
Self-Configuring Mashup of Cloud Applications
A.Cavaleri, M. Cossentino, C. Lodato, S. Lopes, L. Sabatucci

ICAR-CNR, Palermo, Italy
Email: {sabatucci,s.lopes,cossentino}@pa.icar.cnr.it

Abstract—This paper presents a general approach for au-
tomatic composing and orchestrating applications distributed
over the cloud. The process is driven by user requirements
that are made explicit though a goal specification language.
The self-configuration module dynamically organizes a mashup
application by composing existing cloud application as atomic
brick to compose. Finally the orchestrator module is responsible
of a seamless enacting of the selected cloud applications. A
prototype has been implemented as a multi agent system for
implementing the business process for a company working for
fashion firms.

I. INTRODUCTION

Cloud computing focuses on maximizing the effectiveness
of shared resources and information (that are provided to
users on-demand) and reducing the overall cost by using less
power, air conditioning, rack space, etc. Cloud applications
are currently developed as monolithic solutions tethered to
proprietary stack architectures in which the provider typically
runs all elements of the service [9]. These architectures are a
barrier for third-part developers to mix and match services
freely from diverse cloud service tiers to configure them
dynamically to address application needs [9].

The objective of Cloud Application Mashup is to enable
easy customization and composition of SaaS applications from
many providers by providing a cohesive solution that offers
improved functionality to the client. In this paper we report a
practical experience of Cloud Application Mashup that derives
from a background of research in self-configuring system and
dynamic workflow composition.

We describe an architecture for closing the gap between
goal-oriented requirement engineering [20] and autonomous
systems [5] with the aim of creating a highly customizable
orchestration of distributed services. The request for a mashup
is based on a technique we called goal-injection: a goal is the
high-level specification of the kind of service desired by the
user. Goal orientation is used for decoupling the specification
of what the system has to do from how it will be done. Service
compositions must not be programmed. Once a goal has been
introduced into the system, it becomes a stimulus for self-
configuring ad-hoc solutions in order to fulfill the request.
The basic assumption is to make available some wrappers for
existing services and cloud applications, namely capabilities. It
is a responsibility of the system to aggregate capabilities thus
to obtain composed behavior. Finally, orchestration is based
on establishing (temporary) collaborations between services
according to self-configured conditions. A prototype has been
developed as a multi-agent system for implementing a cus-

tomer service business process of the B2B process of a big
fashion firm1.

The paper is organized as follows: Section II presents
the concept of Cloud Application Mashup and provides a
real scenario emerged during a research project. Section III
introduces the goal-oriented language to specify user’s re-
quirements. Section IV describes a three layer architecture
for self-configuration that is the core for service mashup.
Section V presents the orchestrator module and describes the
ad hoc business process obtained at run-time. Related works
are discussed in Section VI whereas some Conclusions are
given in Section VII.

II. CLOUD APPLICATION MASHUP

The term mashup is a shortcoming for applications created
by integrating modular components. It originates in the context
of web applications for referring to a some kind of collabora-
tion between websites and/or webservices. In general a web-
based mashup is a resource that combines existing sources,
whether it is content, data or application functionality, from
more than one resource enabling end users to create and adapt
individual information centric and situational applications.

So far, mashup is mainly intended as an instrument for
web developers for integrating content from more than one
source in a new single graphical interface. Enablers of web
mashup are i) popular standard-based interface/communication
technologies (such as WSDL, REST, and RSS) and ii) the
fact many Internet companies opened up their data to be used
through a set of APIs.

Now, we are moving towards a variety of Web Applications
that run over the Cloud as SaaS, the new mashup trend is
mixing data but also processes.

A. Cloud Application Mashup: The Enterprise Vision

Cloud Applications are currently developed as monolithic
solutions in which the SaaS layer is tethered to proprietary
cloud stack architecture. The cloud provider runs all elements
of the service and presents a complete application to the
client [9]. This architecture hinders third-part developers to
mix and match services freely from diverse cloud service
tiers to configure them dynamically to address application
needs [9].

Cloud Application Mashup objective is to surpass vendor
lock-in (i.e. the situation in which customers are dependent

1The research was partially funded by the Autonomous Region of Sicily,
Project OCCP (Open Cloud Computing Platform), within the Regional Oper-
ative Plans (PO-FESR) of the EU Community.

68

on a single manufacturer or supplier for some product) in
order to customize and combine SaaS applications from many
providers. It provides ways to orchestrate a cohesive solution
that assembles virtual services in order to offer improved
functionality to the client.

We refined the current vision of Cloud Application Mashup
as follows:

• Cloud services will be available via a cloud market-
place in which providers store their offerings. Clients
can discover and buy the needed services for third-
party cloud applications that they can use for their own
mashup. Cloud services will be available through an ad-
hoc description language that provides all the relevant
aspects for their integration and usage.

• Mashups are created for the consuming user, often di-
rectly by the users themselves, so that they can take ad-
vantage of software licensing and billing model based on
the pay-per-use concept. Therefore users will establish or
modify situational collaborations for integrating services
from a variety of cloud providers.

• There will be a mashup engine, offered as SaaS to clients.
It will act as a mediator for atomic cloud services in order
to realize user’s mashup application.

This vision may have substantial value for IT in this
approach by improving the return-on-assets of the existing sys-
tems since Mashup enables fast and flexible B2B collaboration
(short development cycles, cheap development) whereas exist-
ing B2B collaboration solutions focus on long-term business
relationships [15]. Short and cheap development cycles make
B2B solutions available for small and medium enterprises.

B. Preliminary Definitions

In this subsection we introduce some concepts that are used
along the paper. For the sake of clarity the definitions are
provided in informal way, however, for the formal counterpart
please refer to [10], [12].

The concept of goal is often used in the context of business
process. A Goal is “a desired change in the state of the world
an actor wants to achieve”. Goals represent enterprise strategic
interests that motivate the execution of business processes [20].
A Goal Model is a requirement engineering conceptual model
used to depict the strategic rationale of a business process
in the form of a hierarchy of goals. It basically provides a
hierarchical decomposition of goals into sub-goals through
AND/OR operators. In our approach goal-models are used to
specify the business logic of the desired service composition
in terms of which outcome the user will receive.

A Capability is a wrapper for cloud applications and ser-
vices that introduces a semantic description layer. It allows
the developer to specify i) how to invoke the specified func-
tionality (which data must be passed and which data will be
returned) and ii) which effect is expected by executing the
encapsulated application or service. The capability also has
the advantage of being automatically composable in order to
address a complex result.

C. A B2B Cloud Application for Fashion Firms

A big manufacturer company who works in fashion (Fash-
ionFirm 2) uses a legacy system to manage its informa-
tion system (IBM AS/400) . They decided to improve their
commercial network and designated Company.com, a small
software house, to handle their B2B processes. The resulting
system is built as a set of services running on a cloud stack: a
set of scalable backend services (VPN) capable of interacting
with the legacy system and a SaaS eCommerce platform
(OrderPortal). The provided solution scales up very well for
increasing the volume of requests by deploying clustered
VPNs on the need.

Given this existing scenario, the Company.com is demanded
to extend the FashionFirm’s business process by adding new
services for customer management. In order to improve cost-
effects these new services are conceived as cloud application
mashups. This allows to fast prototype the solution by reusing
existing third part cloud applications (Cloud Calendar, File
Storage and Voicemail).

The mashup application that will be used as a running exam-
ple in this paper is intended to support customer relationships
during the order management process. ManyFirmsShop is a
retailer of FashionFirm’s products. When the ManyFirmsShop
agent requests a stock of products (through the OrderPortal),
the system merges VPN (used as usual to interact with
the legacy system) with external cloud applications existing
in the market: a Cloud Storage system to deliver receipts
to ManyFirmsShop, Voicemail to communicate the delivery
status and, finally, a Cloud Calendar service for annotating
the delivery date.

III. THE REQUIREMENT AWARENESS

The primary driver of this work is allowing the end-user to
build her own mashup over the SaaS infrastructure according
to personal requirements. At first analysis the easier choice was
to use BPEL, the de facto standard language for orchestrating
web-services. However BPEL is a static model, whereas self-
configuration allows:

• integrating dynamic user’s preferences into the flow of
activities;

• introducing new services without revising the whole
workflow model;

• service failures may be discovered at run-time.
We used self-configuration in order to configure a Cloud

Application Mashup. The most important requisite it demands
is the system be requirements-aware. A requirements-aware
system should be able to introspect about its requirements in
the same way that reflective middleware-based systems permit
introspection about their architectural configuration [14]. In a
requirement aware system, requirements are at the same time:
i) first class abstractions of the modeling language and ii) run-
time entities over which the system can assess and reason
about.

2Names in this scenario are obfuscated for privacy reasons.

69

In our approach, the GoalSPEC language [13] has been
selected for implementing requirement awareness because it
uses goals for representing user’s requirements and it provides
the necessary characteristics for enabling goal injection and
reasoning. It represents the first step in the direction of making
end-user able to autonomously sketch up her requirements. It
is based on structured English and it adopts a core grammar
in which a domain vocabulary of terms can be plugged on.

In GoalSPEC a goal is composed of three main com-
partments: a triggering condition (introduced by the ‘when’
keyword) that states when the goal starts to be interesting for
the system, a list of actors that are involved in, and a desired
final state (introduced by the ‘address’ keyword) that describes
what is expected in terms of states of the world. For more
details about GoalSPEC see [13].

Listing 1. Set of GoalSPEC goals for the B2B scenario

GOAL t o w a i t o r d e r : WHEN MESSAGE o r d e r RECEIVED FROM
THE u s e r ROLE

THE SYSTEM SHALL ADDRESS a v a i l a b l e (Order)

GOAL t o r e t r i e v e u s e r d a t a : WHEN a v a i l a b l e (Order)
THE SYSTEM SHALL ADDRESS a v a i l a b l e (User)

GOAL t o c h e c k o r d e r : WHEN a v a i l a b l e (Order) AND
a v a i l a b l e (User)

THE SYSTEM SHALL ADDRESS a c c e p t e d (Order) OR r e f u s e d (
Order)

GOAL t o p r o d u c e r e c e i p t : WHEN a c c e p t e d (Order)
THE SYSTEM SHALL ADDRESS a v a i l a b l e (R e c e i p t)

GOAL t o n o t i f y r e c e i p t : WHEN a v a i l a b l e (User) AND
a v a i l a b l e (R e c e i p t)

THE SYSTEM SHALL ADDRESS
MESSAGE r e c e i p t SENT TO THE u s e r ROLE

GOAL t o d e l i v e r o r d e r : WHEN MESSAGE r e c e i p t SENT TO THE
u s e r ROLE

THE SYSTEM SHALL ADDRESS
MESSAGE d e l i v e r y o r d e r SENT TO THE s t o r e h o u s e m a n a g e r

ROLE

GOAL t o n o t i f y f a i l u r e : WHEN a v a i l a b l e (User) AND
r e f u s e d (Order)

THE SYSTEM SHALL ADDRESS
MESSAGE f a i l u r e SENT TO THE u s e r ROLE

An example of goal-model for the FashionFirm scenario is
reported in Figure 1, where goals are described in Listing 1.
It is worth noting that such a goal model does not provide
a logical ordering of the goals to address. It is up to the
orchestrator module to deduct the best ordering that applies
to the current context.

Fashion
Order

Management

Order
Management

Invoice
Management

Delivery
Management

to wait
order

to
retrieve

userdata
to check

order
to notify
failure

to
produce
receipt

to notify
receipt

to deliver
order

AND

AND AND OR

Fig. 1. Goal-model for the FashionFirm scenario.

IV. SELF-CONFIGURATION

One of the prominent features of autonomic system is self-
configuration i.e. the ability to automatically configure its own
components thus to ensure the correct global functioning with
respect to defined requirements [18].

In a previous work [10] we have introduced the Proactive
Means-End Reasoning as the problem of automatically asso-
ciating system capabilities to user’s goals thus to achieve the
desired functions. We have called PMR Ability the procedure
for solving the proactive means-end reasoning problem. By
reasoning at the knowledge level the procedure returns 0..n
alternative Configurations for a given goal-model. It works
by composing capabilities in order to match the final state
specified by goals thus to solve the user’s request.

This section illustrates domain-independent architecture for
goal injection and self-configuring of cloud applications.

A. Goal Injection

The proposed architecture handles run-time addition of new
requirements [13], [11] moving a step forward traditional
systems defined for satisfying a fixed set of hard-coded re-
quirements.

The users may specify new requirements (in the form of
goal-models) to inject into the system at run-time thus they
become a stimulus for modifying the overall system behavior.
It is responsibility of the middleware, via the PMR Ability, to
configure itself to the new needs.

On one hand, the system activates a goal injection monitor
that waits for goals from the user. On the other hand, user-
goals are run-time entities, as well as other environment
properties. The system acquires goals from the user and
maintains knowledge of them thus to be able of reasoning on
expected results and finally conditioning its global behavior.
Of course, existing goals may be retreated as well.

Goal injection enables user-requirements to evolve over time
without either user-management or restarting the system. This
could be fundamental for some categories of domain in which
continuity of service is central (financial, service providing
and so on).

In addition it is possible to increase or enhance the functions
of the system just injecting a new set of requirements and
updating the repository with new domain-specific capabilities.
Given that connections between goals and capabilities are
discovered on demand, the architecture is robust to capability
evolution and may be used for different problem domains
without any other specific customization.

B. A Three-Layered Architecture for Self-Configuration

The operative hypothesis for self-configuration is the system
owns a repository with a redundant set of capabilities, thus
being able solve the same problem by exploiting different
combinations of capabilities.

The proposed architecture is made of three layers: the goal
layer, the capability layer and the business layer.

The uppermost layer of this architecture is the Goal Layer
in which the user may specify the expected behavior of the

70

system in terms of high-level goals. Goals are no hard-coded in
a static goal-model defined at design time. The goal injection
phase allows the introduction of user-goals defined at run-time.
Goals are interpreted and analyzed and therefore trigger the
need of the system to generate a new configuration.

The second layer is the Capability Layer, based on solving
at run-time the problem of Proactive Means-End Reason-
ing [10]. It aims at selecting the capabilities (and configuring
them) as a response to requests defined at the top layer.
This corresponds to a strategic deliberation phase in which
decisions are made according to the (often incomplete) system
knowledge about the environment. The output is the selection
of a set of capabilities that will form a concrete business
process. This is obtained by instantiating system capabilities
into business task and associating capability parameters with
data objects. In this phase the procedure also specifies depen-
dencies among tasks and how data items are connected to task
input/output ports.

The third layer is the Business Layer manages and inter-
connects autonomous blocks of computation thus generating a
seamless integration for addressing the desired result specified
at the first layer. Section V describes the run-time orchestrator
that executes the business process generated at the second layer
by interacting with the corresponding cloud applications and
web-services.

C. Describing Capabilities for Self-Configuration

Capabilities play a central role in the aforementioned archi-
tecture: to compose and execute capabilities the system must
know what the service is and that executing the capability
would result in a state of the world in which the goal being
satisfied. In this approach each capability is a wrapper for a
specific service or a cloud application. For instance Upload on
Cloud Storage is a wrapper for a generic Cloud File Storage
HTTP endpoint that creates a new file in a remote path. Each
capability is bound to a block of code for authenticating and
invoke the specified endpoint.

We adopted a language to specify the ‘self-configuration’
part of a capability with the same the same kind of abstraction
used for user’s goals (the knowledge level [8]). The following
language, inspired to LARKS [17]) responds to the need to
implement reasoning directed towards capabilities [19].

The ‘self-configuration’ description is made of the following
compartments:
Name is the unique label used to refer to the capability
Input is the definition of the input Data Objects necessary
for the execution. The existence of the specified DataObject
is mandatory for enabling the capability execution
Output is the definition of the output Data Objects produced
as result.
Params is an optional list of Variables that must be assigned
to a value (grounded) in order to enable the execution.
Pre-Condition is a run-time logical condition that must hold
in the current state of the world in order to trigger the
capability execution.
Post-Condition is a run-time logical condition that must hold

after the capability execution for asserting either success or
failure.
Evolution is a function that describes at knowledge level the
possible impact of the capability for addressing a final state.
This function is used in conjunction with grounded params
for simulating the use of capabilities for self-configuration
purposes [10], [12].

Figure 2 shows an example of capability used by Com-
pany.com: Upload On Cloud Storage is a wrapper for the
Dropbox upload endpoint as discussed before. It receives a
document to upload as input, and it requests a token and
path as parameters to configure for working. The output is
the identification of the remote file.

	
Name	 CHECK_STOREHOUSE	

Input	 Order:	Order	

Output	 status:	enum(accepted,refused)	

Pre-Condition	 available(Order)	

Post-Condition	 accepted(Order)	OR	refused(Order)	

Evolution	 evo={add(accepted(order)),		
add(refused(order))}	

	
	
Name	 UPLOAD_ON_CLOUD_STORAGE	

Input	 Invoice:	Document	

Output	 Remote_id:	RxFile	

Params	 Token:	String	
Dest_path:	String	

Pre-Condition	 available(Invoice)	

Post-Condition	 uploaded_on_cloud(Invoice)	
	

Evolution	 evo={add(uploaded_on_cloud(document))}	

	
	
	
Name	 SHARE_LINK_FILE	
Input	 Invoice:	Document	

UserMail	:	Email	
Params	 Token:	String	

Remote_id:	RxFile	
User:	UserId	

Pre-Condition	 uploaded_on_cloud(Invoice)	
	

Post-Condition	 mailed_permanent_link(Invoice,	UserMail)	AND	
sent(Invoice,User)	

Evolution	 evo={add(mailed_permanent_link(document,	email)),		
add(sent(invoice,user))}	

	

Fig. 2. Example of capability for interfacing with a Cloud File Storage.

Figure 3 show a couple of solutions for the FashionFirm sce-
nario. Capabilities are represented in capital letters, followed
by assignments for their parameters.

In the first solution (on the left) there is a coincidental direct
correspondence between goals and capabilities obtained as the
result of self-configuration. In the case the customer does not
grant the access to the cloud storage service, the proactive
means-end reasoning elaborates a different configuration (on
the right) where the goal to notify receipt is addressed by
uploading the file in a Company.com’s private cloud storage
and then by sharing the URL via email.

V. THE RUN-TIME ORCHESTRATOR

This section describes the bottom layer of the proposed ar-
chitecture, in which a set of capabilities is harmonized thus to
make the overall behavior consistent with user’s requirements.

The input of this phase is a set of associations 〈cap, goal〉
generated through the proactive means-end reasoning. The
desired output is a workflow model that addresses the root
goal of the goal-model.

The orchestrator module works according two principles:
• Principle 1: Dynamic Association between Capability

and Goals. Each capability selected for addressing a goal
is executed according to a specific schema3.

• Principle 2: Distributed Control. All the goals start in
parallel and are coordinated by conditions over the state
of the world and through exchange of data objects.

3More details can be found in [12]

71

to wait
order

to retrieve
userdata

to check
order

to notify
failure

to produce
receipt

to notify
receipt

to deliver
order

[RETRIEVE_ORDER_DATA]

[RETRIEVE_USER_DATA]

[UPLOAD_ON_CLOUD_STORAGE]
 (CUSTOMER_ACCOUNT)

[NOTIFY]
(FAILURE)

[GENERATE_RECEIPT_PDF]

[CHECK_STOREHOUSE]

[DELIVER_STOCK]

to notify
receipt

[UPLOAD_ON_CLOUD_STORAGE]
 (COMPANY_ACCOUNT)

[SHARE_LINK_FILE]

a) b)

Fig. 3. On the left an example of assignment of capabilities to goals. On the left a detail of an alternative configuration in which a goal is addressed by the
composition of a couple of capabilities.

The Principle 1 arises from the fact that each capability is
executed because it contributes to address one of the goals of
the goal-model. As stated in Section III a goal is described
by a triggering-condition (TC) that specifies when it becomes
interesting for the system. This is the first condition that
must hold for executing the capability. However also the
capability has a precondition to verify and some data objects
are necessary in order to execute it. At the same way, after
the capability is executed, the post-condition reveals whether
there is a failure. In addition, by comparing the achieved state
of the world with the goal’s final state the orchestrator reveals
when the goal is addressed.

There is an additional motivation behind the way a capabil-
ity lifecycle is structure. It already contains all the coordination
information for synchronizing the execution of a capability
with respect to all the others. Therefore the Principle 2 has
been introduced to allow capabilities are deployed in a dis-
tributed and scalable system. By executing all the capabilities
in parallel generates a distributed BPMN in which each branch
represents the instance of a different lifecycles. Different
branches interact by two different synchronization approaches:
i) passive mode: a branch waits a condition of the state of the
world is true, whereas this is generated as final state of another
capability of the workflow; ii) active mode: a branch needs a
data object as input parameter for the corresponding capability,
therefore a Query Interaction Protocol is employed to allows
the exchange of data.

It is worth noting the orchestrator may raise signals for self-
configuration (capability failure or unexpected state). Please
refer to [10] for details about re-configuration.

A. MUSA: a Middleware for User-driven Service Adaptation

The Cloud Application Mashup has been realized through
MUSA (Middleware for User-driven Service Adaptation) a
multi-agent system for the composition and orchestration of
services in a distributed and open environment. MUSA aims at
providing run-time modification of the flow of events, dynamic
hierarchies of services and integration of user preferences to-
gether with a system for run-time monitoring of activities that
is also able to deal with unexpected failures and optimization.

MUSA4, has been implemented by using JASON [3], an
agent oriented platform and programming language based
events and actions. It implements a distributed version of

4Available at https://github.com/icar-aose/MUSA/archive/v0.2.zip (Jason
1.3.8 or higher is required).

the proactive means-end reasoning in which the result is a
set of capabilities for addressing goals, and also a contract
among the agents for working in collaboration. Therefore,
service composition is obtained at run-time, as the result of
a self-organization phenomenon. More details of the MUSA
architecture are reported in [12].

Figure 4 shows some screenshots captured during the exe-
cution of the FashionFirm scenario.

VI. RELATED WORK

Some initiatives have been launched in last years for the
automated orchestration of Cloud applications. A couple of
representative examples are OpenCloudware and FIWARE.
OpenCloudware [1] aims at building an open software en-
gineering platform, for the collaborative development of dis-
tributed applications to be deployed on multiple Cloud infras-
tructures (mainly concerned with IaaS and PaaS). FIWARE
is an open architecture and a reference implementation of a
novel service infrastructure [6] whose mission is: “to build
an open sustainable ecosystem around public, royalty-free
and implementation-driven software platform standards that
will ease the development of new Smart Applications in
multiple sectors”. It offers an application mashup platform
aimed at integrating heterogeneous data, application logic, and
UI components (widgets) sourced from the Web.

The presented approach can be classified among the alter-
native approaches to classic workflow models for describing
service compositions, for instance semantic type matching
approach for creating or updating a workflow [7] or planning
based for composing a choreography [4].

Blanchet et al. [2] view service orchestration as a con-
versation among intelligent agents, each one responsible for
delivering the services of a participating organization. An
agent also recognizes mismatches between its own workflow
model and the models of other agents.

OSIRIS [16] is an Open Service Infrastructure for Reliable
and Integrated process Support that consists of a peer-to-peer
decentralized service execution engine and organizes services
into a self-organizing ring topology.

VII. CONCLUSIONS

This paper has described the practical experience of Cloud
Application Mashup, made in the context of a research project.
We adopted MUSA as the middleware for service composition
and adaptation. This allowed defining the business logic of

72

 OrderPortal Cloud Storage

Share Link by Mail

Cloud Calendar

Fig. 4. Screenshots of the mashup application: OrderPortal is the web application for warehouse orders, a Cloud Storage service is adopted where the invoice
is uploaded, a mail service allows to send the link to the remote invoice, and a Cloud Calendar service is used for annotating the stock delivery date.

the mashup in the form of goal model plus a set of Goal-
SPEC specifications. On the other side the involved Cloud
applications have been decomposed in a set of components to
wrap into capabilities and to describe through a template based
on descriptive logic. The middleware offers a three layer-
architecture for monitoring goal injections, self-configuring
ad-hoc solutions and finally to orchestrate Cloud components.
The approach has been employed in the context of a B2B
process for customer management of a big company working
in fashion.

REFERENCES

[1] T. Aubonnet and N. Simoni. Self-control cloud services. In Network
Computing and Applications (NCA), 2014 IEEE 13th International
Symposium on, pages 282–286. IEEE, 2014.

[2] W. Blanchet, E. Stroulia, and R. Elio. Supporting adaptive web-service
orchestration with an agent conversation framework. In Web Services,
2005. ICWS 2005. Proceedings. 2005 IEEE International Conference
on. IEEE, 2005.

[3] R. Bordini, J. Hübner, and M. Wooldridge. Programming multi-agent
systems in AgentSpeak using Jason, volume 8. Wiley-Interscience, 2007.

[4] M. Carman, L. Serafini, and P. Traverso. Web service composition as
planning. In ICAPS 2003 workshop on planning for web services, pages
1636–1642, 2003.

[5] J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: An
organizational view of multi-agent systems. In Agent-Oriented Software
Engineering IV, pages 214–230. Springer, 2004.

[6] A. Glikson. Fi-ware: Core platform for future internet applications. In
Proceedings of the 4th Annual International Conference on Systems and
Storage, 2011.

[7] M. Laukkanen and H. Helin. Composing workflows of semantic web
services. In Extending Web Services Technologies, pages 209–228.
Springer, 2004.

[8] A. Newell. The knowledge level. Artificial intelligence, 18(1):87–127,
1982.

[9] M. P. Papazoglou and W.-J. van den Heuvel. Blueprinting the cloud.
IEEE Internet Computing, 6:74–79, 2011.

[10] L. Sabatucci and M. Cossentino. From Means-End Analysis to Proactive
Means-End Reasoning. In Proceedings of 10th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
Florence, Italy, May 18-19 2015.

[11] L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino. Towards self-
adaptation and evolution in business process. In AIBP@ AI* IA, pages
1–10. Citeseer, 2013.

[12] L. Sabatucci, C. Lodato, S. Lopes, and M. Cossentino. Highly customiz-
able service composition and orchestration. In S. Dustdar, F. Leymann,
and M. Villari, editors, Service Oriented and Cloud Computing, volume
9306 of Lecture Notes in Computer Science, pages 156–170. Springer
International Publishing, 2015.

[13] L. Sabatucci, P. Ribino, C. Lodato, S. Lopes, and M. Cossentino. Goal-
spec: A goal specification language supporting adaptivity and evolution.
In Engineering Multi-Agent Systems, pages 235–254. Springer, 2013.

[14] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein.
Requirements-aware systems: A research agenda for re for self-adaptive
systems. In Requirements Engineering Conference (RE), 2010 18th IEEE
International, pages 95–103. IEEE, 2010.

[15] R. Siebeck, T. Janner, C. Schroth, V. Hoyer, W. Wörndl, and F. Urmetzer.
Cloud-based enterprise mashup integration services for b2b scenarios.
In Proceedings of the 2nd workshop on mashups, enterprise mashups
and lightweight composition on the web, Madrid, 2009.

[16] N. Stojnic and H. Schuldt. Osiris-sr: A safety ring for self-healing
distributed composite service execution. In Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), 2012 ICSE Workshop
on, pages 21–26, 2012.

[17] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmak-
ing among heterogeneous software agents in cyberspace. Autonomous
agents and multi-agent systems, 5(2):173–203, 2002.

[18] D. Sykes, W. Heaven, J. Magee, and J. Kramer. From goals to
components: a combined approach to self-management. In Proceedings
of the 2008 international workshop on Software engineering for adaptive
and self-managing systems, pages 1–8. ACM, 2008.

[19] M. J. Wooldridge. Reasoning about rational agents. MIT press, 2000.
[20] E. Yu and J. Mylopoulos. Why goal-oriented requirements engineer-

ing. Proceedings of the 4th International Workshop on Requirements
Engineering: Foundations of Software Quality, 15, 1998.

[21] J. L. Zhao, M. Tanniru, and L.-J. Zhang. Services computing as
the foundation of enterprise agility: Overview of recent advances and
introduction to the special issue. Information Systems Frontiers, 9(1):1–
8, 2007.

73

