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Abstract

The accurate identification of gene and

protein names in patents is an essential

step in many commercially highly relevant

applications, such as patent retrieval, prior

art search, or patent classification. Since

patents exhibit a number of properties that

make them quite different from scientific

articles, it is questionable whether tools

developed for the latter sort of texts will

work equally well for the former. Answer-

ing this question is aggravated by the fact

that only few annotated patent corpora ex-

ist which makes training hard. In this pa-

per, we report on a comparative evalua-

tion of four existing gene/protein named

entity recognition and normalization tools

trained on scientific articles regarding their

performance on the two patent corpora.

We analyze the tools with respect to differ-

ent evaluation metrics to highlight their re-

spective strengths and limitations. Our re-

sults reveal that the performances of these

tools over patents are generally lower than

for scientific articles. Exemplified by

one of the four tools, we also show that

training on annotated patents considerably

improves performance on patent corpora.

We conclude that more efforts must be

taken to produce adequate training data for

working with patents.

keywords: Patent Mining, Named Entity

Recognition, Named Entity Normalization, Gene

and Protein Entities, Performance Measurements.

1 Introduction

Patents are an important source of knowledge

for biomedical research, yet receive compara-

bly little attention from the scientific commu-

nity (Rodriguez-Esteban and Bundschus, 2016).

While a multitude of annotated collections of

scientific articles (mostly abstracts) for different

classes of entities exist, only few such resources

are available based on patents, although patents,

like scientific abstracts, in principle are avail-

able to the public without fees. Patents are of

paramount importance for many commercial ac-

tivities in the field; accordingly, one may suspect

that pharmaceutical and biotech companies should

be highly interested in methods to automatically

analyze patents, but, given the relative low num-

ber of publications on patent mining, they are ob-

viously less interested in publishing their results

or making their resources freely available (Roberts

and Hayes, 2008).

There are multiple ways in which patents can

be automatically analyzed by computer programs,

such as patent classification (Iwayama et al.,

2007), prior-art search (Harris et al., 2010), or

search engines for patents (Lupu and Hanbury,

2013). In this work, we are interested in informa-

tion extraction from patents; more specifically, we

study the problem of recognizing (NER, named

entity recognition) and normalizing (NEN, named

entity normalization) names of genes and proteins

(henceforth only called genes) in patents. Both

gene NER and NEN are well researched problems

in scientific articles (Leser and Hakenberg, 2005),

but only few results exist for patents (Rodriguez-

Esteban and Bundschus, 2016).

The most notable attempt to this problem was

performed through the recent GPRO task (gene

and protein related object task) part of the BioCre-

ative V challenge (Krallinger et al., 2015) In

this competition, teams had to extract mentions

of genes and proteins from two manually an-

notated gold standard patent corpora consisting

of patents’ titles and abstracts. However, the



number of participating teams was rather limited;

only four teams participated, submitting 16 runs.

Furthermore, the evaluation was performed only

at the mention level before normalization; thus

the performance of gene name normalization was

not assessed. The highest F-measure score at

this challenge was 81.37 achieved by Leaman et

al. (2015), which is a performance quite inferior

to that achieved at gene NER tasks for scientific

articles.

Given the lack of annotated patent corpora, it

is tempting to try reusing models trained on other

types of texts, especially on scientific abstracts as

here a variety of gold standards are freely avail-

able. This approach was actually also taken by

Leaman et al. (2015) which used an ensemble of

different instantiations of the base tool GNorm-

Plus (Wei et al., 2015) trained over different cor-

pora. The question remains whether tools other

than GNormPlus would be equally (or more or

less) suited for such cross-text-type applications.

To approach this question, we performed a com-

parative evaluation of four state-of-the-art gene

NER/NEN tools on the two GPRO patent cor-

pora, using their original models which were all

trained on corpora made of scientific abstracts.

Specifically, we compare GNAT (Solt et al., 2010),

Gimli (Campos et al., 2013), GNormPlus (Wei et

al., 2015), and GeneTuKit (Huang et al., 2011).

We measure their execution time, describe their

performance in terms of tagging and normaliza-

tion quality and discuss their strengths and limita-

tions using evaluations both at the mention level

and at the document level. Furthermore, we report

on the mention level performance of a high-recall

ensemble, made of unifying the tagging outputs of

GNormPlus and Gimli, and a high-precision en-

semble, created by intersecting the tagging results

of GNormPlus and GNAT. Eventually, we show-

case the impact of the cross-text-type application

by comparing the tagging performance of Gimli

when trained on scientific abstracts with that when

trained on patent abstracts.

Overall, our evaluation produces a diverse pic-

ture; GNAT seems to be the only tool fast enough

to be applicable to truly large patent corpora and

also achieves the best NER and NEN precision

but a rather low recall; Gimli achieves a compet-

itively high F-measure compared to GNormPlus,

which attained the best F-measure, in cross-text-

type evaluation but is very slow and does not per-

form entity normalization; and evaluation results

improve considerably when systems are trained on

documents of the same text type. We conclude that

more efforts must be taken to produce adequate

training data for working with patents.

2 Method

In this section, we present the existing gold stan-

dard patent corpora containing gene and pro-

tein annotations. We then describe a variety of

gene/protein NER tools, and more specifically de-

scribe four freely available gene/protein NER sys-

tems studied here. Finally we explain the evalua-

tion metrics used in our study.

2.1 Annotated Patent Corpora

We utilize two gold standard patent corpora con-

taining annotations for genes and proteins. These

two corpora are designed as training and develop-

ment sets for GPRO task (gene and protein related

object task) (Krallinger et al., 2015) at BioCre-

ative V challenge. The two sets are noted GPRO T

and GPRO D, each containing the title and the

abstract of 7000 patents manually annotated us-

ing the same annotation guideline. Table 1 rep-

resentes, the details of these gold standard corpora

including corpus size (the number of tokens sep-

arated by space), the number of patents, and the

number of annotated entities.

Table 1: Details of the gold standard patent cor-

pora containing the annotations for genes/proteins.

Corpus Number of Number of
Patents Annotations

GPRO training set 7000 patents 4396
(GPRO T) (title and annotations

≈ 662234 token abstracts)
(Krallinger et al., 2015)
GPRO development set 7000 patents 3934

(GPRO D) (title and annotations
≈ 648732 token abstracts)

(Krallinger et al., 2015)

The annotated entities in both corpora can

be assigned to one of “NESTED MENTIONS”,

“IDENTIFIER”, “FULL NAME”, and “ABBRE-

VIATION” classes. Moreover, these annotated

entities are normalized to identifiers from gene

databases such as UniProt, GenBank, HGNC, Ref-

Seq, Ensembl, and so on. Since the tools, stud-

ied here, normalize detected entities into identi-

fiers from EntrezGene database, we convert iden-

tifiers in the gold standard corpora into the ones



from EntrezGene database using BioMart1 web

service. We consider a subset of annotated entities

that can be normalized to identifiers from Entrez-

Gene database in our evaluation.

2.2 Gene NER Systems

Several NER tools for genes and proteins have

been developed using machine learning ap-

proaches with conditional random fields (CRFs)

such as GNormPlus (Wei et al., 2015), AIIA Gene

Mention Tagger (Hsu et al., 2008), GENIA Tag-

ger (Kulick et al., 2004), Moara (Neves et al.,

2010), tagtog (Cejuela et al., 2014), Gimli (Cam-

pos et al., 2013), GNAT (Solt et al., 2010), and

GenTuKit (Huang et al., 2011). Among these var-

ious tools, we have chosen the ones with high-

est performance on scientific articles, GNormPlus,

GNAT, Gimli and GeneTuKit. GNAT and Gimli

have been known as the baseline tools with the

state-of-the-art performance on scientific articles.

GeneTuKit has been selected as one of the high

performance tools in gene normalization task at

BioCreative III challenge (Lu et al., 2011), while

GNormPlus (Wei et al., 2015) has shown an im-

provement over the high performance tools at this

challenge. Since these four tools are trained on at

least one common corpus, their performances are

comparable.

Table 2 summarizes the tokenization methods,

and the training sets used by the mentioned NER

tools. GNAT, Gimli and GNormPlus train CRF

models to recognize entities. GNAT and Gimli

train CRF models using the BANNER imple-

mentation (Leaman and Gonzalez, 2008) while

GNormPlus uses the CRF++2 implementation.

The systems differ in their tokenization methods

while all are using the BioCreative II GM corpus

as part of their training sets to produce the models.

GeneTuKit as another NER system which we

used here extracts and ranks entities based on a

confidence score using an ensemble approach but

it does not provide any information about the po-

sition of entities. GeneTuKit selects an entity if

two methods out of three recognize it as a gene or

a protein. The first method is a CRF model trained

using BANNER similar to the three gene/protein

NER tools mentioned above. The second method

recognizes entities based on the ones listed in

EntrezGene database. The third one is a CRF-

1See http://www.biomart.org/
2See http://crfpp.googlecode.com/svn/

trunk/doc/index.html

based method developed by training ABNER NER

tool (Settles, 2005) using 32 full texts provided by

BioCreative III challenge.

All the mentioned NER tools normalize de-

tected entities into identifiers from EntrezGene

database except Gimli which does not provide any

normalization information for detected spans.

2.3 Evaluation Metrics

We first compare NER tools in terms of their ex-

ecution time over full patent documents randomly

chosen from European Patent Office3. Moreover,

we compare the performance of these tools in

terms of precision, recall, F-measure, true positive

(TP), false positive (FP), and false negative (FN)

counts. We perform exact matching to compute

all the evaluation scores. The experiments are per-

formed over the mentions and also the identifiers

recognized by systems.

To calculate the performance values, both pre-

diction and gold standard annotation files are

converted into files in IOB format suggested by

Klinger et al. (Klinger et al., 2008). In this for-

mat, every non-letter and non-digit character, and

all number-letter changes are split and each token

is represented by one of three chunk tags, B (be-

gin), I (inside), O (outside). Then the evaluation

scores are obtained using the commonly used con-

lleval4 script. We define the performance values at

both the mention and the document levels in the

following.

2.3.1 Mention Level Performance Values
The mention level scores are computed by con-

sidering the position of entities in each docu-

ment. Precision measures the ratio of predicted

gene mentions or identifiers assigned to the en-

tities which are exactly matched with gene men-

tions or identifiers annotated in a gold standard

corpus. Similarly, recall is measured as the ratio

of gene mentions or identifiers in a gold standard

corpus that appear at exactly the same location in

prediction files. F-measure is the harmonic mean

of the precision and the recall values. TP mea-

sures the number of gene mentions or identifiers in

a gold standard corpus which are correctly recog-

nized by a NER tool. FP is calculated by counting

the number of spans or identifiers which are incor-

rectly recognized as gene mentions by NER tools.

3See https://www.epo.org/
4The tool is freely available at http://www.cnts.

ua.ac.be/conll2000/chunking



Table 2: Details of the gene/protein NER tools in terms of their training sets, and tokenization method.

NER tool NER training set Tokenization method
GNAT -BioCreative II GM data Tokenization at spaces, numbers,

(Solt et al., 2010) and punctuation marks

Gimli -BioCreative II GM data Tokenization at every non-letter

(Campos et al., 2013) and non-digit characters

GeneTuKit -BioCreative II GM data Semantic tokenization

(Huang et al., 2011) -BioCreative III full text data

GNormPlus -BioCreative II GM data Tokenization at spaces, numbers

(Wei et al., 2015) -NLM Citation GIA and punctuation marks, and also

collection transitions between uppercase

and lowercase letters

FN is the number of gene spans or identifiers in a

gold standard corpus which are not recognized by

a NER tool.

Since both corpora are annotated using the same

annotation guideline, we report the micro-average

performance values at the mention level. These

values are calculated by averaging over TP, FP, and

FN counts computed for two patent corpora.

2.3.2 Document Level Performance
Measurements

The scores at document level are calculated by dis-

regarding the position of entities in documents. In

addition, all duplicate occurrences of a mention or

an identifier are ignored in our assessments. Preci-

sion at the document level is measured as the ratio

of correctly predicted gene names or identifiers,

among all the recognized entities or identifiers av-

eraged over all documents. Recall is defined here

as the ratio of correctly recognized gene names or

identifiers divided by the total number of anno-

tated gene entities or gene identifiers of a docu-

ment which is averaged over all the documents in

the corpus. F-measure is the harmonic mean of

the precision and the recall values computed at the

document level. Here, all the scores are calculated

by averaging over all the patent texts in both cor-

pora.

3 Results

We first compare NER tools in terms of their exe-

cution time over patent documents. Then, we as-

sess the performance of each tool’s default model

at both the mention and the document levels before

and after normalization on patents.

3.1 Execution Time Analysis
We compare the execution time of these tools over

10 complete patents that have been randomly cho-

sen from European Patent Office in domains of

medicine, biochemistry, and biology.

The tools are run sequentially on two differ-

ent machines. All the tools except Gimli are run

over a machine (m1) utilizing 2 Intel Core(TM)

i5-3320M CPUs @ 2.6 GHz, 4GB RAM memory

and Microsoft Windows operating system. We ex-

cluded Gimli because it does not normalize enti-

ties; therefore its execution time is not compara-

ble with the others. Additionally, Gimli can be

executed only on Mac iOS or Linux operating sys-

tems. Gimli requires a large amount of memory

size, for which we exploit another machine (m2)

composed of 120 Intel Xeon CPUs @ 2.5 GHz,

1TB RAM and Linux operating system.

The execution time of each tool, run on one

thread is reported in seconds and provided in Ta-

ble 3. GNAT only requires 205 seconds to com-

plete the task, and therefore it is the fastest NER

tool rather than the others. GeneTuKit, is 10

times slower and requires 1970 seconds to fin-

ish the task. GNormPlus with execution time of

13415 seconds is a slower tool compared with both

GNAT and GeneTuKit. The last one, Gimli, has

the worst execution time (349999 seconds) while

it utilizes a more powerful machine, m2. Con-

sequently, the tools can be ranked, according to

their execution time, from slow to fast as follows:

Gimli<GNormPlus<GeneTuKit<GNAT.

To show a feeling of the execution times of

these systems, we estimate them over 10 million

patent documents using 8 parallel threads by ex-

trapolating the above values. The estimated execu-

tion time for GNAT, GeneTuKit, and GNormPlus



Table 3: Execution time, in seconds, of four tools

which are run on 10 full patent documents. The

fastest tool, GNAT, is highlighted in bold font.

Gene/protein NER tool
Machine GNAT GeneTuKit GNormPlus Gimli

m1 205 1970 13415 –
m2 – – – 349999

are nearly 10 months, 8 years, 55 years, respec-

tively which are too short compared to 1406 years

for Gimli. The results indicate that the usage of

these tools appears not to be a practical approach

in reality except GNAT given large parallel sys-

tems.

3.2 Cross-Text-Type Comparison

We compare the performances of gene NER tools

over patents at both the mention level and the doc-

ument level (see Section 2.3) before and after nor-

malization. The experiments are performed using

the default models trained on non-patent articles.

3.2.1 Performance Values at Mention level
We calculate the performance values, i.e., preci-

sion, recall, and F-measure at the mention level for

three gene/protein NER systems, GNAT, GNorm-

Plus and Gimli before normalization as shown in

Figure 1. The highest precision is obtained by

GNAT and the highest recall is attained by Gimli

over both corpora, while GNormPlus offers the

highest F-measure value. We can infer that the su-

periority of each tool over patents depends on the

application.

0
10
20
30
40
50
60
70
80
90

100

precision (%) recall (%) F-measure (%)

GNAT GNormPlus Gimli

Figure 1: Evaluation scores at mention level in

terms of precision, recall, and F-measure values

over recognized spans by three gene/protein NER

tools, GNAT, GNormPlus and Gimli.

The F-measure values obtained for GNAT,

Gimli, and GNormPlus are 34.02%, 53.00%, and

48.00% respectively. These values are extremely

low, which implies that the models trained on sci-

entific articles are not suitable enough to recog-

nize gene and protein names from patent docu-

ments with complex writing structures. More-

over, we can rank the systems in terms of their

F-measure values from low to high as follows:

GNAT <Gimli<GNormPlus.
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80
90

100

precision (%) recall (%) F-measure (%)

GNAT GNormPlus

Figure 2: Evaluation scores at mention level with

respect to precision, recall and F-measure values

calculated for two gene NER tools after normal-

ization.

In the following, we measure the performance

values of gene/protein NER tools GNAT, and

GNormPlus after normalization as depicted in Fig-

ure 2. We do not provide any values for Gimli,

because it does not normalize recognized spans.

We observe that their performance values are re-

duced after normalization. The precision values of

both systems are reduced by around 6%. However,

the decrease in the recall values of GNormPlus is

higher than those of GNAT. The results also show

that the highest precision on normalized entities is

achieved by GNAT, whereas GNormPlus has the

highest recall and F-measure values. We can rank

two tools with respect to their F-measure values

from low to high as follows: GNAT<GNormPlus.

This ranking is completely in inverse order to the

one obtained for their speed.

3.2.2 Performance Values at Document Level
We measure the performance values at the docu-

ment level by ignoring the position of entities in

documents as explained in Section 2.3.2. The re-

sults of four systems before normalization are pro-

vided in Figure 3. The results indicate that the

performance values computed over the results of

GNormPlus and Gimli are highly competitive and

outperform those of GNAT and GeneTuKit. We

can also rank the tools from low to high as fol-

lows: GeneTuKit<GNAT<Gimli<GNormPlus.

Similarly, we calculate document level perfor-
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Figure 3: Evaluation scores at document level in

terms of precision, recall, and F-measure using

four gene NER tools before normalization.
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Figure 4: Evaluation scores at document level with

respect to precision, recall, and F-measure using

three gene NER tools after normalization.

mance values after normalization. The values for

GNAT, GNormPlus and GeneTuKit are shown in

Figure 4. We find no significant variation between

the performance values of each tool before and af-

ter normalization at document level. Therefore,

GNormPlus again outperforms the others, and the

ranking obtained above for the systems remains

unchanged after normalization.

4 Discussion

We have evaluated the performance of each indi-

vidual NER tool in terms of their tagging and nor-

malization quality on patents. Since we have ob-

served big differences among their performance

values, we have been motivated to measure the

performance of ensembles built by unifying or in-

tersecting the tagging outputs of pairs of systems.

Additionally, we observed that the performances

of default models trained on scientific articles are

quite low on patents; therefore, we assess the im-

pact of using patent training sets on the perfor-

mance values measured on patent data. All the

evaluations are performed at the mention level be-

fore normalization.

4.1 Ensemble Assessment

We compute the performance values obtained by

intersecting or unifying the outputs of pairs of

systems. Figures 5, and 6 respectively represent

the micro-average precision, recall, and F-measure

values obtained by intersecting and unifying the

results of pairs. The highest precision achieved by

intersecting the results of GNAT and Gimli which

is at least 5% higher than the one obtained by one

of the systems individually. Similarly, the high-

est recall value is attained by unifying the results

of Gimli and GNormPlus which brought an im-

provement of around 10% over that of individual

systems. Likewise, we observe an improvement

of at least 2% on the F-measure value, obtained

by unifying GNAT and GNormPlus outputs, com-

pared to that of individual systems.
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Figure 5: Evaluation scores calculated over the in-

tersection of the pairs’ outputs at the mention level

before normalization.
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Figure 6: Evaluation scores calculated over the

union of the pairs’ outputs at the mention level be-

fore normalization.

4.2 Retraining Using Patent Corpora

We retrain one of the four systems using patents to

investigate whether exploiting patent training sets

can enhance the tagging quality. As we did not

found clear explanation about retraining procedure



in public API of GNormPlus as the best perform-

ing tool, we retrained Gimli as the second system

with highest performance on patents.
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Figure 7: Evaluation scores in terms of preci-

sion, recall and F-measure are provided for the

new models obtained by retraining Gimli using

patent corpora. “+” and “-” denote GPRO T and

GPRO D training sets respectively.

Gimli is retrained using both first-order and

second-order CRF models with both forward (left

to right) and backward (right to left) text parsing

over patent corpora. 75% of each patent corpus,

which is randomly selected, is used for training

purpose, and the remaining samples are consid-

ered as the test set. Figure 7 represents the micro-

average performance values of models trained us-

ing patent corpora.
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Figure 8: Evaluation scores in terms of precision,

recall and F-measure are provided for the best

model trained using patent corpora and the pre-

trained model of Gimli.

We observe that, among different models ob-

tained by retraining Gimli, the second order ones,

using backward parsing, outperform the others.

This finding is in agreement with the results of

Gimli trained and tested on scientific journal ar-

ticles (Campos et al., 2013).

We then compare the performance of the best

model trained on patents, with the one trained on

scientific articles, in terms of their performance

scores at the mention level. The precision, recall

and F-measure values are provided in Figure 8.

The results show that training Gimli using patent

documents will improve precision by at least 15%

and F-measure by around 10%, while the recall

values are remained unchanged. Thus, utilizing

patent texts for both training and test purposes will

considerably improve tagging quality on patents.

5 Conclusion

In this paper, we measured the performance of

several high performance gene/protein NER tools

over available patent corpora. We compared their

pre-trained models’ evaluated on patents at both

the mention and the document levels before and

after normalization. We observed that GNormPlus

usually outperforms the others but it is limited by

its long execution time over patents. However, we

have shown that running GNAT over a huge num-

ber of patent documents will provide higher preci-

sion values within a reasonable execution time.

In addition to the comparison performed be-

tween the outputs of systems individually, we

compared the performance of ensembles con-

structed by merging the results of pairs of systems.

The results implied that using ensembles improves

precision, recall and even F-measure scores. Fi-

nally we retrained Gimli using patent training sets,

and observed a remarkable improvement in terms

of precision and F-measure values on patents com-

pared to those trained on scientific articles, which

confirms the necessity of creating more annotated

patent corpora.
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