
A RDF-based Framework for User

Profile Creation and Management

Ignazio Palmisano, Domenico Redavid, Luigi Iannone, Giovanni
Semeraro, Marco Degemmis, Pasquale Lops, Oriana Licchelli

Dipartimento di Informatica, Università degli Studi di Bari
Campus, Via Orabona 4, 70125 Bari, Italy

email: {palmisano, redavid, iannone, semeraro, degemmis, lops, licchelli}@di.uniba.it

Abstract. The semantic evolution of the Web has an heavy impact on
traditional systems, as the ability to use a formal interoperable language
simplifies information exchange between different systems. In order to
foster information exchange and to easily connect new functionalities to
semantic knowledge bases, in order to be able to use and reuse the valu-
able knowledge embedded in the existing systems, we designed a plugin-
based framework, and used it to connect together different tools and
systems developed in the LACAM laboratory. Our pilot project includes
user profiling abilities coming from two components, namely Profile Ex-
tractor (PE) and Item Recommender (ITR), and storage capabilities
implemented by a repository tool called RDFCore.

1 Introduction

One of the main points for the Semantic Web to be useful is interoperabil-
ity; Semantic Web applications should be able to exchange information
with (almost) no human intervention needed. By exchanging informa-
tion, we mean exchanging meaningful information, i.e. two applications
A and B should be able to share not only the bare data (which is al-
ready doable in a number of ways, one of which is through standards like
XML), but the associate meaning, in a reliable way. For this to be pos-
sible, the process must be described in an unambiguous way; the easiest
solution is then to express the knowledge that the applications want to
share in a formal language, with well defined and logically based seman-
tics. With this aim, currently two main languages have been defined by
W3C: RDF (Resource Description Framework)1 and OWL (Web Ontol-
ogy Language).2

The use of the Semantic Web languages (OWL Full/DL/Lite) enables
applications to decouple knowledge from application machinery, thus en-
ableng other applications to share the meaning, provided that they can
understand the same logic language.

1 http://www.w3.org/RDF/
2 http://www.w3.org/2004/OWL/



With this aim, we designed a framework to ease the realization of se-
mantic applications. The framework is based on a set of interfaces that
abstract some common functionalities, built around the concept of flow
of information.

2 The flow metaphor

By flow of information, we mean the transmission of information (ex-
pressed as ontological information in SW languages, with DL semantics
as background) from a source to a consumer for that information (sink).
Along the path, the information flow can be modified in many ways; we
identify two main approaches for information change: enrichment and
transformation.
Enriching an information flow means adding new information to this flow;
an example could be the use of inference and deduction rules in order to
explicit some implicit knowledge or to add new information coming from
background knowledge.
Transforming an information flow involves the rewriting of the informa-
tion; an example could be the change of background ontology for some
data, or the merge of two information flows into a single one, involving
the use of ontology alignment techniques.
Another kind of flow modification is the store of an information flow for
later use; this is the typical job of a persistent storage component.
A sketch of the resulting architecture is in Figure 1.
The kind of components that implement these interfaces can then be
summarized as:
– Source plugins: this kind of plugin creates new information (e.g.,

wrapping an external source of information, such as a database)
– Store plugins: this kind of plugin stores information, enabling both

persistent storage and retrieval
– Transformer plugins: this kind of plugin modifies the information it

is fed with (e.g., changing class or property definitions)
– Enricher plugins: this kind of plugin differs from the Transformer

because it does not modify existing informations, but adds new in-
formation (e.g., an external reasoner could be wrapped in this kind
of plugin)

– Sink plugin: this kind of plugin does not produce or modify infor-
mation in the framework (e.g., a visualization plugin or an external
application that needs to get information from the framework)

3 Information Flow Language

As already said, the Semantic Web languages for ontology expression
are RDF and OWL, with the RDFSchema3 language as an intermediate
level of expressiveness (and of computational complexity).

3 http://www.w3.org/TR/rdf-schema/



Fig. 1. Architecture Sketch



RDF is primarily focused on the concepts of resource and property: a
resource is an identifiable entity, e.g. a human being, a web site, or a
building, while a property is a relation between two resources or between
a resource and a literal value (e.g. a human being is related to his name).
A set of triples (Subject, Predicate, Object) is a RDF Model (or
Description).
The RDF language is the base for the use of languages with a richer
semantic, such as RDFSchema and OWL. OWL includes RDFSchema,
in order to reuse the concepts already described there, and is divided
into three sublanguages (Lite, DL, Full).
While in RDFS the main relation is inheritance, i.e. the definition of
subclass/superclass relations between resources and subproperty/ su-
perproperty relations for properties, OWL introduces a more complex
semantic, e.g. restrictions on properties (it is possible to define cardinali-
ties and data ranges for properties); the main advantage of this language,
however, is the well defined semantic of the defined relations; this enables
the construction of automatic reasoners that are not limited to a particu-
lar domain or to a particular implementation. Since OWL ontologies are
expressed in RDF, there is no need for a separate storage layer for OWL
data; and, since RDF is an abstract specification that can have different
representations (see RDF/XML, Notation3, N-Triples, Turtle), it is pos-
sible to exchange RDF data between application without imposing an a
priori representation.
As a consequence, the language for the information flow in our framework
is RDF.

4 Framework Test Case

In order to verify the framework in a practical scenario, we used the
defined interfaces to wrap up other components developed in the LACAM
lab. The components we included so far are:

– RDFCore: a component for RDF storage, wrapped as a store plugin
– Profile Extractor : a component for supervised learning of user clas-

sification rules, wrapped up as an enrichment plugin
– ITR (ITem Recommender): a component for content based classifi-

cation, based on näıve Bayes classifiers; from this component, which
originally was a Java Web Application, many plugins have been cre-
ated:
• an enrichment plugin, that encloses the learning abilities of the

system, in a way similar to Profile Extractor
• a source plugin, that encapsulates the part of the web applica-

tion that gains data from users and domain experts
• a sink plugin, that contains the result display part of the system

The resulting istance of the framework is biased towards the user mod-
eling domain, as is easy to see from the description of the systems that
foollows; other work in this area has been done, for example UUCM



(Unified User Context Model) [5], which is based on an extensible repre-
sentation for models. UUCM provides a simple schema to describe differ-
ent dimensions of user models; each dimension can be described through
values that can be either simple types (such as strings, numbers, dates)
or be typed. In this last case, the type of the value is expressed as classes
defined in OWL language.

The components we integrated are not tied to a particular ontology, but
can be used with any OWL ontology like UUCM.

4.1 RDFCore

The RDFCore component, presented in [3], is a component used for
RDF descriptions storage and retrieval, including multiuser support and
extensible support for query languages.

The main modules of RDFCore are DescriptionManager and TripleM-
anager. The first one gives access to Creation, Retrieval, Updating and
Deletion (CRUD) operations on RDF models seen as a whole, while the
second component enables the same operations at the single assertion
level. Both modules use the Jena Semantic Web Toolkit[2] API to work
with RDF models.

The component also offers multiuser support; users can choose whether
some of the models they own should be private, publicly readable or
writable, and can restrict access to single users or groups of users. This
support is useful when designing cooperative applications, thus enabling
geographically dispersed teams to work together easily.

RDFCore has been adopted in the VIKEF Project as the basic compo-
nent for RDF metadata storage in the VIKE (Virtual Information and
Knowledge Environment) Framework, where its SOAP4-exposed services
have been wrapped as a Web Service5 for metadata storage, retrieval and
querying.

In Figure 2 there is a small sketch of the system architecture.

Fig. 2. Architecture of the RDFCore system

4 http://www.w3.org/2000/xp/Group/
5 http://www.w3.org/2002/ws/



4.2 Profile Extractor

The Profile Extractor (PE) [1] is a module that classifies users using
supervised learning techniques. It can be used to discover users’ prefer-
ences by analyzing data relative to user interaction or other data that are
gathered from different data sources, such as data warehouse or transac-
tions, in order to infer rules describing the user behavior. More in detail,
these data are represented in RDF and refer to a simple ontology de-
signed to be used as UUCM value type. The ontology is actually limited
in its scope, since the PE component is limited to the use of zero or-
der data (vectors of attribute/value pairs), and cannot exploit relational
knowledge available in the input data.

To build profiles, the PE component uses decision rules induced from
training data, through the use of well-known Machine Learning tech-
niques, such as partition trees. In order for the rules to be inferred in an
efficient way, and to maximize the predictive power of the inferred rules,
it is necessary to establish what features and attributes, in the avail-
able data, are useful to accomplish the learning task, and what data, on
the other hand, would not increase the predictive power or could waste
computation time. The other main problem concerns the definition of
meaningful classes to learn, which are to be defined before the learning
task starts.

The problem of learning user preferences can be cast to the problem of
inducing general concepts from examples labeled as members (or non-
members) of the concepts. In this context, given for example a finite
set of categories of interest C = {c1, c2, . . . cn}, the task may consist
in “learning the target concept Ti users interested in the category ci”.
In the training phase, the users are positive examples for the categories
they like/are interested, and negative examples for the categories they
don’t like/have interest. We chose an operational description of the tar-
get concept Ti, using a collection of rules that match against the features
describing a user in order to decide if he/she is a member of Ti. Hence,
the problem is reduced to the combination of a number of binary classi-
fiers, in this specific context. For particular classes, where the expected
value is not binary (like/dislike), but has more possible values (likes
much/enough/little/nothing), the solution is still valid, but the classifier
will not be binary; this could result in a small increase in the required
computational time.

4.3 ITem Recommender

ITR (ITem Recommender) implements a probabilistic learning algorithm,
the näıve Bayes classifier, relying on a content-based approach. The pro-
totype is able to classify documents as interesting or uninteresting for a
particular user, on the ground of the textual content of the documents.
This approach is analog to the relevance feedback in Information Re-
trieval [6], which adapts the query vector by iteratively absorbing users
relevance judgments on newly returned documents. In the Information
Filtering paradigm, the tuned query vector is actually a profile model,



specifying both keywords and their informative power. Based on the con-
structed user profile, a new item relevance is measured by computing a
similarity measure between the query vector and the item’s feature vec-
tor. Learning a user profile generally involves the application of Machine
Learning techniques to generate a predictive model based on information
that has been previously labeled by the user. To learn user profiles, ITR
casts the problem as a Text Categorization (TC) problem. The tech-
niques used are those that are well-suited for text categorization [7].
We consider the problem of learning user profiles as a binary TC task:
each document has to be classified as interesting or not w.r.t. the user
preferences. Therefore, the set of categories is restricted to c+, that rep-
resents the positive class (user-likes), and c− the negative one (user-
dislikes).
ITR representation is based on bag of concepts (BOC) [8]. In this ap-
proach each feature corresponds to a single word found in the training
set.
The final outcome of the learning process is a probabilistic model used
to classify a new instance in the class c+ or c−. The model can be used
to build a personal profile that includes those words that turn out to be
most indicative of the user’s preferences.

4.4 Other Plugins
Other algorithms developed in the LACAM lab have been ported in
the framework or are migrating at the time of writing; in particular,
the REDD algorithm [4] has been wrapped in a Transformer plugin, en-
abling the applications that use the framework to apply the redundancy
detection algorithm on any RDF model they use.
REDD is based on blank node semantics, and is able to detect redun-
dancies in RDF (and OWL) models, where, for example, multiple blank
nodes with no distinguishing features are present in the same model.
This is the case, for example, of a remote store that gets updates from
other applications; it is possible that one or more applications send the
same information more than once, and, while this is not a problem with
RDF ground statements (i.e. statements with no blank nodes), since
RDF models are defined as triple sets, blank nodes inserted during the
life of the model are not recognized as already present; this increases the
size of the models without reason, and could also be regarded as an error.
Another possible application, which is under experimentation at the time
of writing, is the use of REDD to detect redundant definitions in ontolo-
gies; the ongoing project aims at using the framework in the building of
a Protégé 6 plugin.

5 Semantic Evolution

On the side of algorithm evolution, in the ITR component the update
to OWL formalism is strictly related to the switching from keyword-
based representation of the user profile to user profiles based on concepts

6 http://protege.stanford.edu



(bags-of-concepts, BOC, instead of bag-of-words, BOW). While this shift
of representation is natural when considering the new environment, we
already demonstrated in [8] that the traditional TF-IDF heuristic gains
some percents both in precision and recall from the new representation.
Moreover, we are currently doing empirical measures on an evolution
of TF-IDF that takes into account the hierarchical relations between
concepts, that, informally, redefines the classical definition of TF-IDF,
which is based on sheer concept occurrence number, taking into account
that a more specific term is also an instance of a more general term, and
as consequence, so to speak, each occurrence of the more specific term
counts also as an occurrence of the more general term.

6 Acknowledgments

This research was partially funded by the European Commission under
the 6th Framework Programme IST Integrated Project VIKEF - Vir-
tual Information and Knowledge Environment Framework (Contract no.
507173, Priority 2.3.1.7 Semantic-based Knowledge Systems; more infor-
mation at http://www.vikef.net).

References

1. F. Abbattista, M. Degemmis, O. Licchelli, P. Lops, G. Semeraro, and
F. Zambetta. Agents, Personalisation and Intelligent Applications. In
R. Corchuelo, A. Ruiz Cortés, and R. Wrembel, editors, Technologies
Supporting Business Solutions, Part IV: Data Analysis and Knowl-
edge Discovery, Chapter 7, pages 141–158. Nova Sciences Books and
Journals, 2003.

2. B. McBride. JENA: A Semantic Web toolkit. IEEE Internet Com-
puting, 6:55–59, Nov-Dec 2002.

3. F. Esposito, L. Iannone, I. Palmisano, and G. Semeraro. RDF Core:
a Component for Effective Management of RDF Models. In Isabel F.
Cruz, Vipul Kashyap, Stefan Decker, and Rainer Eckstein, editors,
Proceedings of SWDB’03, The first International Workshop on Se-
mantic Web and Databases, Co-located with VLDB 2003, Humboldt-
Universität, Berlin, Germany, September 7-8, 2003, 2003.

4. Floriana Esposito, Luigi Iannone, Ignazio Palmisano, Domenico Re-
david, and Giovanni Semeraro. REDD: An Algorithm for Redundancy
Detection in RDF Models. In Asunción Gómez-Pérez and Jérôme Eu-
zenat, editors, The Semantic Web: Research and Applications, Second
European Semantic Web Conference, volume 3532 of Lecture Notes
in Computer Science, pages 138–152. Springer, 2005.

5. C. Niederée, A. Stewart, B. Mehta, and M. Hemmje. A Multi-
Dimensional, Unified User Model for Cross-System Personalization.
In Liliana Ardissono and Giovanni Semeraro, editors, Proceedings of
the AVI 2004 Workshop On Environments For Personalized Informa-
tion Access, pages 34–54, 2004.



6. G. Salton and M.J. McGill. Introduction to Modern Information Re-
trieval. McGraw-Hill, New York, 1983.

7. F. Sebastiani. Machine learning in automated text categorization.
ACM Computing Surveys, 34(1), 2002.

8. Giovanni Semeraro, Marco Degemmis, Pasquale Lops, and Ignazio
Palmisano. WordNet-based User Profiles for Semantic Personaliza-
tion. In P. Brusilovsky, C. Callaway, and A. Nurnberger, editors,
Proceedings of the Workshop on New Technologies for Personalized
Information Access (PIA 2005), part of the 10th Int. Conf. on User
Modeling (UM’05), Edinburgh, UK, 2005., pages 74–83, 2005.


