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Abstract. Model-based software engineering is applied to more and
more complex software systems. As a result, larger and larger mod-
els with longer and longer histories have to be maintained and per-
sisted. Already, a lot of research efforts went into model versioning,
comparison, and repositories. Existing strategies either record and per-
sist changes (change-based repositories, e.g. EMF-Store) or relay on ex-
isting text-based version control systems to persist whole model revi-
sions (state-based repositories). Both approaches have advantages and
disadvantages. We suggest a hybrid approach that infers changes via
comparison to persist delta-compressed model states. Our hypothesis is
that delta-compression requires a trade-off between comparison quality
and execution time. Existing model comparison frameworks are tailored
for comparison quality and not necessarily execution time performance.
Therefore, we evaluate and compare traditional line-based comparison,
an existing model comparison framework (EMF-Compare), and our own
framework (EMF-Compress). We reverse engineered the Eclipse code-
base and it’s history with MoDisco to create a large corpus of evolving
example models for our experiments.

1 Introduction

In BigMDE, we assume that model-based software engineering (MBSE) is ap-
plied to increasingly complex software systems and that the size of models that
we need to process is getting increasingly larger. But not only the size of models is
increasing, they also evolve over longer periods of time, and have longer revision
histories. To cope with such evolving models, the MBSE community began to
adapt the concepts of existing text-file-based version control systems for models.
Respective model repositories allow clients to navigate model history, compare
revisions, and merge different branches of development [1]. We can distinguish
two basic strategies for model repositories: state-based and change-based [8].
State-based systems store individual revisions of a model and whenever a user
needs to compare two revisions the respective models are compared. In a change-
based system, only the differences (or the operations causing these differences)
are persisted and when a user requires a particular revision the respective model
is re-created from prior revisions and respective difference data.

Both strategies have advantages and disadvantages. Change-based reposito-
ries, e.g. EMF-Store [8], require to record editing operations to infer and persist



changes. This requires a tight integration of editors and model repository. While
this works well for certain editors like MVC-based graphical editors (e.g. GMF),
it does not for background-parsing-based textual editors (e.g. Xtext), mixed-,
or closed editing environments. For state-based repositories, we can use existing
version control systems that were developed for managing text files [1]. Here,
models are persisted in their serialized form, e.g. as XMI/XML files. While this
is independent from the editing environment and works for all models that can be
serialized without information loss, it imposes an unnatural organization scheme
onto modeling. Clients have to organize large models in terms of directories and
files. To be efficient, the respective files have to be reasonably sized.

We propose a third strategy that uses a change-based strategy internally,
and expose the characteristics of a state-based system to the editing environ-
ment and the user. Git, for example, allows us to access file revisions as a whole,
but stores many revisions of the same file in a delta-compressed pack-file. We
will persist model histories in terms of changes, but provide and take models as
a whole. This requires us to create model differences through model comparison,
since we can not rely on difference information provided by the editing environ-
ment. Similar to version control systems, this strategy does not force us to use
the same comparison algorithms for storing models tightly (also know as delta-
compression) and for presenting changes and similarities to users. We can use
algorithms with good comparison quality and good performance characteristics
internally for frequent delta-compression, and different algorithms with excel-
lent comparison quality (i.e. minimal editing distance) and less performance to
occasionally present changes to users.

In this paper, we want to evaluate comparison algorithms for delta-compres-
sion. We developed a framework called EMF-Compress [12]. We implemented
signature-based matching strategies, far simpler than the similarity-based match-
ing of existing frameworks like EMF-Compare. In contrast to existing comparison
frameworks, we use a meta-model that allows us to persist differences (i.e. delta-
models) between models without referencing the compared models directly. We
conducted experiments with reverse engineered MoDisco [3] Java models that
were taken from the Eclipse source-code history [13]. In these experiments, we
compare compression quality and execution times for different matching algo-
rithms and provide execution times for comparison (compression) and patching
(de-compression) to prove the feasibility of our approach.

The paper is organized as follows. The following Section 2 provides a brief
introduction into model comparison. Section 3 introduces our delta-compression
tailored comparison framework. The evaluation Section 4 describes and discusses
our experiments in compressing the reverse-engineered Eclipse code-base. We
present related work, future research questions, conclusions in Sections 5 and 6.

2 About Matches, Differences, Merges

In this paper, we only consider two-way comparison. We always compare a left
(original) model with a right (revised) model. Algorithms for comparing two



text files (i.e. two list of comparable items) exist for a very long time. These
algorithms are searching for the minimal editing distance, that is the smallest
possible set of changes (adding lines, removing lines, changing lines) necessary
to modify one file and get the other. One particular algorithm is Meyer’s [11]
algorithm that compares two list in O(N ∗D) where N is the sum of both sizes
and D the number of changed lines.

Models are not list of items; they are graphs of items. But, each model element
contains lists of items, i.e. their attribute and reference values. Assuming that the
order of values does not change arbitrary or volatile between revisions, we could
apply existing algorithms, like Meyer’s, to each value-set in each model element.
But in order to use this approach, we need to know which values (primitive
values as well as other model elements) are supposed to be equal and which are
not.

Therefore, existing model comparison frameworks use two steps. First, model
elements are matched. Frameworks use different matching algorithms to establish
pairs of matching model elements from both compared models. In a second step,
these matches are used to find differences, comparing element by element, feature
by feature. In such comparison processes, the matching strategy influences the
comparison quality. Do we yield a minimal set of differences or a large set of
differences only depends on how good the matches are.

We can distinguish different types of matching-strategies. Among others:
signature-based and similarity-based matching. Signature-based algorithms only
consider local model element properties like its meta-class, name, parameters,
and its position in the containment hierarchy (i.e. its parent). Similarity-based
algorithms consider the larger neighborhood of an element to assess its shape
in order to establish matching pairs. Finding and comparing signatures is a
straightforward, linear process. Similarity-base algorithms on the other hand
can be considerably different based on the used neighborhood, considered char-
acteristics, used heuristics, etc.

Existing frameworks, like EMF-Compare, are tailored for presenting differ-
ences to users and for merging models. They use similarity-based matching for
a maximum comparison quality and represent matches and differences in a com-
parison model. These comparison models reference both compared models. This
is fine when the goal of a merge is to create a new merged model from two
existing compared models. But in delta-compression, we want to re-create one
model from the other and a respective difference model. This is also known as
patching and the difference model is than called a patch.

3 Model Comparison for Compression

We developed the comparison framework EMF-Compress [12] with the goal
to evaluate signature-based comparison for delta-compression. This means two
things. First, we can perform matching and differentiating in one single step. In
a signature-based matching algorithm, we consider the position of an element
(i.e. its parent) to be part of its signature. As a consequence, a moved model
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Fig. 1. Combined meta-model for matches and differences.

element (i.e. a model element that changes its parent) is not matched with its
original. This is obviously bad for comparison quality, but we also only need to
establish matches locally within individual value-sets. Therefore, we can match
elements on the fly during differentiation. We start by assuming that the root
elements match. We then apply Meyer’s algorithm to all features. While Meyer’s
algorithm is applied, we establish matches among the values of each individual
value-set. We recursively proceed for all matches in all containment references
throughout the containment hierarchy.

Secondly, EMF-Compress uses a comparison meta-model that represent dif-
ferences under the assumption that the right model is not available and that it
needs to be re-created from the left model. This means the comparison model
(depicted in Fig. 1) represents all differences as changes (i.e. deltas). An Object-

Delta represents all changes between two matched elements without referenc-
ing these elements directly. A SettingDelta is a container for differences (and
matches) in a feature (via featureID). A SettingDelta can contain match-
ing elements (matchedObjects) identified via index (originalIndex) and Val-
ueDeltas that described changed ranges of values with the feature. Ranges are
also identified via indices. There are different classes used to represent differences
depending on the value type (primitive, contained object, cross-referenced ob-
ject) and whether the value is part of the left (original) model or is a new value
that is added to the right (revised) model. All object values that are added have
to be contained in the comparison model, since it is supposed to be indepen-
dent of the right (revised) model. All object values that are removed or moved



within the model are referenced based the ObjectDelta instance that represent
the object in the comparison model.

Therefore, the comparison model does not reference any of the compared
model directly. The information in a comparison model is sufficient to recreate
(i.e. patch) a right (revised) model from an left (original) model.

4 Evaluation

4.1 Setup

The subject for our experiments is a corpus that comprises a subset of the Eclipse
Foundation’s source code repositories. The Eclipse Foundation maintains code
(and other artifacts, like documentation, web-pages, etc.) in over 600 Git repos-
itories. We took the largest 200 of those repositories that actually contained
Java code. These 200 repositories contain about 600 thousand revisions with
a total of over 3 million compilation unit (CU) revisions that contain about
400 million SLOC (lines of code without empty lines and comments). The Git
repositories take 6.6 GB of disk space. The generated MoDisco model represen-
tation of these repositories comprises over 4 billion objects and is persisted in
EMF-Fragments [14] and a binary serialization format with about 230 GB of
diskspace.

We run all experiments on a server computer with four 6-core Intel Xeon
X74600 2.6 GHz processors and 128 GB of main memory. However, EMF-
Compress operates mostly in a single thread with the exception of JVM and
Eclipse maintenance tasks. EMF-Compress runs on Eclipse Mars’ versions of
EMF in a Java 8 virtual machine. All operations were run with a maximum of
12 GB of heap memory. The system runs on GNU/Linux with a 3.16 kernel.
EMF-Compress operations are long running computations over thousands of re-
visions and CUs and respective algorithms are invoked over and over again. As
usual for such macro-benchmark measures, we are ignoring JIT warm-ups and
other micro-benchmark related issues [16].

The use-case behind these experiments is a repository wide application of
reverse-engineering (with MoDisco) for the purpose of analysis [13]. The goal of
this model-based mining of software repositories (MSR) [4] approach, is an AST-
level model of a large-scale software repository (e.g. Eclipse) that allows clients
to derive metrics, dependencies, design structure matrices, and other data for
statistical analysis over the history of many software projects. Not only would we
benefit from lesser space requirements of the resulting models, delta-compression
and comparison models would also allows us to omit unnecessary processing of
unchanged model parts during model analysis.

4.2 Signature- v Similarity- v Line-based Comparison

As a first experiment, we want to measure and compare signature-based, simila-
rity-based, and line-based comparison both by comparison quality and execution
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Fig. 2. Signature-based comparison with EMF-Compress, similarity-based comparison
with EMF-Compare, and line-based comparison on the original source-code files.

time. Please note, line-based comparison always refers to comparing the original
source files and not any serialized representation of the models. The resulting
line-based numbers are not really comparable, but provide a frame of reference.
Due to the low runtime performance of similarity-based comparison, we had to
limit our measurements to the first 1000 revisions of the 100 biggest (by Git-size)
Eclipse projects. For signature-based comparison, we used our own framework
EMF-Compress. The used signatures comprise parent, meta-class, and where
applicable names. For similarity-based comparison, we used EMF-compare in
its default configuration. For line-based comparison, we used the data provided
by Git.

Fig 2 show the results. Different colors suggest data that is not directly
comparable and that has to be read very carefully. The left chart depicts the
comparison quality by means of matched elements. For models this is the num-
ber of actual matched elements. For lines this is the number of matched lines, i.e.
lines that were not added, removed, nor changed. The chart shows the fraction of
matched elements relative to the overall number of elements without the uncom-
pressed initial revisions. The data is accumulated for each analyzed repository. As
expected, similarity-based comparison produces good comparison quality, since
it uses far more data to establish matches than signature-based matching. The
signature-based matching quality is worse, but still of a similar magnitude. We
cannot draw any sensible conclusions from comparing these model-based num-
bers with the number of matched lines, because lines span different numbers of
model elements and shorter lines match more likely than longer lines.

The middle chart compares the size of the resulting comparison models in
relation to the size of the original models. This data also does not include the
uncompressed initial revisions. For models, we used the approximated size of a bi-
nary serialized representation of all models. For lines, we used the average model
size per line for added lines and two bytes for removed lines to approximate sizes
for a corresponding comparison model. Measuring the size of comparison mod-



els is not very informative, since the comparison models of EMF-Compare and
EMF-Compress comprise different data. EMF-Compare expresses changes by
referencing to the differentiating model elements, while EMF-Compress stores
changed features, indices, and includes all added values. Our line comparison
model approximation does not include any overhead for organizing the differ-
ences.
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Fig. 3. Comparison execution time depending on model size for similarity- and
signature-based matching. The plots show data measured for 300k compilation units
taken from different Eclipse projects. Top row depicts all measurements, the lower row
magnifies a smaller range.

The right chart of Fig. 4 shows the average execution time spend on compari-
son in all repositories compared to the time that was necessary to create models
for the original Java code. Similarity-based comparison is magnitudes slower
than signature-based comparison. Fig. 3 provides a closer look on the execu-
tion times. This chart plots execution times spend on individual CUs in relation
to their sizes in number of model elements. While signature-based comparison



scales linearly for most CUs, similarity-based comparison is above linear. Addi-
tionally, the comparison times seem to depend on CU structure and not only
CU size, since the measured times are particularly large for some CUs.

4.3 Top-Level Comparison v Deep Comparision

For a second experiment, we want to compare different levels of comparison.
The hypothesis is that if we only try to match the first levels in a containment
hierarchy and only use equality to compare the rest of the models, we can save
execution time and still yield sufficient comparison quality. We devised two differ-
ent matching algorithms. The first only uses top-level named elements and their
signature for matching (e.g. Java packages, classes, methods). All other elements
(i.e. everything contained in method bodies) only matches if they are equal to
each other. The second algorithm tries to match all model elements based on
their signature. We also provide line-based matching data for reference.

This time, we measure comparison for all 200 Eclipse projects, all revisions,
all CUs. Fig. 4 shows the results. The top row of charts compares artifact sizes
for some example Eclipse projects. The lower left shows the average size of
uncompressed initial revisions and respective comparison model sizes relative to
the overall size of the uncompressed models. The execution times are given as an
average per revision for both compression algorithms and the times necessary to
decompress (i.e. reconstruct a revision from its predecessor and the comparison
model).

The comparison quality with only matching the named elements is signifi-
cantly worse than with matching all elements. But more surprisingly, the exe-
cution time performance is also much worse. Even though, we do not have to
match all model elements, we still have to compare them for equality.

5 Related Work

EMF-Store is an example for a change-based model version control system
(Koegel and Helming [8]). An example for a model repository based on existing
source-code version control systems is presented by Altmanniger et al. [1].

Different frameworks for model comparison exist: for example EMF-Compare
by Brun and Pierantonio [2] or SI-Diff by Kehrer et al. [5]). Stephan and Cordy
present a feature-based comparison of existing approaches and frameworks [15].
Kolovos et al. did the same for matching-algorithms [10].

In this paper, we only assumed meta-model agnostic matching-algorithms.
But it is assumed that comparison quality can be increased, when matching
is implemented depending on the meta-model of compared models. Kolovos et
al. [9] and Kehrer et al. [5] present approaches for customization of matching
algorithms.

In [6,7] Kehrer et al. research the posibilities to infer high-level editing op-
erations from low-level comparison models. This can be valuable for presenting
differences to users in a better way and to represent model differences/changes
more efficiently in smaller delta-models.
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Fig. 4. Compression quality by percentage of full size and percentage of matched ele-
ments compared to line-based compression.

6 Conclusions

We evaluated the potential use of model comparison for delta-compressing state-
based model repositories. We could show that signature-based matching algo-
rithms reach sufficient comparison quality with significantly shorter execution
times than the existing similarity-based model comparison in frameworks like
EMF-Compare. Furthermore, we presented a meta-model for comparison mod-
els that does not reference the compared models, can be persisted independently,
and allows to re-create one of the compared models from the other. Therefore,
we could prove the principle feasibility of time efficient delta-compression for
models.

However, there are many unanswered questions. We only evaluated a single
algorithm for similarity-based matching. Different algorithms, e.g. meta-model
specific algorithms could yield better results. Further, we only considered model
representations of source-code following a single meta-model. Different kinds of
models could yield different results. What factors influence the performance of
model comparison in what way? Delta-compression allows to decompress se-
quences of model revisions efficiently, but does not allow a random access of
particular revisions. In a practical application, we need to consider to persist
some intermediate revision as full model to counter that. What factors influ-
ence the right amount these intermediate models? The models that we used for
evaluation have a convenient size. How can we combine delta-compression with
existing approaches in fragmenting and persisting very large models [14]?
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