pickup-block in order
to reach the goal. Figure 1a shows the strong-cyclic solution
that picks up block A and puts it on top of B repeatedly until
block A is dropped on the table. If it is the case that the effect
of the pickup-block action that drops the block is not guaran-
teed to occur during execution, the solution described above
does not guarantee goal achievement. In contrast, the solu-
tion illustrated in Figure 1b is strong, and goal achievement
is guaranteed.

A similar pattern appears when we consider that the block
being picked up is the normative behaviour of the pickup-
block action. The solution described in Figure 1a loops until
the pick-up action is faulty, which is certainly not a good qual-
ity solution because the normative behaviour of the system
can lead to the goal, regardless of whether the faulty effect is
guaranteed to occur or not. Note that the solution described
in Figure 1b is of good quality because executions lead to the
goal when the behaviour of the system is normative, and the
solution is robust to non-determinism.

3.1 The FOND' Model

A Fully Observable Non-Deterministic Planning problem
with Labeled UnfairnesS (for short, FONDT problem) is a
tuple P = (D, s, Sg, L), where D = (F, S, A, T) is a non-
deterministic planning domain, sy € S is the initial state,
S¢ C Sisasetof goal states,and L : Sx AxS — {F,U}isa
labeling function that maps each triplet (s, a,s’) € Sx A% S
into one of the symbols F or U. The semantics of L supports
different interpretations. Before elaborating, we first define
what constitutes an L-fair execution. For a non-deterministic
planning domain D = (F,S, A, T), and labeling function
L:SxAxS — {F,U}, we say that an execution in state ¢
is L-unfair when there exists a state-action tuple (s, a) such

that (i) (s,a) appears infinitely often, and (ii) there exists a
transition (s, a, s’) such that L(s, a,s’) = F and (s, a, s") oc-
curs a finite number of times. Executions that are not L-unfair
are said to be L-fair. Note that fairness, as defined by Cimatti
et al. [2003], is a particular case of L-fair that occurs when
L assigns F to all transitions. Solutions to a FOND™ problem
are policies that guarantee goal achievement, predicated on
the assumption that all executions of D in sg are L-fair.

Definition 4. A FOND™ problem is a tuple P =
(D, s0,S5a,L), where D = (F,S,A,T) is a non-
deterministic planning domain, so € S is the initial state,
Sa C S is a set of goal states, and L : S x A x S — {F,U}
is a labeling function.

Definition 5. Solutions to a FOND' problem P =
(D, s0, Sq, L) are policies that guarantee goal achievement,
predicated on the assumption that all executions of D in sg
are L-fair.

In the scope of this paper, we focus our attention on two
different interpretations of the labeling function. The first in-
terpretation assumes it is known, for each state-action pair
(s,a), which transitions (s, a, s") are nor guaranteed to oc-
cur infinitely often in executions where the pair (s,a) ap-
pears an infinite number of times. In those transitions, we as-
sign L(s,a,s’) = U. Otherwise, we assign L(s,a,s’) = F.
With this interpretation, all plan executions are L-fair and
FOND™ solutions guarantee goal achievement during ex-
ecution. In other words, FOND™ solutions are robust to
non-deterministic transitions during plan execution, and goal
achievement does not rely on any specific transition for
which there is no guarantees of eventual occurrence. The
FOND™ model overcomes difficulties of the FOND model
when strong solutions do not exist, as strong-cyclic solutions
do not guarantee goal achievement, in general, when Cimatti
et al.’s fairness assumption is not valid.

The second interpretation we examine describes the nor-
mative behaviour of the system, and assigns L(s,a,s’) = F
(resp. L(s,a,s’) = U) when s’ follows from a primary (resp.
faulty) effect of a in s. With this interpretation, an execution
is L-fair when it is finite, or when it is infinite and for each
state-action pair (s, a) that appears infinitely often, the system
responds with each primary effect of a in s infinitely often. As
we will see later, this interpretation is particularly interesting
in certain FOND™ planning problems, and makes it possible
to find policies that guarantee goal achievement under the as-
sumption that the number of transitions produced by faulty
effects during plan execution is finite.

In the blocksworld example introduced above, and with
both interpretations, all transitions ¢ have L(t) = F except
the transitions produced by the effect of the pick-up action
that drops the block on the table, which have L(t) = U. With
this labeling, the policy depicted in Figure 1b is a FOND™
solution, whereas the policy depicted in Figure 1b is not.

3.2 Classes of Solutions

We characterize different classes of solutions to FOND+
problems according to the fairness of plan executions.
Namely, we distinguish between strictly fair, strictly un-
fair, and mixed solutions. Furthermore, we characterize the

Strictly Fair

} Strictly Unfair

Mixed

Figure 2: Distribution of different classes of solutions to
FOND™ planning problems.

class of normative solutions that is particularly interesting for
its practical applications and proximity with solutions to 1-
primary normative fault-tolerant planning problems.

A solution 7 to a FOND™ problem is strictly fair when
all transitions ¢ produced by L-fair plan executions have
L(t) = F. Strictly fair solutions to a FOND* problem P =
(D, s0, Si, L) are strong-cyclic solutions to the FOND prob-
lem P’ = (D, sg, S¢) that results from ignoring the labeling
function in P. The opposite is not always true, and strong-
cyclic solutions to P’ may or may not be strictly fair solutions
to P — only when all transitions ¢ produced by plan execu-
tions have L(t) = F. In general, a strong cyclic solution can
belong to any class of FOND™ solutions. Like strong-cyclic
solutions, strictly fair solutions can contain cycles.

Definition 6. A solution 7 to a FOND™ problem is strictly
fair when all transitions t produced by L-fair plan executions
have L(t) = F.

The class of strictly unfair solutions is analogous to the
class of strictly fair solutions, this time requiring transitions
t produced by L-fair plan executions have L(t) = U. Strictly
unfair solutions to a FOND™ problem P = (D, s¢, Sg, L)
are strong solutions to the FOND problem P’ = (D, sg, S¢)
that results from ignoring the labeling function in P. The op-
posite is not always true either, and strong solutions to P’ are
strictly unfair solutions to P only when all transitions ¢ pro-
duced by plan executions have L(¢) = U. In general, a strong
solution can belong to any class of FOND* solutions. Like
strong solutions, strictly unfair solutions are acyclic.

Definition 7. A solution 7 to a FOND™ problem is strictly
unfair when all transitions t produced by L-fair plan execu-
tions have L(t) = U.

The class of mixed solutions completes the space of so-
lutions to a FOND™ planning problem. Mixed solutions are
those that are neither strictly fair nor strictly unfair. Plan ex-
ecutions sg, ag, S1,4a1 - .. Sy are such that s, is a goal state,
and may contain cycles. More precisely, there may exist
k < m < n such that s = s,,. As all infinite plan exe-
cutions need to be L-unfair (cf. Definition 5), at least one of
the outcomes of s; by a;, for a certain k < ¢ < m, must yield
a transition (s;, a;, s, 1) with L(s;, a;, 8;, 1) =F.
Definition 8. A solution m to a FOND™ problem is mixed
when it is neither strictly fair nor strictly unfair.

Finally, we characterize the class of normative solutions,
which are particularly interesting when the labeling function
describes the normative behaviour of the system — i.e., when

transitions (s, a, s’) with label L(s,a,s’) = F are exactly
those produced by a primary effect of a in s. A solution 7
is normative when, in each state s, reachable by =: (i) there
exists a plan execution in s that reaches the goal and such
that all transitions ¢ have L(t) = F, and (ii) exactly one out-
come of s by 7(s) produces a transition ¢ with L(t) = F.
The class of normative solutions intersects with the class of
strictly fair solutions in those solutions that are deterministic
plans (cf. Figure 2).

Definition 9. A FOND™ solution 7 is normative when, in
each state s, reachable by 1: (i) there exists a plan execution
in s that reaches the goal and such that all transitions t have
L(t) = F, and (ii) exactly one outcome of s by 7(s) produces
a transition t with L(t) = F.

With the interpretation of the labeling function that de-
scribes the normative behaviour of the system, policy actions
of normative solutions are required to have, by definition, one
primary effect. Solutions need to be robust to faulty transi-
tions and guarantee goal achievement, at any point during
execution, when the system follows its normative behaviour.
In order to facilitate comparison with the fault-tolerant plan-
ning model, we assume the value L(s,a,s’) depends only
on the effect that produces the outcome s’, but not on the
state s itself. Formally, we assume L(s,a, Prog(s,a,e)) =
L(s',a,Prog(s’,a,e)) for all actions a € A, all effects e
of a, and all pairs of states s, s’ € S in which a is applica-
ble. When this property holds, the labeling function can be
described compactly as a function of the actions effects.

With the restrictions described above, normative solutions
to a FOND™ problem P = (D, s¢, Sg, L) are also 1-primary
normative solutions ' to fault-tolerant planning problems
P’ = (D, sy, Sg, F, k) with an exception model F' that as-
signs faults F'(e) > 0 to effects e that produce transitions
(s,a, Prog(s,a,e)) such that L(s,a, Prog(s,a,e)) = U.
Note that normative FOND™ solutions are robust to occur-
rence of any possible number of faults during execution, as
opposed to standard fault-tolerant solutions, whose execu-
tions are guaranteed to be robust up to a bounded number
of faults x specified by the model.

Theorem 1. Let P = (D, so,Sq, L) be a FOND™ prob-
lem, and let P’ = (D, sq, Sq, F, k) be a 1-primary normative
fault-tolerant planning problem with exception model F' that
assigns faults F'(e) > 0 to effects e that produce transitions
(s,a, Prog(s,a,e)) such that L(s,a, Prog(s,a,e)) = U.
Then, FOND™ normative solutions to P are 1-primary nor-
mative solutions to P’ for any k < o0.

The practicality of 1-primary normative fault-tolerant plan-
ning to model and solve many real-world physical prob-
lems has been discussed by Jensen et al. [2004] and Domsh-
lak [2013]. Normative FOND™ solutions overcome certain
limitations of the 1-primary normative fault-tolerant planning

'For convenience, we informally say that a solution 7 is a-
primary (resp. normative) when |{e | e € Eff,, F(e) = 0}| < «
(resp. |[{e | e € Eff,,F(e) = 0}| > 0) in all effects from plan
executions of 7. Technically, the a-primary normative model intro-
duced by Domshlak [2013] requires F' to be a-primary and norma-
tive globally, which is a harder constraint.

model and its solutions. More precisely, normative FOND™
solutions are robust to any number of faulty transitions dur-
ing execution. This is an advantage with respect to solutions
to fault-tolerant planning, which are robust to a limited num-
ber of x faults during execution. Besides, « is a parameter of
the model that has to be fixed prior search, even if a solution
robust to any number of faults exists.

4 Search Algorithms for FOND™

This section presents algorithms to search for strictly fair,
strictly unfair, and normative solutions to FOND™ planning
problems. This is followed by an algorithm that is, in prin-
ciple, less efficient, but can search for general solutions
to FOND™ problems. Notwithstanding, the algorithms pre-
sented below are intended to provide a baseline for future im-
provements, and their main purpose is to demonstrate the ex-
istence of methods to find solutions to FOND™. We decided
to follow a branch-and-bound search scheme, motivated by its
efficiency in the search for strong-cyclic solutions to FOND
problems [Muise et al., 2012]. The similarity between the
FOND* and FOND planning models suggests that a similar
technique may be effective in the search for FOND™ solu-
tions.

4.1 Search for Strictly Fair Solutions

By definition, all transitions ¢ produced by plan executions
of strictly fair solutions are such that L(t) = F. It is straight-
forward to see that strictly fair solutions to a FOND™ problem
P = (D, sg, Sg, L) are all and only those strong-cyclic solu-
tions to the FOND problem P’ = (D', s¢, S¢). Intuitively,
D’ is like D, but the actions applicable in a given state s
are restricted to those a’s that only yield transitions (s, a, s)
labeled with L(s,a,s’) = F. This constraint can be imple-
mented by means of extra dummy fluents in D’. Alternatively,
when L accepts a compact description such that its value de-
pends only on the effects of the actions that yield each transi-
tion, we can safely prune an action a from D’ when not all its
effects yield transitions ¢ with L(t) = F.

For a FOND™ problem P, the algorithm consists of two
steps:

1. P is relaxed into a FOND problem P’ as described
above.

2. A sound and complete strong-cyclic FOND planner —
e.g. PRP [Muise et al., 2012] — is used to search for
a strong-cyclic solution to P’, which is returned as a
strictly fair solution to P.

Since strictly fair solutions to P are the strong-cyclic solu-
tions to the FOND problem P’, soundness and completeness
of the algorithm derives from soundness and completeness of
the strong-cyclic FOND planner.

4.2 Search for Strictly Unfair Solutions

By definition, all transitions ¢ produced by plan executions
of strictly unfair solutions are such that L(¢) = U. The algo-
rithm to find strictly unfair solutions is somewhat analogous
to the algorithm used to find strictly fair solutions. This time,
however, we exploit the correspondence between strictly un-
fair solutions to a FOND* problem P = (D, sq,Sq, L)

and strong FOND solutions to the FOND problem P’ =
(D', s0, S¢)- Intuitively, D’ is like D, but the actions applica-
ble in a given state s are restricted to those a’s that only yield
transitions (s, a, s’) labeled wth L(s,a,s’) = U. This con-
straint can also be implemented by means of extra dummy
fluents in D’. Alternatively, when L accepts a compact de-
scription such that its value depends only on the effects of
the actions that yield each transition, we can safely prune
an action a when not all its effects yield transitions ¢ with
L(t) =u.

For a FOND™ problem P, the algorithm consists of two
steps:

1. P is relaxed into a FOND problem P’ as described
above.

2. A sound and complete strong FOND planer — e.g.
[Jaramillo et al., 2014] — is used to search for a strictly
unfair solution to P’, which is returned as a strictly un-
fair solution to P.

Since strictly unfair solutions to P are the strong solutions
to the FOND problem P’, soundness and completeness of the
algorithm derives from soundness and completeness of the
strong FOND planner.

4.3 Search for Normative Solutions

Normative solutions are those where, for every reachable
state s, there exists a plan for s for which all transitions ¢ have
L(t) = F. Algorithm 1 exploits this property. Intuitively, the
algorithm explores plans that exclusively produce transitions
t such that L(t) = F, which are extended into robust policies
that also consider occurrence of other transitions.

Without loss of generality, we assume the problem has the
property that all actions produce, in each state s in which a
is applicable, exactly one transition ¢ such that L(t) = F. If
this property is not true, and the value of L(s,a,s’) in any
state s depends only on the effect of a that generates outcome
', actions that do not have exactly one effect that produces a
transition ¢ such that L(t) = F can be safely pruned in a pre-
processing stage. Alternatively, a constraint during search can
be added, so that a state s can be expanded by action a only
when exactly one outcome produces a transition ¢ such that
L(t) = F. If this check is not performed, Algorithm 1 still
finds solutions (perhaps non-normative mixed solutions) that
guarantee goal achievement when the interpretation of the la-
beling function describes fairness, but goal achievement dur-
ing execution is not guaranteed anymore when the labeling
function describes the normative behaviour of the system.

Procedure POLICYSEARCH in Algorithm 1 maintains three
separate stacks: Open, Seen, and Deferred. The following
search procedure is performed until policy 7 does not change
with respect to the previous policy found. First, Open is ini-
tialised with the initial state sy and Seen, Deferred, and 7
are initialised to empty sets. For each state s in Open being
processed, for which 7 is undefined, procedure GENFAIR-
PLAN searches a plan P for s that exclusively produces tran-
sitions ¢ such that L(t) = F. Then, policy 7 is extended
with information extracted from P, and the successors of s
by 7(s) are stacked. This is done by procedure STACKSUC-
CESSORS, which stacks each successor s’ into Open when

Algorithm 1 Search for Normative Solutions

1: procedure POLICYSEARCH(V, sq, 4, A)

2: while 7 changes do
3: T
4: Open < sg
5: Seen + {}
6: Deferred + {}
7: while Open # () VV Deferred # () do
8: s =UNSTACK()
9: if s £ s, A\ s & Seen then
10: Seen.add(s)
11: if 7(s) is undefined then
12: GENFAIRPLAN(V, s, 54, A,)
13: end if
14: if 7(s) is defined then
15: {p.a) = (s)
16: STACKSUCCESSORS(s, a)
17: else break
18: end if
19: end if
20: end while
21: PROCESSDEADENDS()
22: end while
23: return m

24: end procedure

Add Successors to Corresponding Stack

25: function STACKSUCCESSORS(s, a)
26: for e € Eff, do

27: s’ = Prog(s,a,e)

28: if L(s,a,s’) =F then
29: Open.add(s’)

30: else

31: Deferred.add(s")
32: end if

33: end for
34: end function

Get Next Node to Explore

35: procedure UNSTACK
36: if Openp # () then

37: s = Open.pop()
38: else

39: s = Deferred.pop()
40: end if

41: return s

42: end procedure

L(s,m(s),s’) = F, and stacks s’ into Deferred otherwise.
The construction of the policy is performed by, iteratively,
unstacking a new state from Open, or Deferred if Open is
empty, and finding a plan with GENFAIRPLAN search. This
iterative process is run until the stacks Open and Deferred are
empty, or GENFAIRPLAN search for plans fails.

Procedures GENFAIRPLAN and PROCESSDEADENDS are
inspired by procedures GENPLANPAIRS and PROCESS-
DEADENDS in the FOND planner PRP [Muise et al., 2012].
GENFAIRPLAN does two things. First, it searches for a plan
P for s such that all transitions ¢ have L(t) = F. For effi-

ciency, such a plan may end in a goal state or in a state for
which a policy action has already been computed. Second,
like PRP’s GENPLANPAIRS, it extends 7w with new state-
action pairs. More precisely, for each pair (s, a) in the plan,
GENFAIRPLAN computes, via regression, the relevant part p
of s so that the goal is still reachable (e.g. [Waldinger, 1977;
Reiter, 2001]). Finally, it extends 7 with the (partial) state-
action pair (p,a). PRP maintains a list of forbidden state-
action pairs (FSAPs) that recognisably lead to a state where
no strong-cyclic policy exists. FSAPs allow to prune the
search space effectively, and reduce search times consider-
ably, in practice. We apply the same ideas in our algorithm.
Whenever GENFAIRPLAN fails to find a plan for state s (i.e.,
s is a dead end), procedure PROCESSDEADENDS computes
the reasons why s is a dead end and performs regression to
create a set of forbidden (partial) state-action pairs that need
to be avoided in future searches.

Algorithm 1 finds normative solutions to a FOND™ prob-
lem, as proved in Theorem 2.

Theorem 2. Algorithm I is sound and complete in the search
for normative solutions to a FOND™ problem.

Proof sketch. Line 16 of Algorithm 1 stacks all states reach-
able by 7, Every state a reachable by 7 is considered in line
8 of Algorithm 1. If no fair plan for s has been computed yet,
procedure GENFAIRPLAN finds a fair plan for it. This proves
soundness of the algorithm. Procedure POLICYSEARCH ex-
plores all the states space, except those forbidden state-action
pairs that are pruned from search by PROCESSDEADENDS.
Therefore, the algorithm is complete. O

Algorithm 1 maintains soundness and completeness when
procedure STACKSUCCESSORS stacks all successors into the
Open stack — i.e. the use of Deferred stack is not necessary.
However, there is an advantage to employing the Deferred
stack. The rationale appears with the interpretation that tran-
sitions with L(¢) = F model the normative behaviour of the
system. Intuitively, we want faulty transitions to be repaired
so the system moves back to a normative state. When han-
dling of states originated by faulty transitions (L(t) = U) is
deferred, it is more likely that plans found by procedure GEN-
FAIRPLAN plan to a state that is already handled by the pol-
icy rather than yielding a niew plan all the way to the goal. In
other words, it is more likely that those plans are repairs rather
than alternative plans. This is a desired property of solutions
that justifies, in principle, the use of the Deferred stack.

4.4 Search of FOND™ Solutions

We presented algorithms to obtain strictly fair, strictly un-
fair, and normative solutions to FOND* problems. In this
section, we present a search algorithm to obtain general solu-
tions to FOND™ problems.

For a FOND™ problem P, our algorithm is an iterated call
to Algorithm 2 with parameter x = 0,1,... until a solu-
tion is found. Similar to normative fault-tolerant planning,
each iteration fixes the maximum number x of transitions
with L(t) = U allowed to occur in any plan execution. How-
ever, solutions do not presume that no more than « faulty ef-
fects will occur. The algorithm makes use of an augmented

Algorithm 2 Search of FOND™ Solutions
1: procedure POLICYSEARCH(k, V, Sg, S«, A)

2: while 7 changes do
3: T 0
4: Open < sg
5: Seen <+ {}
6: while Open # () do
7: s = Open.pop()
8: if s.ucount > « then break
9: end if
10: if s }£ 5. A s & Seen then
11: Seen.add(s)
12: if 7(s) is undefined then
13: GENBOUNDPLAN(k, V, 8, 54, A,)
14: end if
15: if 7(s) is defined then
16: {p.a) = (s)
17: STACKSUCCESSORS(s, a)
18: else break
19: end if
20: end if
21: end while
22: PROCESSDEADENDS()
23: end while
24: return m

25: end procedure

Add Successors to Corresponding Stack

26: function STACKSUCCESSORS(s, a)
27: for e € Eff, do

28: s’ = Prog(s,a,e)

29: if L(s,a,s’) =F then

30: s’ .ucount < s.ucount

31: else

32: s’ . ucount < s.ucount + 1
33: end if

34: Open.add(s')

35: end for
36: end function

representation of states that includes, for each planning state
s explored, a counter s.ucount that records the number of
transitions with L(t) = U produced to visit state s. The ini-
tial state has s.ucount = 0. For a transition (s, a,s’), the
counter s’.ucount equals s.ucount when L(s, a, s’) = F, and
s.ucount + 1 when L(s, a,s’) = U.

We abuse notation and say that s entails s’ when s = s’
and s.ucount < s’.ucount. For a state s in the Open stack
being processed, procedure GENBOUNDPLAN searches for
plans P = s, aq, s1,a1,...an, S, that either: (i) exclusively
produce transitions ¢ with L(t) = F and s, is a goal state,
(ii) exclusively produce transitions ¢ with L(t) = F and s,
entails a partial state for which the policy action is defined. or
(iii) exclusively produce transitions ¢ with L(¢) = F except
(Sn—1, an, Sn), and all transitions produced by the progres-
sion of s,,_1 by a, have L(t) = U. Intuitively, conditions
(i),(i),(iii) ensure that all L-fair plan executions achieve the
goal.

In GENBOUNDPLAN, plans are regressed as in procedure

GENFAIRPLAN of Algorithm 1. Regressed states keep the
counter s.ucount in each state s of the plan, which is not
altered by plan regression. Procedure PROCESSDEADENDS
— analogous to that of Algorithm 1 — keeps track of the state-
action pairs that recognisably lead to a dead end or a state
for which procedure GENBOUNDPLAN fails to find a plan,
where representation of states s include the counter s.ucount.
The list of forbidden state-action pairs is initialised in each
call to POLICYSEARCH. We leave further optimizations of
the algorithm for future work.

Strictly speaking, solutions found by Algorithm 2 are not
policies. The reason is that the action performed in an aug-
mented state s, in general, may depend on the value of the
counter s.ucount. Certainly, the action returned by a policy
should depend only on the planning state, not on the counter.
We have two options to mitigate for this. One, is to construct
the policy that selects, for each planning state s, the action
among all (augmented partial) state-action pairs {p,a} such
that s |= p and p.ucount is maximal. The second option is
to represent the solution found by Algorithm 2 as a FSC 7
that keeps track, implicitly, of occurrence of transitions with
L(t) = U along execution.

Theorem 3. Algorithm 2 is sound and complete in the search
of FOND™ solutions whose plan executions produce a num-
ber of transitions t with L(t) = U that is bounded by k.

Corollary 1. The iterated call to Algorithm 2 with parame-
ters k = 0,1,... finds a solution to a FOND™ problem P,
if such one exists. If a solution is found in the r-th iteration,
the number of transitions t with L(t) = U in plan execution is
bounded by k.

5 Experiments

We conducted a series tests with the objective of demon-
strating the need for FONDT solutions, that differ from
strong-cyclic FOND solutions and that guarantee goal
achievement when the classical fairness assumption is not
valid. We selected a non-deterministic planning domain, the
blocksworld-new, and a set of FOND problems. For each
FOND problem, we constructed FOND™ problem by labeling
transitions. Finally, we compared FOND™ normative solu-
tions with strong-cyclic FOND solutions to each of the prob-
lems. We used PRP as the strong-cyclic planner; Algorithm 1
is implemented on top of PRP. In all cases (also in Algorithm
1), we configured PRP search with dead end detection dis-
abled, and strong-cyclic-detection optimization disabled. Ex-
periments were run on an Intel Xeon E5-2430 CPU @2.2GHz
Linux server, limiting processes to 2GB of memory usage.

The blocksworld-new problems used in our tests have been
extracted from Muise er al. [2012]. They are based on the
blocksworld benchmark used in past International Probabilis-
tic Planning Competitions (IPPCs), and include some fixes
and larger problem sizes with respect to the original instances.
In the blocksworld-new domain, the gripper can pick up a
block (or two blocks at once) and put it on top of other block,
or on the table. The goal is to set the blocks in a certain or-
der. The action that puts blocks on the table is determinis-
tic. However, the pick-up and put-on-block actions have non-
deterministic effects. More precisely, the primary effect of

Strong-Cyclic Normative
problem | run-time size | run-time size
p2 0 3 0 3
p3 0.002 5 0.016 5
p4 0.020 11 0.048 11
p5 0.070 27 0.178 27
p6 0.110 39 0.296 39
p7 0.114 32 0.270 32
p8 0.150 26 0.356 26
p9 0.278 46 0.664 46
pl0 0.336 49 0.782 49
pll 0.522 120 1.936 97
pl2 0.626 97 1.840 119.5
pl3 0.682 57 1.810 57
pl4 3.794 1117 37.10 1123
pl5 1.500 278 7.814 278

Table 1: Average run-time (sec.) and policy size of FOND
and FOND™ solutions to blocksworld-new problems. Strong-
cyclic solutions presume fairness, whereas computation of
normative solutions is informed by the labeling function.

pick-up is to pick-up the chosen block (or the tower of two
blocks). Likewise, the primary effect of put-on-block is to put
a block (or a tower of two blocks) that is held by the grip-
per on top of another block. The faulty effect for both actions
drops the block (or the tower of two blocks) on the table. Al-
ternatively, we can interpret the gripper is guaranteed to suc-
ceed in picking-up the block eventually, and so on.

Table 1 summarizes the results of our tests. For each prob-
lem, we report the run-time and policy size, averaged over
10 runs per problem. Normative policies have, sometimes,
equal size to strong-cyclic policies. We conjecture that in
these problems strong-cyclic policies are also robust to un-
fairness (i.e. are also normative solutions to the FOND™ prob-
lems). On the other hand, in some FOND™ problems — like
pll, pl12, and pl4— the sizes of the normative policy varies
with respect to the size of the strong-cyclic policy of the cor-
responding FOND problem. In those cases, normative poli-
cies can be of greater or lesser size relative to strong-cyclic
policies. As normative FOND™ solutions are also solutions
to the FOND problem, this illustrates that policies found by
PRP are not necessarily of minimal size. Run-times of Algo-
rithm 1 are, in general, two times greater than those of PRP
in those problems where the size of the policies generated
are the same. Comparing the run times of our algorithm with
those of PRP is not fair, as the algorithms find solutions to
different problems. However, general run-times suggest that
the branch-and-bound technique used in Algorithm 2 is, in
principle, efficient in the search for normative solutions. As
the implementation of Algorithm 2 is preliminary and not op-
timal, we believe there is room for further improvements in
its performance.

6 Summary and Future Work

There exist a diversity of models for planning in the face
of non-deterministic action outcomes including probabilistic
planning, MDPs, and fault-tolerant planning. We focus our
attention on FOND planning. Solutions to FOND planning

problems are required to be robust to non-deterministic ac-
tion effects, and to guarantee goal achievement during execu-
tion. The class of strong solutions provides such guarantees,
but the existence of such solutions is restricted in general.
On the other hand, the soundness of strong-cyclic solutions
is predicated on fairness, and therefore its execution does not
guarantee goal achievement, in general, when the fairness as-
sumption is not valid.

To mitigate for this, we introduced the model for Fully Ob-
servable Non-Deterministic Planning with Labeled Unfair-
ness (FOND™), where fairness of action transitions can be
described explicitly by means of the labeling function L, and
solutions guarantee goal achievement provided that execu-
tions are L-fair. We leave complexity analysis of our model
to future work.

We distinguished four classes of solutions to FOND™ plan-
ning problems. Namely, strictly fair, strictly unfair, mixed,
and normative. Strictly fair (resp. strictly unfair) solutions
are strong-cyclic (resp. strong) solutions to FOND relax-
ations of the problem. This results in a continuum between
strong planning and strong-cyclic planning. Additionally, we
found a connection between normative solutions and fault-
tolerant planning. In particular, when primary action transi-
tions have L(s, a, s’) = F, normative solutions are solutions
to 1-primary normative models of fault-tolerant planning. No-
tably, our model does not impose a bound on the number
of faults during policy execution, and solutions are robust to
any finite number of faults during execution. This overcomes
the limitation of fault-tolerant planning, where that the num-
ber of faults « that a plan can tolerate must be designated
prior to policy generation and execution. We leave further ex-
ploration of the connection between the FONDT model and
fault-tolerant planning to future work.

Finally, we presented algorithms to find different classes
of solutions to FOND™ planning problems, and an algorithm
to find general solutions to FOND™. Our algorithms aim to
provide a baseline for future enhancements, although the per-
formance of Algorithm 1 suggests that a branch-and-bound
search scheme that explores deterministic plans in a certain
order is effective. We leave the design and evaluation of bet-
ter algorithms to future work.

References

[Cimatti et al., 2003] Alessandro Cimatti, Marco Pistore, Marco
Roveri, and Paulo Traverso. Weak, strong, and strong cyclic
planning via symbolic model checking. Artificial Intelligence,
147:35-84, 2003.

[Delgrande and Levesque, 2013] James P Delgrande and Hector J
Levesque. A formal account of nondeterministic and failed ac-
tions. In Proc. of the 23rd Int’l Joint Conference on Artificial
Intelligence (IJCAI). Citeseer, 2013.

[D’Ippolito er al., 2011] Nicolds D’Ippolito, Victor Braberman, Nir
Piterman, and Sebastidn Uchitel. Synthesis of live behaviour
models for fallible domains. In 33rd Int’l Conf. on Software En-
gineering (ICSE), pages 211-220. IEEE, 2011.

[Domshlak, 2013] Carmel Domshlak. Fault tolerant planning:
Complexity and compilation. In Proc. of the 23th Int’l Confer-
ence on Automated Planning and Scheduling (ICAPS), 2013.

[Jaramillo ef al., 2014] Andres Calderon Jaramillo, Jicheng Fu,
Vincent Ng, Farokh B Bastani, and I-Ling Yen. Fast strong
planning for fond problems with multi-root directed acyclic
graphs. International Journal on Artificial Intelligence Tools,

23(06):1460028, 2014.

[Jensen et al., 2004] Rune M Jensen, Manuela M Veloso, and Ran-
dal E Bryant. Fault tolerant planning: Toward probabilistic uncer-
tainty models in symbolic non-deterministic planning. In Proc. of
the 14th Int’l Conference on Automated Planning and Scheduling
(ICAPS), pages 335-344, 2004.

[Kolobov et al., 2009] Andrey Kolobov, Mausam, and Daniel S
Weld. Retrase: Integrating paradigms for approximate proba-
bilistic planning. In Proc. of the 21st Int’l Joint Conference on
Artificial Intelligence (IJCAI), pages 1746-1753, 2009.

[Kupferman and Vardi, 1996] Orna Kupferman and Moshe Y
Vardi. Verification of fair transition systems. In Computer Aided
Verification, pages 372-382. Springer, 1996.

[Lussier et al., 2007] Benjamin Lussier, Matthieu Gallien, Jérémie
Guiochet, Félix Ingrand, Marc-Olivier Killijian, and David Pow-
ell. Fault tolerant planning for critical robots. In 7th Annual
IEEE/IFIP Int’l Conf. on Dependable Systems and Networks
(DSN), pages 144-153. IEEE, 2007.

[Muise et al., 2012] Christian Muise, Sheila A. Mcllraith, and
J. Christopher Beck. Improved Non-deterministic Planning by
Exploiting State Relevance. In Proc. of the 22th Int’l Conference
on Automated Planning and Scheduling (ICAPS), pages 172—
180, 2012.

[Pineda er al., 2013] Luis Enrique Pineda, Yi Lu, Shlomo Zilber-
stein, and Claudia V Goldman. Fault-tolerant planning under un-
certainty. In Proc. of the 23rd Int’l Joint Conference on Artificial
Intelligence (IJCAI), 2013.

[Puterman, 1994] Martin Puterman. Markov Decision Processes:
Discrete Dynamic Programming. Wiley, New York, 1994.

[Reiter, 2001] Raymond Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical Sys-
tems. MIT Press, Cambridge, MA, 2001.

[Sardina and D’Ippolito, 2015] Sebastian Sardina and Nicolas
D’Ippolito. Towards fully observable non-deterministic planning
as assumption-based automatic synthesis. In Proc. of the 24th
Int’l Joint Conference on Artificial Intelligence (IJCAI), pages
3200-3206. AAAI Press, 2015.

[Trevizan et al., 2007] Felipe W Trevizan, Fabio Gagliardi Coz-
man, and Leliane Nunes de Barros. Planning under risk and
knightian uncertainty. Proc. of the 20th Int’l Joint Conference
on Artificial Intelligence (1JCAI), 2007:2023-2028, 2007.

[Waldinger, 1977] Richard Waldinger. Achieving several goals si-
multaneously. In Machine Intelligence 8, pages 94-136. Ellis
Horwood, Edinburgh, Scotland, 1977.

