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Abstract. In this note, we discuss and analyse a shortest path finding
approach using strong spatial cognition. It is compared with a symbolic
graph-based algorithm and it is shown that both approaches are similar
with respect to structure and complexity. Nevertheless, the strong spatial
cognition solution is easy to understand and even pops up immediately
when one has to solve the problem.

1 Introduction

In discussions among cognitive scientists over the past 25 years or so about the
undisputed merit of graphic depictions for problem solving, the use of classical
formal analysis of graphic information processing occasionally caused some dis-
comfort. Firstly, because intuitively graphical procedures often appear simpler
than their formal counterparts, and secondly, because even highly accomplished
theoreticians emphasize the usefulness of graphics for getting insight into suit-
able problem-solving approaches [5]. Therefore it appears inappropriate to some
researchers to analyse graphic information processing by means of an informa-
tionally but not structurally equivalent formal representation.

While debates about the complexity of graphic information processing fo-
cused on the use of static spatial information in graphics, the strong spatial
cognition (SSC) paradigm goes one step further and addresses spatial transfor-
mation of spatial configurations for problem solving, i.e. replacing computational
operations by physical operations.

Such problems have in common that parts of the problem are real world
objects, instead of representations within a computer. In [2] such an example is
discussed: a map, where parts of the reality, e.g. streets or places are represented
by real world objects, namely drawings consisting of lines and polygons on paper.
Such a representation is called a weak or mild abstraction i.e. an abstraction
where properties of objects and relations, which are relevant for solving certain
problems are preserved. In [3] the notion of intrinsic properties of parts of a
representation was used to describe a similar effect. In the map example these
are the relative length and orientation of streets and the size of a place. This
can be used to solve problems like localization or path finding. An alternative
to a map on paper would be an abstraction of the real world, where routes



are represented by strings and locations by connections between the strings. An
example is depicted in Figure [Th, which we will use later on in order to analyse
a path finding problem.

(b)

Fig. 1: Mild abstraction of a route network (from [2]). Pulling apart strings at A’
and B’ distorts angles and shapes of the route network but preserves the relative
distances in (b) and (c¢). The shortest route is the straight connection between
A’ and B’ in (¢).

Another famous example for using mild abstractions for solving real world
problems is the hanging chain method used to model catenary curves. This is
used e.g. by the Catalan architect Gaudi for the construction of organic designs
of churches, like the Sagrada Familia. Gaudi used weighted strings to determine
the optimal static design of arcs in his architecture, instead of computing the
curves, whose math was well known at this time (due to work of Leibniz, Huygens
and Bernoulli on these catenary curves). This techniques is used in modern
architecture as well. As an example the 'Multihalle Mannheim’ together with its
chain model is shown in Figure 2]

In spatial cognition research there is increasing work, which aims at de-
veloping models that take into account the role of the body and the spatial
environment. The interaction between mind, body, and environment helps to
find solutions to spatial problems. As an example, we will analyse in this pa-
per a shortest path solution which is based on the mild abstraction as given in



Fig.2: On the left is the hanging chain model of the Multihalle in Mannheim on
display in the Deutsches Architektur Museum. On the right is the upside-down
reality version.

Source: Deutsches Architektur Museum and Stadt Mannheim.

Figure [1} this is called the SSCSP-Problem (Strong Spatial Cognition Shortest
Path) in the following.

The next section introduces the SSCSP-Solution; in order to analyse this
problem solving method we will simplify it and transform it in a subsequent sec-
tion to a symbolic algorithm, the structured SSCSP-Solution, which will be be
analysed and compared with graph algorithms. Since symbolic algorithms usu-
ally are analysed by complexity considerations, we will try to apply a complexity
measure to the structured SSCSP-Solution as well.

2 SSCSP in a Physical World

We will now use strings as a mild abstraction as illustrated in Figure [1} Here,
we use strings to represent routes between two locations. The intersections of
those strings represent the intersections in a route network. The length of the
strings are given by a fixed scaling factor of the corresponding routes. So the
relative lengths of the routes are preserved. The task is is to find the shortest
path between two locations A and B within a route network. This is the SSCSP-
Problem. We now use this string representation in order to solve it. The locations
A and B have representations A’ and B’ in the string model. In order to find
the shortest path between A and B one simply has to pull apart strings at A’
and B’ — voila. It is immediately clear that the shortest route is given by those
strings that are pulled straight and the length of the shortest path is represented
by the distance between A’ and B’. This is the SSCSP-Solution. Interestingly,
we managed to solve the problem without analysing the network in any way, all
we had to do was to pull.

The complexity seems to be constant — you need one operation ’'pulling
apart’. In contrast, if we represent the network by a graph using a data structure
in a computer, we know that the complexity of the problem is exponential in
the number of nodes on the path.

It is astonishing how humans manage to solve the shortest path problem
immediately by just pulling the strings. And even more: they are convinced that



this yields a shortest path — this property is just 'popping up’. This motivates
us to analyze this solution within the mild abstraction paradigm in more detail,
putting special emphasis on the complexity aspect.

In computer science we focus on information and we are interested in the
complexity of algorithms wrt. information processing effort required in terms
of processing steps and storage capacity. We do not take into account mass
and energy when we discuss complexity of information processing. But how can
we assess the complexity of problem-solving processes appropriately when we
manipulate information by other means than in classical telecommunication or
computer architectures, where bits of information are propagated through static
or ad hoc networks? To our knowledge, there is no specific theory for information
processing complexity of graphic information processing such as in depictive
geometry, scientific graphs, or geographic maps where some of the operations
may consist of manipulating physical and spatial entities.

We are interested in the question of whether the complexity of solving a
problem is inherent only in the problem and its information-theoretical repre-
sentation and processing structures or whether it also can be a function of the
physical and spatial substrate in which the problem is manifested.

In the following section we will transform the structured SSCSP-Solution into
a graph-based algorithm, namely breath-first search — a common approach in
symbolic problem solving. Furthermore, we propose an approach for comparing
complexities of both methods. We will see that both methods, the structured
SSCSP-Solution and the graph-search have a very similar structure — the as-
tonishing effect is that one needs not to be aware of this structure, when the
problem is solved using the mild abstraction. Once the problem is transformed
into a symbolic graph-based representation, one needs to know about algorithms
for graph-search to solve the problem.

3 From SSCSP to a symbolic algorithm

We start by analysing a simplified version of the problem: We assume that all
strings connecting nodes have the same length d. Furthermore, we will only pull
on node A’ instead of both, A’ and B’. Now, we observe the pull operation and
notice that the closer a node is to A’, the earlier it starts to move.

In order to get this more precisely, we change our model. We assume the
network is spread on a flat surface. Instead of pulling nodes apart, we assume
an operation grab, which selects only one node and the pulling apart is changed
into a lift of the grabbed node vertically into the third dimension until B’ is
lifted from the surface as well. Once B’ is lifted, the shortest path is given by
the sequence of strings by which B’ hangs from A’. Now, we can decompose the
lift into single steps, where we only pull up until a new node is lifted from the
surface (this is depicted in Figure [3). With respect to the work needed to lift
nodes we see easily that lifting the nodes into the third dimension certainly can
be seen as an upper bound compared to the work necessary to pull the nodes



Fig.3: Mild abstraction — structured version. Left: Network is spread on a flat
surface. One node is selected by grab-operation. Middle: Grabbed node is lifted
until nodes from the first layer are ready to left from the surface. Right: Lifting
proceeds until nodes from layer 3 are ready to be lifted.

apart in two dimensions. This enables us to describe our solution to shortest
path in a more detailed way than before.
The structured SSCSP-Solution is given by:

— grab node A’
— repeat until node B’ is lifted:
increase height of A’ over surface by distance d

Note that, if a node z is lifted from the surface, the next lifting operation
causes all adjacent nodes of x still on the surface to be lifted together. This is
another simplification of our model; depending on the structure of the network
it may happen that during one lift-operation an adjacent node is lifted earlier
than its neighbors. This may occur e.g. if one node has no adjacent node, while
its neighbor is connected to larger part of the network. The connecting string to
the latter will form a kind of hanging chain curve, because of the friction of the
part of network, which is still on the surface. This node is lifted after a distance
smaller than d, whereas the other node, the one without a further connection,
will be lifted only at the end of the lift operation by distance d. This effect is
ignored in the following — we simply assume that there is no friction between
nodes and the surface. Thus work is only necessary for lifting nodes.

With these assumptions, we can construct a formal method of solving the
shortest path problem for uniform edge length in a theoretical representation as
an undirected graph. We represent the lifting of nodes simply by adding nodes
to a set lift— in one lift operation all adjacent nodes of a node are lifted at the
same time. This corresponds to the insertion of all adjacent nodes in one step
into the set lift. The nodes in the set lift correspond to those nodes which are
lifted above the surface.

As graph search we have the following algorithm:



— lft = {A’"}
— repeat until node B’ € lift
for each element in /ift add all its adjacent nodes to lift

This is actually a breadth first search algorithm (BFS)[]. The distance be-
tween A and B is given by the number of loop iterations required and the shortest
path can simply be derived with backtracking. In order to keep it simple, we have
not included this in our description. This version of BFS appears to be rather
naive: it does not include a marking of nodes which already have been expanded
— there is an ’attempt’ for every node to add its adjacent nodes into lift even if
this has been done already in previous steps.

4 Comparing both Approaches

Despite the apparent similarity of both approaches, the time complexities are
rather different. The time of the structured SSCSP-Solution is linear in the dis-
tance between A’ and B’ and the time of BFS depends on the structure of the
graph. Comparing the two approaches shows immediately that in iteration ¢ of
the structured SSCSP-Solution all nodes that are ¢ nodes or less away from A’
are lifted by d. They are all lifted simultaneously. Whereas in BF'S in iteration
all nodes distance i or less are added to lift. The run-time of this depends on the
implementation and the architecture available. The structured SSCSP-Solution
can be seen as a kind of parallel version of BFS. However, if there are sufficiently
many parallel processes available and with the appropriate implementation, BFS
can have a similar run-time.

Time complexity of graph algorithms usually is measured by counting the
number of nodes which have to be visited during search. Instead of counting
nodes, we base our complexity analysis on the physical work necessary to perform
the lift operation of nodes. For the complexity of the structured SSCSP-Solution
we now assume all nodes have a weight w and the strings are weightless. It
requires a work of w - d to lift a node. For simplification, let us assume that the
grab operation requires also work w - d. Let I(¢) be the number of nodes with
distance (i.e. number of nodes on shortest path) ¢ from A’. Let the n be the
distance from A to B. A node with distance i from A’ is lifted (n — i+ 1) times.
The work required by the structured SSCSP-Solution is

wed- Y (n—i+1)-1(). (1)
=0

For the complexity of BFS we now assume that adding nodes requires a time
t for each node in the resulting set lift. For simplification, let us assume that the
initialization of lift requires time ¢. The time required by BFS is

£y (n—i+1)-10). (2)
i=0
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Comparing Equations [I] and [2] shows immediately that the work of SSCSP
directly corresponds to the running time of BFS.

However, in common implementations of BFS, the run-time is not only de-
pendent on how many nodes are added. Rather, we pick each node z in lift and
then add all its adjacent nodes consecutively. This often results in nodes being
added multiple times in a single iteration. Assume now that each such node ad-
dition requires time ¢. Let N (i) be the set of nodes that have distance i to A’.
Let g(z) be the out—degree of a node x. Now, the time required by BFS is

t (- T e ] 3)
1=0

zEN (1)

This complexity also transfers to the structured SSCSP-Solution if we assume
that each string has a weight w and the nodes are weightless. Since the nodes
are weightless the grab operation requires no work and lifting a node = by d
requires work g(z) - wE| The work required by the structured SSCSP-Solution is

wed: Y (=i 3 gl@)]. (4)

TEN (4)

N
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The BFS is usually accelerated. In each iteration, it is enough to add only
nodes adjacent to nodes newly added in the previous iteration. Here, we could
show that the complexity is similar to the SSCSP-Solution if we assume that
only lifting a string off the surface requires work. This, however, seems to be an
unrealistic assumption; the previously lifted nodes have to be also lifted, which
of course, needs more work. This is an example for an optimization of BFS which
does not carry over to SSCSP.

If we do not require uniform string length between nodes, the parallels be-
come less clear. The most prominent approach here is Dijkstra’s shortest path
algorithm[I] which processes the nodes and edges in the order of their distance
to the starting node. This is similar to the SSCSP-Solution. However, there does
not seem to be a direct correspondence between the run-time of an execution of
Dijkstra and the SSCSP-Solution.

We would like to emphasize again, that the complexity consideration in Equa-
tion [4] was done mainly to analyse the structure of the SSCSP-Solution and to
compare it with the symbolic BFS. We are aware, that the representation of a
problem by using mild abstractions allows very well an adaption of the physi-
cal objects to the power available for the solution. E.g. in the SSCSP-Problem
from Figure [I] the entire layout of the graph and the lenghth of the strings is
such, that we can do the pulling apart very easily - without beeing aware of the
'work-complexity’ defined above.

4 The work to lift a string from the surface is obviously smaller than g(z) - w, because
the string which corresponds to an edge is not lifted at once in entirety. Moreover,
this is done in a continuous way resulting in less work. Hence, Equation@ is an over
estimation.



5 Conclusion

In this note we presented and analyzed a shortest path procedure using strong
spatial cognition. We compared the approach with a symbolic graph search algo-
rithm by estimating the amount of physical work required to construct a shortest
path. We arrived at the conclusion that structure and complexity of both ap-
proaches can easily be mapped to one another. This is surprising as the solution
of the problem when presented with mild abstraction, i.e. by employing physical
objects, pops up immediately; we do not become aware of the internal struc-
ture and the physical complexity of the approach. In comparison, the symbolic
graph-based algorithm can be designed and applied only with knowledge about
data and graphs available.

What is the reason for our perception of different complexity of the symbolic
vs. the physical problem solving approach to the shortest path problem? In the
symbolic approach, we compose algorithms from structurally simple elements,
using knowledge about the length of path segments and explicitly combining
these elements to essentially building up the network of paths, keeping track
of those parts of the network that promise to yield the shortest overall path.
In comparison, in the SSC approach we do not deal with components; we do
not even have to know any length to identify a shortest path. The approach
exploits intrinsic spatial relations that are implicit in the network of strings and
cannot be violated. For this reason it will be difficult to program the approach
incorrectly. Physical affordances and constraints do the work for us and we do
not have to understand how the strings and nodes move for the approach to
yield a correct result.
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