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Abstract. The research on search log anonymization is ten years old.
Over this time, a number of methods to reduce the risks of user identi-
fication and disclosure of sensitive information from search log analysis
have been proposed. However, the impact of these findings on the be-
haviour of data owners and publishers has been very limited so far. In
this paper, we present a brief overview and a classification of the main
approaches in the literature, arguing that there has been a shift towards
a more pragmatic balance between the value of the data published and
the risk of an adversary breaching the user’s privacy. Then we go on to
discuss what are the critical issues that must be tackled before search log
anonymization moves out of research laboratories and into operational
settings. We also clarify some misconceptions and mistakes in the use of
the AOL search query log dataset, which is the main (and virtually only)
experimental data source in the field.

1 Introduction

Search log data are extremely valuable for a number of applications but pose pri-
vacy risks. The infamous 2006 AOL incident, in which a user was identified from
a search log with randomized user identifiers [2], spurred research into search
log anonymization. Since then, a number of methods for limiting disclosure of
personal information when publishing search logs have been proposed, based
on different sanitization strategies such as scrubbing query content, removing
infrequent queries, hashing, perturbing queries, injecting noise, and grouping a
user’s queries. These methods explore the trade-offs that exist between privacy
guarantees and data utility, with better protection against information disclosure
usually resulting in a reduced amount of useful data retained.

Despite such advances, the collectors of search log data have been reluctant
to publish them for new data users. Ten years later the AOL incident, academic
researchers continue to use copies of the AOL search query dataset, downloaded
from mirror sites. One partial exception of which we are aware is represented
by the datasets made available at the Workshops on Web Search Click Data in
recent WSDM conferences, which are meant for evaluating search log mining
algorithms and are thus fully anonymized (i.e., everything is a number). The
concerns about publishing user data combined with a lack of mature privacy
preserving information retrieval techniques have affected not only the research



on search log analysis but also on other related tasks such as medical information
retrieval and microblog retrieval [31].

In this paper we present a review of ten year research on query log privacy,
including a fine classification and a discussion of key open problems. The only
earlier survey of which we are aware of is [7], which provides a comprehensive
discussion of several search log application tasks but focuses only on some early,
out of date sanitization techniques. We also clear up a few technical things
connected to interpretation and use of the AOL query log.

The remaining of the paper has the following structure. We first review the
main sanitization methods, followed by a discussion of empirical evaluation of
utility and privacy, and by a classification of approaches. Then we point out
some open problems and presents the study concerning the AOL query log. We
finally provide some conclusions.

2 Main sanitization approaches

Each record in a query log usually has the structure shown in Table 1. In this
section we discuss how several methods delete or modify some of the fields in
Table 1 to produce a sanitized query log that better protects the user’s personal
information. It is important to note that query log privacy is closely related to the
older field of database privacy [12] – from which many concepts and frameworks
have been borrowed and adapted – but has unique features. In databases, records
are described by the same (numerical or categorical) attributes, a restricted set
of which are manually labeled as quasi-identifiers (e.g., postal code, age, gender)
or sensitive (e.g., salary, diseases, political views). By contrast, in search logs,
we have very large sparse data (i.e., the query content), where every item is
potentially quasi-identifier or sensitive.

Table 1. Typical structure of a query log record.

IP address Cookie ID Query content Timestamp Browser/OS Result Clicked Rank

2.1 Anonymizing identifiers

This approach consists of replacing well-established external identifiers (such as
the user’s IP address and/or cookie ID) with a numerical ID, through hashing
or randomization, while the query content remains the same. It prevents certain
types of privacy leaks such as when an IP in a query log record is correlated
with the same IP in some web service, but it can be broken in a relatively easy
manner, because the queries of a user are gathered and their contents remain
unchanged. Thus, as witnessed by the AOL incident, the data for identifying a
user and discover sensitive information can be found in her queries. Because both
the user-query association and the query content are maintained, the sanitized
log has a high utility.



2.2 Deleting identifiers

A simple approach to query log privacy is to delete the full IP addresses and
cookie IDs, thus removing the explicit association between queries and users.
This is a powerful tool in protecting user privacy, although there are other in-
formation (e.g., the user’s browser and operating system configurations, times-
tamps, and query content) that can still be used to associate multiple queries
with the same user. Also, even single queries may be detrimental to privacy if
users query their own personal information. On the utility side, this approach
does not permit several log analysis application.

2.3 Hashing queries

Hashing can be applied not only to external identifiers but also to single queries
or elementary tokens within a query. This approach greatly helps to protect
privacy because the original query is removed from the logs, although it may
be possible to reverse-engineer particular query replacements by leveraging a
statistical analysis of query frequencies gained from other available data sets [22].
The utility of the sanitized log is however clearly limited as most applications
rely on the query content.

2.4 User clustering

The idea is to form clusters of at least k users that are similar in terms of their
data, and then make all the users in a cluster indistinguishable from each other.
Only the clusters are released, each with its own set of queries. Various similarity
measures and clustering algorithms have been proposed.

In [16], agglomerative clustering is performed using a bipartite graph built
from the queries and the click-through data. Then they create a set of queries for
each cluster by adding similar query objects and deleting dissimilar query ob-
jects. In [28], they use microaggregation, with a distance function that integrates
various types of query log data; e.g., query content, timestamps, clicked URLs.
The queries released for each cluster are the centroid of the cluster. Divisive
hierarchical clustering driven by WordNet is used in [15], inspired by a similar
approach developed for set-valued data [33]. A user’s queries are first generalized
to the WordNet root concepts and then all the generalized profile queries are
recursively partitioned top-down using more specific WordNet concepts to form
the subpartitions, until no more partitions with clusters larger than k can be
generated. The queries describing the clusters in the most specific partition are
released. Another approach is [26], that works at the level of single terms and
clusters users based on the similarity of their vocabularies, where the similarity
between a pair of terms is topologically measured over a semantic network (e.g.,
WordNet) containing the terms.

These methods significantly reduce the risk of information disclosure when
multiple relatively frequent queries are taken together. However, clustering re-
arranges the query log destroying the query ordering and creating fictitious sets
of queries, which affects the utility of sanitized logs.



2.5 K-anonymity

One of the most fundamental concepts developed in the privacy field is k-
anonymity, extensively studied in the the database community to prevent re-
identification by multiple databases linking. It is assumed that a subset of at-
tributes are quasi-identifiers and a record is released only if there are at least
other k-1 records that share the same values for those attributes, which is usu-
ally achieved through generalization and suppression of attribute values [32].
As already remarked, query logs are fundamentally different from set-valued or
relational data because there is no explicit distinction between quasi-identifiers
and other types of information. Thus, the application of k-anonymity to search
query logs [1] requires that a query serves as the quasi-identifier:

A query log L satisfies k-anonymity if for every query in L there exist at least
k-1 identical queries in L issued by distinct users.

In this way, there is at most 1/k probability to link a query to a specific
individual. However, this method leads to extreme data loss; e.g., about 90% of
distinct AOL search log queries were issued by a single user.

To address the limitations of strict k-anonymity, one can try to protect a
query with semantically similar rather than equal queries. Adapting earlier work
on using WordNet to form privacy-enhanced user clusters [15], in [6] two different
queries are replaced with their common WordNet parents and the generalized
queries are arranged in hierarchical partitions characterized by decreasing levels
of k-anonymity. This method ensures that more queries are released for a certain
degree of k-anonymity. However, due to the limited coverage of WordNet, many
queries cannot be generalized – e.g., 3,682,195 distinct AOL queries (out of
10,154,742) contain terms that do not match any WordNet concept [6] – and
many released generalized queries consist of generic concepts such as ‘event’,
‘thing’, or just ‘entity’.

Another variant of k-anonymity is kΘ-affinity ([5], [6]), whereby infrequent
queries are released based on their similarity to some frequent query of which
they are a refinement (controlled by an additional similarity threshold parameter
θ). Using this approach, it is possible to release many more queries in a presum-
ably safe manner, given that [18] have estimated that about 40% of search log
queries follow a ‘Query+Refinement’ pattern. KΘ-affinity privacy is modeled as
generalized k-cores of the graph of Θ-affine queries. In an experiment with the
AOL data set, k-anonymity under affinity achieved similar levels of privacy as k-
anonymity under equality and under WordNet generalization, while at the same
time reducing the data losses to a great extent [6].

The enhanced versions of k-anonymity mitigate the data loss but are still
unable to prevent the practical possibility of user identification through com-
bination of multiple, relatively frequent queries. For example, by entering in a
search engine like Google the main research interest of the first author of this
paper (i.e., web search) and his affiliation, one gets his name several times in the
first results page.



2.6 Removing sensitive query content

Personal identifying information such as personal name, email, birth date, ad-
dress, credit card number, social insurance number, phone number, and others,
can be automatically detected and removed from the original query log using
several established tecniques such as named entity recognition and relation ex-
traction; see e.g., [20]. However, a query log anonymized by removing certain
entities may still be very vulnerable to privacy attacks. Jones et al. [19] showed
that a simple classifier trained with registered Yahoo! users can map a sequence
of AOL queries without names and numbers into the gender, age, location of the
user issuing the queries, thus facilitating user identification.

Machine learning is indeed a viable technology for an adversary to discover
leaked sensitive information, but the publisher can use the same means to sup-
press just those information predicted to be sensitive, thus reducing the potential
for information disclosure. This is the approach taken in [23], which ensures a
good protection against a state-of-the-art learning algorithm while retaining over
90% of the original data.

2.7 Differential privacy

Differential privacy [10] ensures that the removal or addition of a single database
record does not significantly affect the outcome of any analysis. For query log
data, differential privacy implies that the amount of knowledge that an attacker
can learn about a user is roughly insensitive, according to some privacy param-
eters set by the data releaser, to omitting or changing the user’s search history.
This is modeled by requiring that for all pairs of search logs that differ in one
user’s searches, the probability that any subset is published is approximately the
same for both search logs :

Pr[A(L1) ∈ S] ≤ eεPr[A(L2) ∈ S] + δ (1)

where L1 and L2 are the two query logs, A is a differentially private algo-
rithm, Range(A) is the output range of A, and S ⊆ Range(A).

Borrowing on this notion, a differentially private algorithm for publishing a
query click graph was proposed in [21]. It consists of three main steps: (1) select
a limited number of queries per user, (2) alter their frequencies by injecting
Laplacian noise, (3) release only the queries with a frequency higher than a
given threshold together with a noisy count of their clicked URLs.

Like k-anonymity, differential privacy does not modify the content of the sin-
gle queries, but it changes their frequency and remove the association between
queries and users.1 Differential privacy is not an absolute privacy guarantee,
but it is very general and powerful because no particular assumptions about
an adversary’s computational power or ability to access external data are re-
quired. On the other hand, for a typical choice of its parameters, it results in the
1 The differential privacy model does not explicitly rely on the k anonymity parameter,

although it can be modified in this direction [14].



suppression of all rare as well as relatively frequent queries, up to frequencies
of the order of hundreds [21]. Furthermore, the destruction of the association
between users and queries prevents some of the most interesting applications
of published search log data. In fact, the utility of differential privacy has been
deeply questioned [13] due to the huge involved data loss. A recent proposal ex-
tends differential privacy to preserve associations between users and queries, but
it requires the specification of a particular objective function to be optimized
[17]. Another recent refinement is concerned with reducing the high amount of
noise that needs to be added to satisfy differential privacy for text databases,
via sensitivity control [9].

3 Evaluation of utility and privacy

The utility of search logs is a broad concept, connected as it is to some benefit
gained by analyzing the data. Some studies compare the performance of the
original and released logs on certain data mining tasks such as clustering [28],
or on some applications such as query substitution [13] and advertisement [4].
Abstracting away from a particular data utility, one common approach is to
consider the percentage of released queries (aka impressions), which however
provides only a rough indication of the utility of sanitized logs. A more principled
approach is the Information Loss Ratio (ILR) [28], based on the difference of
entropy between the original and released logs:

ILR =
H(X)−H(Y )

H(X)
, H(X) = −

∑
x

p(x) · log p(x) (2)

where X and Y represent, respectively, the set of original and released queries,
and H is the entropy.

The need for similar global privacy measures is equally important, because
given two sanitized logs produced by different methods one cannot say in which
log the user privacy is more protected. One of the few global privacy measure is
the Profile Exposure Level (PEL), proposed in [11] and applied to search logs in
[28]:

PEL =
I(X, Y )
H(X)

· 100, I(X, Y ) =
∑
x,y

p(x|y) · p(y) · log p(x|y)
p(x)

(3)

where I(X, Y ) is the mutual information between X and Y . The ratio be-
tween mutual information and entropy is known in statistics as the uncertainty
coefficient, and can be seen as a normalized mutual information. It gives a mea-
sure of the information that Y provides about X, normalized with respect to
the information of X.

These measures compute some kind of difference between the set of a user’s
queries before and after sanitization, relating such a difference to the loss of
utility (or gain of privacy). However, all queries are treated in the same manner.



It is just the probability distribution of queries that matters, not their content.
While this general approach may be suitable for evaluating utility, in the intuitive
sense that low difference approximately preserves the value of the original data
over various usages,2 it does not seem very appropriate for privacy. To evaluate
the latter, we may be more interested in specific pieces of information that may
lead to identify an individual (or disclose their sensitive information), rather
than in the overall resemblance of the search logs. Take PEL for instance. It is
easy to imagine a situation where the same PEL value corresponds to search logs
with very different privacy risks, depending on whether potentially identifying
queries with suitable distributions are present or not. Furthermore, the use of
average measures for evaluating privacy can be questioned on the ground that
the privacy guarantees are individually enforced by the anonymization algorithm
(for an in-depth discussion of privacy versus utility measures for relational data
see [3] and [25]). In the light of these shortcoming, it can be argued that well
founded, empirical utility and privacy measures are yet to be devised.

4 A classification

In Table 2, we provide a classification of the main methods described in Section 2
along several dimensions, including preservation of user-query association and
order of queries, degree of empirical privacy and utility (discussed in Section 3),
list of enabled search log applications, and computational efficiency. Each method
has strengths and weaknesses. The best choice depends on the emphasis on
protecting the user privacy or retaining as much utility as possible, especially if
the published log is intended to support specific applications.

5 Open problems

Lack of attack model. The database community has precisely defined several
types of attacks (record linkage, attribute linkage, table linkage, probabilistic at-
tack) and has provided anonymization techniques for each specific attack, e.g.,
k-anonymity [32], l-diversity [27], t-closeness [24]. In general, the available tech-
niques can deal with only some of these attacks; see e.g. [12]. For query logs, the
modelization of attacks is more vague. It is generally assumed that an attacker
has unspecified background knowledge and inference abilities that may lead to
user identification and disclosure of sensitive information. Future work should
focus on how to model a realistic, resource-limited adversary; e.g., in terms of
machine learning or information retrieval tools used to discover or rank sensitive
information.

Pragmatic privacy guarantees. We have seen that several recent ap-
proaches including variants of k-anonymity and differential privacy have tried
2 Note however that two logs with entirely different queries may well have the same

entropy, thus yielding ILR = 0 and maximal empirical utility, where in fact the
utility of one log relative to the other is null. This happens, for instance, if we use
query hashing as a sanitization method.
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to trade better levels of utility for reduced formal privacy guarantees. As full
de-identification may be theoretically impossible, an interesting open problem is
to explicitly relate the privacy guarantees to the inference power of an attacker,
with the goal of making information disclosure too hard or costly for him/her.
A first step in this direction is provided in [23].

Evaluation methodologies. The sanitization models developed so far en-
force different privacy guarantees for different types of output. In addition, each
model comes with its own set of parameters. A direct comparison of their re-
sults is thus very difficult. This issue is being addressed also in the database
field [8]. Empirical measures of privacy and utility for text data, discussed in
Section 3, are an attempt at mitigating this problem but more general and re-
liable evaluation techniques are needed. This problem is compounded by a lack
of experimental benchmarks. Another related issue concerns a unifying frame-
work capable to encompass various sanitization models or identification of the
desirable theoretical properties of a generic sanitization mechanism.

Experimental datasets. In addition to a lack of benchmarks for experimen-
tal evaluation of privacy-preserving algorithms, researchers are often confronted
with the paucity of annotated natural language datasets containing sensitive
information; e.g., for training classifiers. These datasets are difficult to build,
although there are recent works that automate this process to some extent; e.g.,
[29], [30]. There are also ethical issues involved here. Using only public data
and never attempting to indentify users may not be enough, because an adver-
sary could borrow the methods used to assess the privacy risk of an individual
to select who to target. Also, publishing explicitly-sensitive anonymous profiles
for research purposes poses a risk that someone could attempt to identify the
individuals behind those data.

5.1 An examination of the AOL search query log dataset: clarifying
and correcting the statistics

The AOL search log data set was retracted by AOL soon after its release due to
privacy concerns, but it can still be downloaded from mirror sites. Because it is
the only large data set of this kind available for testing to academic researcher,
it has been used in a number of experimental studies in the last years. However,
we discovered that the data set statistics reported in the literature have been
obtained using some hidden and somewhat counter-intuitive assumptions and
are not precise, as explained below. The data set contains 36,389,567 lines of
data, of the format shown in Table 3. The field AnonID is an anonymous user
ID number, Query and QueryTime are, respectively, the query issued by the
user and the time at which the query was entered, and the last two fields (i.e.,
ItemRank and ClickURL) are present only if the user clicked on a search result.
They are, respectively, the rank and the URL of the clicked item. Turning to the
data set statistics, it is generally reported3 that there are 21,011,340 instances

3 http://www.researchpipeline.com/mediawiki/index.php?title=AOL Search Query Logs
.



of new queries (i.e., number of queries with repetitions). However, it is not ex-
plained how repetitions are computed. The apparent underlying interpretation
is that two identical consecutive queries entered by the same user are seen as
just one occurrence of the query, regardless of whether the user has clicked on
some results or not and of the elapsed time between the two queries. Even under
this interpretation, however, the available statistics are not entirely correct. We
found out that the true number is 21,011,338 (instead of 21,011,340) due to a
formatting mistake in the original data, as explained below. In line 2,586,379 of
file ‘user-ct-test-collection-08.txt’, the AnonID begins with an empty space (see
the middle row in Table 3). As the preceding and following queries are identical
queries by the same user (i.e., 9403684), the three queries should count for one
when computing the statistics. With this caveat, the number of queries amounts
to 21,011,338. By contrast, if we used a wrong syntactic check of AnonID equal-
ity, we would obtain 21,011,338 + 2 = 21,011,340, which is the commonly used
statistic. The relevant portion of data is illustrated in table Table 3.

Aside from this mistake, the requirement of non-consecutiveness does not
seem to model the user behavior well, because this implies for instance that two
identical queries with an elapsed time of 24 hours count for 1, while two identical
non consecutive queries with an elapsed time of 30 seconds count for 2. It seems
more convenient to update the frequency count even when two identical queries
are consecutive, provided that their query time is different. Under this new
interpretation, the number of queries grows to 28,898,361. The correct complete
statistics are reported in Table 4. We would also like to point out that there are
some very long meaningless query terms entered by multiple users. For instance,
there are 37 query terms with 50 characters or more entered by at least two users.
One of the most surprising query term is that formed by exactly 500 hyphens,
entered by 18 users. These data are difficult to explain. One hypothesis is that
multiple user ids may have been erroneously associated with the same user.

Table 3. Portion of AOL search query log data containing a formatting mistake that
affects the statistics for new queries.

AnonID Query QueryTime ItemRank ClickURL

9403684 match.com 2006-03-31 06:48:21 1 http://www.match.com
9403684 match.com 2006-03-31 06:55:53 2 http://www.match.com
9403684 match.com 2006-03-31 06:55:53 2 http://www.match.com

6 Conclusions

The research on query log privacy has produced in ten years a number of insights.
In this paper we have discussed strengths and weaknesses of existing methods,
arguing that there has been a shift towards a more pragmatic approach to bal-
ance privacy guarantees and utility of sanitized logs. Today there are techniques



Table 4. The correct AOL search query log statistics. The modified parts are shown
in bold, the new parts in italics.

36,389,567 lines of data
21,011,338 instances of new non-consecutive queries

(w/ or w/o click-through)
28,898,361 instances of new queries (w/ or w/o click-through)

7,887,022 requests for next page of results
19,442,629 user click-through events
16,946,938 queries w/o user click-through
10,154,742 unique (normalized) queries

657,426 unique user ID’s

that retain most of the utility of the original log at the cost of a very small
privacy risk, based on a more realistic assessment of the inferential abilities of
an adversary. The question remains as to these advances will be able to affect
the visible behavior of the search log data collectors in the next future.
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