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Abstract 

Our framework supporting non-technical subject 
matter experts’ authoring of useful Bayesian 
networks has presented requirements for fixed 
probability soft or virtual evidence findings that we 
refer to as target beliefs.  We describe exogenously 
motivated target belief requirements for model 
nodes lacking explicit priors and mechanistically 
motivated requirements induced by logical 
constraints over nodes that in the framework are 
strictly binary.  Compared to the best published 
results, our target belief satisfaction methods are 
competitive in result quality and processing time on 
much larger problems.   

1. INTRODUCTION 

The variety of soft or virtual evidence finding on a Bayesian 
network (BN) node in which a specified probability 
distribution must be maintained during BN inference—called 
a fixed probability finding by (Ben Mrad, 2015) and called a 
target belief here—has received limited attention.  Published 
results for inference algorithms respecting such findings have 
addressed small, artificial problems including at most 15 
nodes (Peng et al., 2010; Zhang et al., 2008).   

Our work on one real application has required addressing 
dozens of such findings in a BN comprising hundreds of 
nodes.  In this context, target beliefs are motivated by 
modelers’ need to address authoritative sources exogenous to 
the model itself, where beliefs should hold for selected non-
BN root model nodes—i.e., nodes lacking explicit prior 

  
1 Including top-level node priors as a degenerate case. 

2 Our framework automatically computes CPTs (see section 2) to reflect a 

modeler’s specified strength with which a child node (counter-)indicates 

its parent node.  So, modifying CPTs is appropriate only when modifying 

these strengths is.  Likewise, the representation would not naturally 

probability distributions (that otherwise might be used to 
achieve target beliefs directly).   

For example, if a binary node Divorces appears deep in a 
person risk assessment network as an indicator of a top-level 
binary node Trustworthy, usually (without target beliefs or 
other node findings) the network’s computed belief in 
Divorces will depend on the network’s conditional 
probability tables (CPTs)1—not on a published statistic about 
the divorce rate in an intended subject population.  To make 
our model’s belief in Divorces agree with the exogenous 
statistic, a modeler can: 

1. Adjust CPTs throughout the model to agree with the 
exogenous specification. 

2. Invoke Jeffrey’s rule (Jeffrey, 1983) to compute a 
likelihood finding on Divorces that achieves the 
specified belief. 

3. Specify a target belief for Divorces and rely on target 
belief satisfaction machinery to achieve the target. 

The first option is not entirely compatible with our modeling 
framework.2  The modeler’s manual effort under either of the 
first two options may be undermined as soon as s/he modifies 
the model again.3  The last option offloads the work of target 
belief satisfaction to an automated process—at the expense 
of executing that process, as often as necessary.  Execution 
time may be acceptable for a given use case if the model is 
small, if it is not modified often, or if model development is 
sufficiently simplified under this approach to enhance overall 
productivity.  As we intend our framework to be subject 
matter expert- (SME-)friendly, this option is attractive.  The 
more we can free a modeler to concentrate on higher-level 
decisions with greater domain impact, the more and better 
models s/he should be able to deliver.   

accommodate a conventional approach to machine learning of CPT 

entries. 

3 In principle, any of a large variety of modifications—including more 

invocations of this option to address additional exogenous 

probabilities—could affect computed belief in Divorces. 
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Our work adapting the framework to realize probabilistic 
argument maps for intelligence analysis (Schrag et al., 2016a; 
2016b) has surfaced powerful representations (Logic 
constraints—see section 4) that can improve model clarity 
and correctness and that often require target beliefs. 

In the following sections, we outline the framework, our large 
person risk assessment model, and the view of framework 
models as probabilistic argument maps.  We explain how 
Logic constraints can improve arguments (models) and how 
target beliefs can support such constraints.  We briefly review 
existing competitive target belief processing methods, then 
describe our own method and results.  

2. SME-ORIENTED MODELING 
FRAMEWORK 

We developed the framework to facilitate creation of useful 
BNs by non-technical SMEs.  Faced with the challenge of 
operationalizing SMEs’ policy-guided reasoning about 
person trustworthiness in a comprehensive risk model 
(Schrag et al., 2014), we first developed a model encoding 
hundreds of policy statements.  The need for SMEs both to 
understand the model and to author its elements inspired us 
to develop and apply a technical approach using exclusively 
binary random variables (BN nodes) over the domain {true, 
false}.  This led us to an overall representation that happens 
to extend standard argument maps (CIA, 2006) with Bayesian 
probabilistic reasoning (Schrag et al., 2016a; 2016b).   

In the framework, every node (or argument map statement4) 
is a Hypothesis.  Some Hypotheses are Logic nodes whose 
CPTs are deterministic.  Connecting the nodes are links 
whose types are listed in Table 1.  Argument maps’ 
SupportedBy and RefutedBy links correspond to our 
IndicatedBy and CounterIndicatedBy links. 

Table 1: Framework link types (center column).  For the last 
two link types, the argument map-downstream statement 
(BN-downstream node) is a Logic node. 

Argument 
map-

downstream5 
statement 

 

IndicatedBy 

Argument 
map-

upstream 
statement(s) 

 

CounterIndicatedBy 

MitigatedBy 

RelevantIf 

OppositeOf 

ImpliedByConjunction 

ImpliedByDisjunction 

 

We encode strengths for non-Logic node-input links (first four 
rows of Table 1) using fixed odds ratios per Figure 1.   

 

 

Figure 1: Odds ratios for discrete link strengths.  Absolutely is intended as logical implication.  We do not otherwise commit 
SMEs to absolute certainty.   

  

  
4 Our binary BN nodes correspond to propositions bearing truth values.  In 

the argument map point of view, these propositions may be understood 

to be statements. 

5 Per argument map convention, “downstream” is left, “upstream” right in 

the left-flowing argument map of Figure 3.  Except for Logic nodes, this 

is opposite of links’ causal direction in BNs. 
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A framework process (Wright et al., 2015) converts 
specifications into corresponding BNs.  The conversion 
process recognizes a pattern of link types incident on a given 
node and constructs an appropriate CPT reflecting specified 
polarities and strengths.  The SME thus works in a graphical 
user interface (GUI) with an argument map representation (as 
if at a “dashboard”), and BN mechanics and minutiae all 
remain conveniently “under the hood.”   

The framework includes stock noisyOr and noisyAnd 
distributions (bearing a standard Leak parameter) for BN 
nodes with more than one parent.  While these have so far 
been sufficient in our modeling efforts, we also could fall 
back to fine distribution specification.  We have deliberately 
designed the framework to skirt standard CPT elicitation, 
which can tend to fatigue SMEs.  Consider an indicator of h 
different Hypotheses, so with h BN parents and 2h CPT rows.  
Suppose belief is discretized on a 7-point scale.6 Then 
standard, row-by-row elicitation requires 2h entries.  With 
noisyOr or noisyAnd, we need only h entries bearing a 
polarity and strength for each parent, plus a Leak value for the 
distribution.   

We are working to make modeling in the framework more 
accessible to SMEs, particularly via model editing 
capabilities in the GUI exhibited in Figure 3.  (Schrag et al., 
2016a) describes our framework encoding of an analyst’s 
argument, favorable comparison of resulting modeled 
probabilities to analyst-computed ones, and favorable 
comparison of CPTs generated by the framework vs. elicited 
directly from analysts. 

3. PERSON RISK MODEL WITH 
EXOGENOUS BELIEF 
REQUIREMENTS 

Our person risk assessment application includes a core 
generic person BN accounting for interactions among beliefs 
about random variables representing different person 
attribute concepts like those in Figure 2.   

  
6 As (Karvetski et al., 2013) note, the inference quality of models developed 

this way usually rivals that of models developed with arbitrary-precision 

CPTs.  

 

Figure 2: Partial generic person attribute concept BN (top), 
with related event categories (bottom).  BN influences point 
(causally) from indicated concept hypothesis to indicating 
concept.  Stronger indications have thicker arrows.  A single 
negative indication has a red, double-lined arrow.   

The framework processes a given person’s event evidence to 
specialize this generic BN into a person-specific BN (Schrag 
et al., 2014). 

We have specified target beliefs for some two dozen nodes in 
the generic person network.  By processing the target beliefs 
in an event evidence-free context, we ensure that events have 
the effects intended, respecting both indication strengths and 
exogenous statistics.7   

4. INTELLIGENCE ANALYSIS MODEL 
MOTIVATING REQUIRMENTS FROM 
LOGIC CONSTRAINTS 

Figure 3 is a screenshot of a model addressing the CIA’s Iraq 
retaliation scenario (Heuer, 2013)8, where Iraq might respond 
to US forces’ bombing of its intelligence headquarters by 
conducting major, minor, or no terror attacks, given limited 
evidence about Saddam Hussein’s disposition and public 
statements, Iraq’s historical responses, and the status of Iraq’s 
national security apparatus.  This model emphasizes 
Saddam’s incentives to act.  By setting a hard finding of false 
on the incentive-collecting node SaddamWins, we can 
examine computed beliefs under Saddam’s worst-case 
scenario (and, by comparing this to his best-case scenario, 
determine that conducting major terror attacks is not his best 
move).  See (Schrag et al., 2016a) for details.  

7 Such a dividing line between generic model and evidence may not be so 

bright in a probabilistic argument map, where an intelligence analyst may 

enter both hypothesis and evidence nodes incrementally.   

8 See chapter 8, “Analysis of Competing Hypotheses.” 
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Figure 3: Statement nodes are connected by positive (solid grey line) and negative (dashed grey line) indication links of various 
strengths (per line thicknesses).  Argument flow (from evidence to outcomes) is from right to left—e.g., SaddamWins is 

strongly indicated by SaddamKeepsFace.  Outcome hypothesis nodes are circled in yellow.  SaddamWins (hard finding false) 
captures Saddam’s incentives to act or not.  Belief bars’ tick marks fall on a linear scale.  Colors are explained in (Schrag et 
al., 2016a), also (Schrag et al., 2016b). 

In developing the model in Figure 3, we identified some 
representation and reasoning shortcomings for which we are 
now implementing responsive capabilities (Schrag et al., 
2016b).  Relevant to our discussion here, TerrorAttacksFail 
(likewise TerrorAttacksSucceed) should be allowed to be true 
only when TerrorAttacks also is true.   

We are working towards Logic nodes supporting any 
propositional expression using unary, binary, or higher arity 
operators9.  When a Logic statement has a hard true finding10, 
we refer to it as a Logic constraint, otherwise as a 
summarizing Logic statement.  

We know that an attempted action can succeed or fail only if 
it occurs.  By explicitly modeling (as Hypotheses) both the 
potential action results and adding a Logic constraint11, we 
can force zero probability for every excluded truth value 
combination, improving the model.  See Figure 4.  The 
constraint node (left, in right model fragment) ensures that 
the model will believe in attack success/failure only when an 
attack actually occurs.  Setting the hard true finding on this 
node turns the summarizing Logic statement (left, in the left 
fragment) into the Logic constraint—but also distorts the 
model’s computed probabilities for the three Hypotheses.  
Presuming these probabilities have been deliberately 
engineered by the modeler, our framework must restore them.  
It does so by implementing (bottom fragment) a target belief 
(per the ConstraintTBC node) on one of the Hypotheses. 

 

Figure 4: Logic constraints can help ensure sound reasoning.   

  

  
9 See, e.g., https://en.wikipedia.org/wiki/Truth_table.  

10 A likelihood finding could be used to implement a soft constraint. 

11 This constraint can be rendered (abbreviating statement names) as (or (and 
occur (xor succeed fail)) (and (not Occurs) (nor Succeeds Fails))) or more 

compactly via an if-then-else logic function (notated ite) as (ite Occurs 
(xor Succeeds Fails) (nor Succeeds Fails))—if an attack occurs, it either 

succeeds or fails, else it neither succeeds nor fails.   
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We implement a target belief either (depending on 
purpose) using a BN node like ConstraintTBC or 
(equivalently) via a likelihood finding on the subject BN 
node.  The GUI does not ordinarily expose an auxiliary 
node like ConstraintTBC to a SME/analyst-class user.  

This example is for illustration.  We can implement this 
particular BN pattern without target beliefs.  We also could 
implement absolute-strength IndicatedBy links as simple 
implication Logic constraints.  However, this would not 
naturally accommodate one of these links’ key 
properties—the ability to specify degree of belief in the 
link’s upstream node when the downstream node is true—
relevant because we can infer nothing about P given P ! 
Q and knowing Q to be true. It also demands two target 
belief specs that tend to compete.  We are working to 
identify more Logic constraint patterns that can be 
implemented without target beliefs and to generalize 
specification of belief degree for any underdetermined 
entries in a summarizing Logic statement’s CPT.  

5. TARGET BELIEF PROCESSING 

Ben Mrad et al. (2015) survey BN inference methods 
addressing fixed probability findings—our target beliefs.  
The most recent published results (Peng et al., 2010) 
address problems with no more than 15 nodes (all binary).  
Apparently, earlier approaches materialized full joint 
distributions—these authors anecdotally reported late-
breaking results using a BN representation, with 
dramatically improved efficiency.  Mrad et al. report 
related capabilities in the commercial BN tools Netica and 
BayesiaLab.  Netica’s “calibration” findings are concerned 
with comparing predictions to real data and could help 
identify where target beliefs were needed, however would 
do nothing to satisfy them.  We have not experimented with 
BayesiaLab.  While our performance results may similarly 
be construed as anecdotal—we have not systematically 
explored a relevant problem space—we have addressed a 
much larger problem.  Our person risk assessment BN 
includes over 600 nodes and 26 target beliefs.   

The basic scheme of our target belief processing approach 
is to interleave applications of Jeffrey’s rule12 with 
standard BN inference.  Intuitively, each iteration—or 
“fitting step” (Zhang, 2008)—measures the difference 
between affected nodes’ currently computed beliefs and 
specified target beliefs, makes changes to bring one or 
more nodes closer to target, and propagates these changes 
in BN inference.  We continue iterating until a statistic over 
computed-vs.-target belief differences meets a desired 
criterion, or until reaching a limit on iterations, in which 
case we report failure.  Just as for hard findings and 

  
12 See (Jeffrey, 1983), as mentioned in section 1. 

13 See section 5.2. 

likelihood findings, not all sets of target beliefs can be 
achieved simultaneously.  In our intended incremental 
model development concept of operations (CONOPS), the 
framework’s report that a latest-asserted target belief 
induces unsatisfiability should be taken as a signal that a 
modeling issue requires attention—much as would the 
similar report about a latest-asserted CPT.   

We have implemented the following refinements to this 
basic scheme, improving performance.   

1. Measure beliefs on a (modified) log odds scale. 
2. Conservatively13 apply Jeffrey’s rule to all affected 

nodes in early iterations/fitting steps, then in late steps 
select for adjustment just the node with greatest 
difference between computed and target beliefs. 

3. Save the work from previous target belief processing 
for a given model (e.g., under edit) to support fast 
incremental operation. 

5.1 MODIFIED LOG ODDS BELIEF 
MEASUREMENT 

Calculating the differences between beliefs measured on a 
scale in the log odds family, vs. on a linear scale, better 
reflects differences’ actual impacts.  We use the function 
depicted in Figure 5—a variation on log odds in which each 
factor of 2 less than even odds (valued at 0) loses one unit 
of distance that we refer to as a bit.  So, for belief = 0.125 
we calculate –2 bits.   

 

Figure 5: Belief transformation function (modified log 
odds) used in calculating computed-vs.-target belief 
differences 

We express differences between beliefs in terms of such 
bits.  So, difference(0.999, 0.87) = 7.02 bits and 
difference(0.87, 0.76) = 0.90 bits, whereas both pairs of 
untransformed beliefs (that is, (0.999, 0.87) and (0.87, 
0.76)) have the same ratio, 1.14.14  The transformation 

14 This difference metric is more conservative than the Kullback-Leibler 

distance or cross-entropy metric used in (Peng et al., 2010)’s I-

divergence calculation.  The absolute value of this function also has 

the advantage of being symmetric. 
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seems to inhibit oscillations among competing target 
beliefs.   

5.2 MULTIPLE ADJUSTING IN ONE FITTING 
STEP 

Moving all affected nodes all the way to their target beliefs 
in one fitting step is too aggressive in this model.  We can 
get closer to a solution by adjusting more conservatively.  
We found that applying Jeffrey’s rule to take affected 
variables {½ , 1/3, ¼, ...} of the way toward their target 
beliefs in successive fitting steps worked better than 
scaling calculated differences by any fixed proportion.  
This trick seems to be advantageous just for the first two or 
three fitting steps, after which single-node adjustments 
become more effective. 

Incorporating both this refinement and the preceding one 
and running with a maximum belief difference of 0.275 bits 
for any node (yielding adequate model fidelity for our 
application), we complete target belief processing in 19 
seconds (running inside a Linux virtual machine on a 2012-
vintage Dell Precision M4800 Windows laptop).15  That’s 
not necessarily GUI-fast, but this is a larger model than 
many of our SME users may ever develop.  Fitting steps 
took a little less than one second on average, with each 
step’s processing dominated by the single call to BN 
inference. 

These results remain practically anecdotal, as we have so 
far developed in our framework only this one large model 
including many target beliefs.  Experience with different 
models may lead to more generally useful values for run-
time parameters. 

5.3 INCREMENTAL OPERATION 

Under incremental operation, we execute only single-node 
fitting steps, as individual model edits usually have limited 
effect on overall target belief satisfaction.  So far, we have 
experimented with incremental operation only for our 
person risk model.   

Over two runs (with target beliefs processed in original 
input order vs. reversed): 

• Average processing times per affected node were 2.1 
and 2.3 seconds, respectively.  Individual target 
beliefs processed in about 1.1 seconds or less about 
half the time.  Figure 6 plots processing times for the 
first run, by affected node number, including a 4-
node moving average. 

• The least number of fitting steps was 0, the greatest 
17 (taking from 0 to 8.7 seconds).   

• Total run times were 54 and 59 seconds, respectively.  
So, batch (vs. incremental) processing can be 
advantageous, depending on CONOPS and use case. 

  
15 We found that tightening tolerance by a factor of 6.6 increased run time 

by a factor of 3.0. 

 

Figure 6: Run-time by affected node increment, with 4-
node moving average window 

6. CONCLUSION 

Target beliefs have an important place in our SME-oriented 
modeling framework, where their processing is supported 
effectively by our methods described here.  We might 
reduce or eliminate requirements for exogenous target 
beliefs by pushing SMEs towards arbitrary-precision link 
strengths (see Schrag et al. 2016b), but we are counting on 
target belief machinery to implement Logic constraints that 
make the SMEs’ accessible modeling representation more 
expressive and versatile—ultimately more powerful.  We 
expect target belief processing to be well within GUI 
response times for small models, including, per (Burns, 
2015), the vast majority of intelligence analysis problems 
amenable to our argument mapping approach.  We 
anticipate further work, especially to develop theory and 
practice for efficient implementation of different Logic 
constraint patterns. 
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