
A Unified Template for
Model Transformation Design Patterns

Huseyin Ergin1, Eugene Syriani2

1 University of Alabama, USA
2 University of Montreal, Canada

hergin@crimson.ua.edu, syriani@iro.umontreal.ca

1 Introduction

Design patterns are of tremendous value to developers when faced with recurring prob-
lems [1]. Given their various applications and uses, model transformations would ben-
efit tremendously from design patterns as well. Although several studies have proposed
design patterns for model transformation[2,3,4,5,6], there is still no accepted common
language to express them.

In this paper, we propose a unified template to describe model transformation design
patterns based on the analysis of existing model transformation design pattern studies.
We have also initiated a unified template candidate that is suitable for the purpose, along
with an actual model transformation design pattern adapted to the unified template.

2 Unified Template

2.1 Existing templates

Fig. 1 depicts the correspondences between existing proposals for model transformation
design pattern templates and their equivalence with the template used in GoF [1]. Initial
studies on model transformation design patterns proposed useful idioms that are specific
to model transformation languages: ATL [4], VMTS [5], GReAT [2], and QVT-R [3]
(corresponding to columns 2 to 5 in Fig. 1). These shall therefore be considered as
implementations of design patterns in a specific language, rather than design pattern
descriptions.

More recently, Lano et al. [6] provided the most comprehensive model transfor-
mation design patterns study (column 6 in Fig. 1). The template used by the authors
leads to a thorough description of the patterns. In particular, the benefits and disadvan-
tage fields are of great value to analyze and help to choose the appropriate pattern. The
most critical is the solution field that explains the structure of the pattern in a language-
neutral form. For this purpose, Lano et al. used an abstract transformation specification
called TSPEC that manipulates an abstraction of the UML, called LMM. Although this
provide a formalization of design patterns, the notation hinders the comprehension of
design patterns, which does not guide developers in correctly implementing the pat-
tern in a concrete transformation. At about the same time, we proposed a language,
DelTa [7], that is independent from concrete transformation languages, understandable
by developers, and enables the automatic instantiation and detection of the pattern in a
concrete transformation.

Unified template Bezivin Levendovsky Agrawal Iacob Lano Ergin GoF meaning

Goal Intent

Motivation

Applicationxcondition Applicability Applicability Applicability Applicationxconditions Applicability Applicability

Solution Solution Structure Structure Specification Solution Structure Structure

Benefits Benefits Benefits

Disadvantages Limitations Disadvantages

Knownxuses Knownxuses Examples Knownxuses

Implementation Samplexcode

Implementation Variations Implementation

Relatedxpatterns Variations Relatedxpatterns Relatedxpatterns

Summary

Example Applicationxandxexamples

Motivation

ConsequencesConsequencesConsequences

SummaryMotivationMotivationMotivation

Example

Fig. 1. Comparison of fields for design pattern description

2.2 Proposed template

Existing works show that in model transformation area, there is not an agreement how
to represent model transformation design patterns. Different studies have used different
fields to represent a design pattern (i.e., applicability, benefits, structure). In addition,
there is no common language of providing the structure of a model transformation de-
sign pattern, analogous to how UML is used in representing the structures of object-
oriented design patterns. We therefore propose a unified template for expressing model
transformation design patterns using the following fields:

– Summary: a short description of the design pattern that usually gives the outline
of the other fields in a few sentences.

– Application Conditions: pre-conditions on the context of use of the pattern. The
conditions can be either preconditions on the metamodel or constraints in the trans-
formation overall. This is usually expressed in the same language as the solution
field.

– Solution: generic solution to the problem the design pattern addresses. The struc-
ture of the solution is expressed DelTa [7].

– Benefits: advantages of applying the design pattern. The benefits can either be
measurements with respect to some criteria or improvements on some features of
the transformation.

– Disadvantages: pitfalls of applying the design patterns. The disadvantages are
measured similarly to the benefits.

– Examples: example of applying the design pattern in a real context. The example
is implemented in a specific model transformation language.

– Implementation: discussion providing guidelines and hints on how to implement
the design pattern in various transformation languages.

– Related patterns: correlation of the pattern with other patterns. This relation may
be specialization, generalization, sequence, grouping, alternatives, etc.

3 Top-down Phased Construction

We apply the unified template to the Top-down Phased Construction design pattern as
introduced in [6]. We only present an abbreviated version of the pattern due to page
limitation.

– Summary: This pattern separates the transformation into phases depending on how
the target model is composed. The complete summary is found in [6].

– Application conditions: As depicted in Fig. 2, when there is a composition hier-
archy in the source metamodel and the sub-element is mandatory in that relation.

src

sSuper

src

sSub

~

Fig. 2. Application condition

– Solution: As depicted in Fig. 3, the transformation is split into two phases. In
the formerPhase rule, the target element corresponding to the super-element in the
source is first created. In the latterPhase rule, target elements corresponding to the
sub-elements in the source are then created.

src

sSuper
trgt

tSuper
n0

n0

Top-down

Phased Construction

(src, trgt)

formerPhase

src

sSub

src

sSuper
trgt

tSuper

latterPhase

src

sSub
trgt

tSub
n0

n0

n0

Fig. 3. Phased Construction - Structure in DelTa

– Benefits: This pattern increases the modularity of the rules, letting each rule create
one layer of target elements. The complete list of benefits is found in [6].

– Disadvantages: Since the rules are broken into phases, that will increase the rule
count. The complete list of disadvantages is found in [6].

– Examples: The UML class diagram to relational database diagrams can be consid-
ered a top-down phased construction, where we first use classes to create tables,
and then use attributes to create columns [8].

– Implementation: The model transformation languages with explicit scheduling
can create phases sequentially. The languages, that have implicit scheduling only,
can refer to “simulating explicit rule scheduling” pattern in [6].

– Related patterns: The pattern resembles entity relationship mapping pattern [7],
when the entities are considered the top layer and relations are the layer below.
There are also variations of this pattern that starts the construction starting from
bottom. Further related patterns are found in [6].

4 Conclusion

In this paper, we have summarized the structure of design patterns in terms of how
they are represented in different studies. The need for a unified template approach is
inevitable to make design pattern identification easier for future design pattern candi-
dates. We believe using a UML-like graphical notation in at least application condition
and structure fields of a design pattern makes the understanding and the application of
the design pattern easier for the developer. The unified template should be discussed
and improved to provide standardization in model transformation design patterns.

References

1. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Professional (nov 1994)

2. Agrawal, A.: Reusable Idioms and Patterns in Graph Transformation Languages. In: Interna-
tional Workshop on Graph-Based Tools. Volume 127 of ENTCS., Elsevier (2005) 181–192

3. Iacob, M.E., Steen, M.W.A., Heerink, L.: Reusable Model Transformation Patterns. In: EDOC
Workshops, IEEE Computer Society (September 2008) 1–10

4. Bézivin, J., Jouault, F., Paliès, J.: Towards model transformation design patterns. In: Proceed-
ings of the First European Workshop on Model Transformations (EWMT 2005). (2005)

5. Levendovszky, T., Lengyel, L., Meszaros, T.: Supporting Domain-specific Model Patterns
with Metamodeling. Software & Systems Modeling 8(4) (2009) 501–520

6. Lano, K., Kolahdouz Rahimi, S.: Model-Transformation Design Patterns. IEEE Transactions
on Software Engineering 40(12) (Dec 2014) 1224–1259

7. Ergin, H., Syriani, E.: Towards a Language for Graph-Based Model Transformation Design
Patterns. In: Theory and Practice of Model Transformations. Volume 8568 of LNCS., York,
Springer (jul 2014) 91–105

8. Jouault, F., Tisi, M.: Towards incremental execution of atl transformations. In Tratt, L.,
Gogolla, M., eds.: Theory and Practice of Model Transformations. Volume 6142 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg (2010) 123–137

	A Unified Template for Model Transformation Design Patterns
	Introduction
	Unified Template
	Existing templates
	Proposed template

	Top-down Phased Construction
	Conclusion

