
1

MAS-DRiVe: a Practical Approach to Decentralized
Runtime Verification of Agent Interaction Protocols

Davide Ancona, Daniela Briola, Angelo Ferrando, and Viviana Mascardi

Abstract—We address the problem of decentralized runtime
verification of interaction protocols in multiagent systems by
means of MAS-DRiVe, an algorithm for partitioning a multi-
agent system (MAS) into sub-MASs which can be monitored
independently. Given a global interaction protocol named AIP
(for “Agent Interaction Protocol”) describing all the interactions
which can take place in the MAS, the MAS-DRiVe algorithm
extracts the interaction graph from AIP , identifies the clusters of
agents which cannot be split during the decentralized monitoring
as the interactions they are involved in are not independent, col-
lapses each of those clusters into a single node in the interaction
graph, and finally partitions the collapsed graph obtained so far.
Although the “unsplittable agents identification” stage is still in
its early design and prototyping phases and requires a better
formalization and a deeper analysis, the MAS-DRiVe algorithm
pipeline has been fully implemented and demonstrated on two
simple MASs.

Once the independently monitorable sub-MASs have been
identified by MAS-DRiVe, the global interaction protocol AIP
can be projected onto the subsets of agents belonging to each
graph partition, thus obtaining local versions of AIP which can
be monitored in a decentralized way.

Index Terms—Agent Interaction Protocol; Decentralized Run-
time Verification; Decentralized Monitoring; Graph Partitioning

I. INTRODUCTION AND MOTIVATION

Runtime verification (RV) is a software verification tech-
nique that complements formal static verification and testing.
In RV, dynamic checking of the correct behavior of a system
is performed by a monitor which is generated from a formal
specification of the properties to be verified.

Distributed runtime verification (DRV), as described by S.
Rajsbaum in his keynote speech at the SSS 2015 Symposium
[25], tackles the problem of building a decentralized runtime
monitor for a distributed system and involves designing a
distributed algorithm that coordinates the monitors in order
for them to correctly verify the dynamic behavior of the whole
system.

With respect to RV, DRV techniques are more complex and
less developed, since they involve designing a distributed al-
gorithm that monitors another distributed algorithm. Neverthe-
less, they are gaining more and more attention, as shown by the
recent Distributed Runtime Verification Workshop organized
in Bertinoro in May 20161.

D. Ancona, A. Ferrando, and V. Mascardi are with DIBRIS,
University of Genova, Italy. davide.ancona@unige.it,
angelo.ferrando@dibris.unige.it,
viviana.mascardi@unige.it

D. Briola is with DISCO, University of Milano-Bicocca, Italy.
daniela.briola@unimib.it

1http://www.labri.fr/perso/travers/DRV2016/index.html.

Once the formal specification of the global pattern of events
is given, however, distributing the monitoring activity can be
resorted to decomposing the global specification into “sub-
specifications”, involving less events than the global one,
which can be monitored in an independent way from each
other and such that the union of their independent monitoring
gives the same guarantees as the monitoring of the whole
system w.r.t. the original specification.

Given a global specification of the expected system behavior
S, the challenge to face is then to compute a set of n sub-
specifications S1, . . . , Sn derived from S in such a way that
the following properties hold:
• decentralized monitoring against the sub-specifications
S1, . . . , Sn is equivalent to centralized monitoring against
S;

• the decomposition of S into S1, . . . , Sn is balanced
according to some weighting criterion, to get, ideally, the
best monitoring performances.

These sub-specifications do not necessarily induce a partition
of the monitored events: indeed, it might be necessary that
some monitored events belong to more than one specification,
and hence must be checked by more monitors. Let us suppose
for example that the formal specification of the event pattern
states that when the alarm rings, Mary stops it and either she
wakes up, washes, has breakfast and goes to work (then the
monitoring is allowed to stop), or she continues to sleep.

The events “wake up”, “wash”, “have breakfast”, “go to
work” are independent from the event “sleep”, so a good way
to decentralize the monitoring activity between two monitors
m1 and m2 could be to have m1 in charge of the “active”
behavior (m1 would check that “when the alarm rings, Mary
stops it and then either she wakes up, washes, has breakfast,
goes to work – then the monitoring can stop –, or the mon-
itoring can stop immediately”) and m2 in charge of the lazy
one (m2 would check that “when the alarm rings, Mary stops
it and then either she continues to sleep, or the monitoring can
stop immediately”).

It would be convenient that the events “the alarm rings” and
“Mary stops it” were monitored by both m1 and m2, in order
to avoid a further monitor ensuring the correct sequence of
initial events, whatever Mary’s attitude towards the new day.

Due to events which may be monitored by more than
one monitor, the total amount of monitored events in the
decentralized setting may be larger than in the centralized
case. However, decentralized monitors can be run in parallel
on different machines, so the workload is more balanced
than in the centralized setting. Also, sometimes a centralized
approach is unfeasible, as in the motivating scenario discussed

35

2

in our previous work presented at EMAS 2014 [2]. There, we
supposed that the safety of a humanitarian convoy was guar-
anteed by unmanned aerial vehicles whose behavior is critical
for the success of the mission and hence subject to runtime
verification, but which might not be monitorable by a single
monitor for network connectivity reasons and for failures of
some computational entities. In cases like that, decentralizing
the runtime verification activity is no longer an option, but
the only viable solution. The possibility to exchange protocol
specifications, dealt with as first class entities that can be sent
and received [3], allows us to apply our approach to oppor-
tunistic networks (Wireless Sensor Networks, drone ferries,
and the like) where the actual communication protocols are
unknown until deployment, and mobility dynamically changes
them.

Finding a set of sub-specifications S1, . . . , Sn of S
meeting the requirements for decentralizing the monitoring
activity heavily depends on the way S has been specified.
RV specifications are typically expressed using trace predicate
formalisms. Many of them, such as finite state machines, reg-
ular expressions, context free grammars, linear-time temporal
(LTL) logic, have been originally introduced for other aims
and then exploited for RV; others, such as trace expressions
[6], have been expressly devised for RV. Different formalisms
may have different expressive power, which impacts on the
types of patterns that can be described and on the meaning of
“independent” sub-specifications.

Although the MAS-DRiVe algorithm proposed in this paper
for decentralizing the monitoring activity is general enough to
be adopted whatever the formalism and the kind of monitored
events are, it has only been experimented for the specific
formalism of trace expressions, for specific decentralized
systems, that is, multiagent systems (MASs), and for specific
events, namely interactions between pairs of agents. Also, as
we will see later on, the “unsplittable agents identification” is
almost naif and requires a refinement and a better theoretical
support.

Trace expressions are an evolution of global types [5], which
have been initially proposed for RV of interactions in MASs.
Trace expressions are an expressive formalism based on a set
of operators (including prefixing, concatenation, shuffle, union,
and intersection) to denote finite and infinite traces of events.
Their semantics is based on a labeled transition system defined
by a simple set of rewriting rules which directly drive the
behavior of monitors generated from them. They have been
used to model and monitor (in a simulated setting) both fail-
uncontrolled and ambient intelligence systems [4], as well as
medical guidelines for remote patient monitoring [16].

In the already cited EMAS 2014 paper, we tackled the
problem of projecting a global specification of an interaction
protocol expressed in the global types formalism onto subsets
of agents in the MAS. The projection function is a key element
for moving from a global specification of the protocol to a
localized one, which involves less agents and hence hopefully
less interaction events. However, in our previous work we
faced only one of the issues involved in distributing the
RV activity, that of projecting the interaction protocol, and
did not consider the problem of finding suitable partitions

of agents in a MAS which provide formal guarantees that
verification through projected types and decentralized monitors
is equivalent to verification performed by a single centralized
monitor with a single global type.

This paper addresses that problem by presenting MAS-
DRiVe, an algorithm for partitioning a MAS in such a way
that the identified subsystems can be safely monitored in
a decentralized way. The paper is structured as follows:
Section II discusses the related work, Section III introduces
background knowledge, Section IV presents the design of
MAS-DRiVe, Section V discusses its implementation and
experiments, Section VI concludes.

II. RELATED WORK

DRV lies at the crossroad where decentralized algorithms
and formal methods meet [25]. It must cope both with the
problems intrinsic to distributed systems, and with those
related to formalization of properties to be verified at runtime.
Furthermore, the distribution of the monitoring activity itself
poses new problems and raises new challenges.

One of the most severe and most studied problems which
characterize decentralized systems is the lack of a global clock
and the need to tag events with a timestamp which, although
local to the node where the event took place or was observed,
can be compared with the timestamps of the other events to
check their relative order. In this paper we assume that each
monitor observes the events it is in charge of, in the same
order as they actually took place in the environment. This
condition is enough for our approach to work. As mentioned
in the introduction, some events may be observed by more
than one monitor so the condition we pose implicitly means
that event ordering is always preserved in all monitors. A large
body of literature addresses this problem; the two most widely
used approaches are to connect the different physical clocks
of the decentralized nodes to one common logical clock, by
exploiting causality in communication between nodes (Lam-
ports “happened before” relation [22]), and to synchronize the
local clocks to provide a full ordering of events as proposed
for example by M. Maróti et al. [23].

Formalizing the system properties in order to dynamically
verify them requires that a suitable formal language is avail-
able. Among the first efforts in this direction we may cite one
paper by A. Bauer, M. Leucker, and C. Schallhart [7] where
the use of LTL in the context of RV was explored. When used
for RV, the expressive power of LTL is reduced, because at
runtime only finite traces can be checked. To provide a formal
account for this limitation, a three-valued semantics for LTL,
called LTL3, has been proposed later on [8]. A third truth
value “?” is introduced to specify that after a finite trace of
events has been occurred, the outcome of a monitor can be
inconclusive.

The generation of efficient monitors for properties specified
in a variety of formal languages was firstly addressed by
M. Kim et al. [21, 18] and many proposals exist for RV
of object-oriented systems (jassda [11], PQL [24], JavaMOP
[13], LARVA [14], SAGA [15], just to cite a few) and MASs
[1, 17]. A large community of researchers works on RV

36

3

and in 2001 the Runtime Verification Workshop/Conference
series was initiated (http://www.runtime-verification.org), and
workshops/conferences have occurred each year since then.

When moving from RV to DRV, however, the situation
dramatically changes: no introductory papers and surveys on
the topic exist, which demonstrates the youth of this research
field. W.r.t. DRV of MASs, we were not able to find any related
work except for one paper of ours [10] where the projection
mechanism introduced in our previous EMAS 2014 work had
been integrated with JADE [9].

III. BACKGROUND

In this section we introduce the three pillars of our work:
trace expressions, projection, and graph partitioning.

A. Trace Expressions

Trace expressions are a specification formalism expressly
designed for RV. They are based on the notions of event and
its abstraction, event type.

Events. In the following we denote by E a fixed universe of
events. An event trace over E is a possibly infinite sequence
of events in E. As an example, we might have E = {
msg(bob, alice, tell, m1), msg(alice, bob, tell, a1), msg(bob,
carol, tell, m2), msg(carol, bob, tell, a2), msg(bob, dave, tell,
m3), msg(dave, bob, tell, a3) } where the interaction event
msg(S, R, P, C) corresponds to the interaction between agent
S and agent R, with S sending a message with performative
P and content C to R. In this example, contents m1, m2 and
m3 correspond to actual messages, and contents a1, a2 and
a3 correspond to acknowledges of reception.

Event types. To be more general, trace expressions are
built on top of event types (chosen from a set ET), rather
than of single events; an event type denotes a subset of E.
For example, if we were interested only in the type of the
message content (actual message or acknowledge), we might
define the two event types Msg= { msg(bob, alice, tell,
m1), msg(bob, carol, tell, m2), msg(bob, dave, tell, m3) }
and Ack= { msg(alice, bob, tell, a1), msg(carol, bob, tell,
a2), msg(dave, bob, tell, a3) }, and use them for describing
interaction patterns.

Trace expressions. A trace expression τ represents a set of
possibly infinite event traces, and is defined on top of the
following operators (binary operators associate from left, and
are listed in decreasing order of precedence, that is, the first
operator has the highest precedence):
• ε (empty trace), denoting the singleton set {ε} containing

the empty event trace ε.
• ϑ:τ (prefix), denoting the set of all traces whose first event
e matches the event type ϑ (e ∈ ϑ), and the remaining
part is a trace of τ . For example, if our communication
protocol just required that an interaction from the set
Msg must take place, no matter which one, and then an
interaction from Ack must occur, no matter which one,
we could express it as Msg:Ack:ε.

• τ1·τ2 (concatenation), denoting the set of all traces ob-
tained by concatenating the traces of τ1 with those of
τ2.

• τ1∧τ2 (intersection), denoting the intersection of the
traces of τ1 and τ2.

• τ1∨τ2 (union), denoting the union of the traces of τ1 and
τ2.

• τ1|τ2 (shuffle), denoting the set obtained by shuffling the
traces in τ1 with the traces in τ2.

To support recursion without introducing an explicit construct,
trace expressions are regular (a.k.a. rational or cyclic) terms.
A regular term can be represented by a finite set of syntactic
equations, as happens, for instance, in most modern Prolog
implementations where unification supports cyclic terms. A
trace expression τ is contractive if all its infinite paths from
the root contain the prefix operator.

From the operators above we can derive the filter opera-
tor, useful for making trace expressions more compact and
readable. The expression ϑ�τ denotes the set of all traces
contained in τ , when deprived of all events that do not match
ϑ. Assuming that event types are closed by complementation,
the expression above is a convenient syntactic shortcut for T |τ ,
where T = ε∨ϑ:T , and ϑ is the complement event type of ϑ,
that is, JϑK = E \ JϑK.

In the context of RV, where the three-valued semantics
is considered for LTL, trace expressions are strictly more
expressive than LTL [6]: every LTL formula can be encoded
into a trace expression with an equivalent three-valued seman-
tics, whereas the opposite property does not hold, since trace
expressions are also able to specify all context-free languages,
and also some non context-free ones.

Although trace expressions can define protocols involving
events of any kind, in the sequel we will limit our investigation
to interaction events like msg(S, R, P, C) and interaction types
that we will identify with α.

B. Projection

The projection function was first introduced in [2]. Given
the finite set AGS of all the agents that could play a role in
the MAS and an interaction type α, senders(α) is the set of
all the agents in AGS that could play the role of sender in
actual interactions having type α, and receivers(α) is the set
of all the agents in AGS that could play the role of receiver
in interactions of type α. The involves predicate holds on one
interaction type α and one set of agents Ags, involves(α,Ags),
iff (senders(α) ∩Ags 6= ∅) ∨ (receivers(α) ∩Ags 6= ∅).

Projection can be described as a function Π : T ×
P(AGS) → T where T is the set of trace expressions. Π is
driven by the syntax of the trace expression to project; since
Π is defined on cyclic terms, the simplest way to define it
would be by coinduction2 as follows:

(i) Π(ε, Ags) = ε

2Coinduction is a technique for defining and proving properties of systems
of concurrent interacting objects. It is the mathematical dual to structural
induction. Coinductively defined types are typically infinite data structures,
such as streams. See http://cseweb.ucsd.edu/groups/tatami/handdemos/doc/
coind.htm for a more technical formalization.

37

4

(ii) Π(α : τ,Ags) = α : Π(τ,Ags) if involves(α,Ags)
(iii) Π(α : τ,Ags) = Π(τ,Ags) if ¬involves(α,Ags)
(iv) Π(τ ′ op τ ′′, Ags) = Π(τ ′, Ags) op Π(τ ′′, Ags), where

op ∈ {·,∧,∨, |}.
This definition works properly only on all non cyclic terms

and on some, but not all, cyclic terms. To guarantee that
the projection function always returns a contractive type and
that the correct coinductive definition is implemented, it is
necessary to keep track of all types visited by Π along a path;
each type is associated with its depth in the path, and with
a fresh variable which will be unified with the corresponding
computed projection. During the visit, the depth DeepestSeq
of the deepest visited sequence operator is kept. If a type τ has
been already visited, then a cycle is detected: if its depth is less
than DeepestSeq then the cycle contains an occurrence of the
sequence constructor, therefore the projected type associated
with τ is contractive and, hence, is returned; otherwise, the
projection would not be contractive, therefore ε is returned.

C. Graph Partitioning

The graph partitioning problem (GPP) is defined in the
following way [12]: given a number k ∈ N>1 and an
undirected graph G = (V,E) with non-negative node and edge
weights, GPP asks for a partition of V , that is, with blocks of
nodes (V1, ..., Vk) such that

1) V1 ∪ V2 ∪ ... ∪ Vk = V
2) Vi ∩ Vj = ∅ ∀i 6= j

A balance constraint may be required, demanding that all
blocks have about equal weights. To be more precise, a good
partition is the one where the sum of the node weights
in each Vi is “about the same” and the sum of all edge
weights of edges connecting all different pairs Vi and Vj is
minimized. Applications of graph partitioning include parallel
processing, road networks, image processing, VLSI design,
social networks, and bioinformatics. Among the many existing
tools for graph partitioning we opted for using METIS [20],
a set of serial programs for partitioning graphs, partitioning
finite element meshes, and producing fill reducing orderings
for sparse matrices (http://glaros.dtc.umn.edu/gkhome/views/
metis, accessed on June 2016). The choice of METIS was due
to the efficiency of the multi-level Kernighan/Lin approach it
builds upon [19] and to the ease of its installation and usage.

IV. MAS-DRIVE: DESIGN

Given an interaction protocol expressed in some suitable
formalism, the MAS-DRiVe algorithm for partitioning a MAS
in such a way that the identified subsystems can be safely
monitored in a decentralized way is the following:

1) extract the interaction graph IG from the interaction
protocol;

2) identify the sets of agents which cannot be split during
the decentralized monitoring (unsplittable agents), since
the interactions they are involved in are not independent;

3) compute the collapsed interaction graph CIG by col-
lapsing each of those sets into a single node with weight
equal to the cardinality of the collapsed set, and by com-
puting the collapsed edges consistently; for simplicity,

all edges in the CIG have weight 1, but the approach
works also in case edge weights are different: a higher
edge weight would model a preferential communication
channel;

4) partition the new graph obtained so far using some
suitable graph partition method;

5) project the interaction protocol onto these agents’ parti-
tions.

The algorithm is explained by means of two running exam-
ples introduced in [2].

A. Examples

Fig. 1. The “Socks and Shoes” MAS

a) Socks and Shoes (SaS): Let us consider the simple
scenario illustrated in Figure 1 where two robots (right
and left), two monitors (right and left) associated with
each robot, and a plan monitor which supervises them,
must reach the goal to put the right and left socks and
shoes in the correct way (socks first!). As robots are
autonomous, they could perform the two actions in the wrong
order: monitors are there to ensure that wrong actions are
immediately rolled back. Robots communicate their actions
to their corresponding monitors, which, in turn, notify the
plan monitor when the robots accomplish their goal. The
interaction types involving the right robot and the right node
monitor are defined as msg(right robot, right node monitor,
tell, put sock) ∈ put right sock; msg(right robot,
right node monitor, tell, put shoe) ∈ put right shoe;
msg(right robot, right node monitor, tell, removed shoe) ∈
removed right shoe; msg(right node monitor, right robot,
tell, oblige remove shoe) ∈ oblige remove right shoe;
msg(right node monitor, plan monitor, tell, ok) ∈ ok right.
Those for the left robot and left node monitor are symmetrical.

The right robot (RIGHT branch in the protocol description
below) can start by putting the sock, which is the correct action
to do, or (∨ operator) by putting the shoe, which requires
a recovery by the right robot monitor and looping back to
the RIGHT branch. The left robot has the same behavior
(LEFT branch in the protocol description). The SaS protocol
is described by the shuffle of the actions of the right and left

38

5

robots and monitors (RIGHT | LEFT):

RIGHT = (put right sock:put right shoe:ok right:ε)∨
(put right shoe:oblige remove right shoe:
removed right shoe:RIGHT)

LEFT = (put left sock:put left shoe:ok left:ε)∨
(put left shoe:oblige remove left shoe:
removed left shoe:LEFT)

SaS = RIGHT|LEFT.

b) Alternating Bit Protocol with four participants
(ABP3): As a second example we consider the Alternating
Bit Protocol ABP.

Fig. 2. The ABP MAS with one “manager” (Bob) and three participants.

We consider the instance of ABP that we name ABP3, where
six different interactions may occur: Bob sends m1 to Alice
(interaction type msg1), Alice sends a1 to Bob (interaction
type ack1), Bob sends m2 to Carol (interaction type msg2),
Carol sends a2 to Bob (interaction type ack2), Bob sends
m3 to Dave (interaction type msg3), Dave sends a3 to Bob
(interaction type ack3). The ABP3 is an infinite iteration,
where the following constraints have to be satisfied for all
occurrences of the sending actions:

1. The n-th occurrence of an interaction of type msg1
must precede the n-th occurrence of an interaction of type
msg2 which in turn must precede the n-th occurrence of an
interaction of type msg3 which in turn must precede the n+1-
th occurrence of an interaction of type msg1 .

2. For k ∈ {1, 2, 3}, the n-th occurrence of msgk must
precede the n-th occurrence of the acknowledge ackk, which,
in turn, must precede the (n+ 1)-th occurrence of msgk.
ABP3 can be defined by the following set of equations:

ABP3 = (msg�MM)∧(msg ack(1)�MA1)∧
(msg ack(2)�MA2)∧(msg ack(3)�MA3)

MM = msg1 :msg2 :msg3 :MM
MA1 = msg1 :ack1 :MA1

MA2 = msg2 :ack2 :MA2

MA3 = msg3 :ack3 :MA2

where msg ack(i), i ∈ {1, 2, 3}, and msg denote the event
types s.t. Jmsg ack(i)K = Jmsg iK∪ Jack iK, i ∈ {1, 2, 3}, and
JmsgK = Jmsg1 K ∪ Jmsg2 K ∪ Jmsg3 K.

The trace expression defined by MM corresponds to the
first constraint informally stated above, while MA1, MA2,
and MA3 formalize the second constraint. The main trace
expression ABP3 can be easily read as follows: if an event
has type msg1 or msg2 or msg3 , then it must verify MM ,
and if an event has type msg1 or ack1 , then it must verify
MA1, and if an event has type msg2 or ack2 , then it must

verify MA2, and if an event has type msg3 or ack3 , then it
must verify MA3.

B. Algorithm Steps

As already introduced in the beginning of this section, the
MAS-DRiVe algorithm consists of five steps.

1) Interaction graph extraction. The interaction graph IG of
the agents interaction protocol AIP expressed using formal-
ism F is an undirected and unweighted graph with one node
Ai for each agent Ai involved in AIP . An edge between Ai

and Aj exists iff an interaction between Ai and Aj is foreseen
by AIP . By “interaction between Ai and Aj” we mean that
either Ai sends a message to Aj , or viceversa.

As an example, the nodes extracted from the SaS
protocol are right robot, right node monitor, plan monitor,
left robot, left node monitor and the edges are (right robot,
right node monitor), (right node monitor, plan monitor),
(left robot, left node monitor), (left node monitor,
plan monitor).

The interaction graph algorithm explores the trace expres-
sion to find pairs of agents involved in the interaction types.
Since the trace expression may be cyclic, loops must be
detected and dealt with properly. This goal is achieved in
a simple way: trace expressions met during exploration are
recorded, and when the exploration comes back to an already
recorded trace, it stops.

To identify the sets of unsplittable agents during the second
step of the algorithm, during this stage an auxiliary directed
multigraph IGext is generated, where each edge connecting
two nodes is labeled with a string that encodes the path
followed to reach that interaction in the protocol. The nodes
and edges in IGext are obtained by means of the extract(ID,
AlreadyMetTrExp, Str, Level, τ) function where

– ID is the protocol identifier;
– AlreadyMetTrExp is the set of trace expressions which

were already met during the protocol analysis, to take care of
cycles;

– Str is the current path encoding;
– Level is an encoding of the current outermost operator

level and position (left or right) in the trace expression parse
tree;

– τ is the trace expression currently under consideration.

extract(ID, AlreadyMetTrExp, Str, Level, τ) is defined by cases:

1) if TrExpr belongs to AlreadyMetTrExp, then return;
2) if TrExpr is ε, then return;
3) if τ is α uop τ1, where uop is an operator in {:,�},

then
a) NewStr = Str • (uop, Level+1)
b) extract all the possible pairs of senders and re-

ceivers (S, R) such that S and R are involved in
α

c) for each of such pairs, generate and assert edge(ID,
S, R, NewStr)

d) NewAlreadyMetTrExp = {τ} ⋃ AlreadyMetTrExp

39

6

e) call extract(ID, NewAlreadyMetTrExp, NewStr,
Level+1, τ1)

4) if τ is τ1∧τ2, then
a) NewStr = Str • (∧, Level+1)
b) NewAlreadyMetTrExp = {τ} ⋃ AlreadyMetTrExp
c) call extract(ID, NewAlreadyMetTrExp, NewStr,

Level+1, τ1)
d) call extract(ID, NewAlreadyMetTrExp, NewStr,

Level+1, τ2)
5) if τ is τ1 bop τ2, where bop is an operator in {·,∨, |},

then
a) NewStr1 = Str • (bop, Level+1)
b) NewStr2 = Str • (bop, 2*Level+1)
c) NewAlreadyMetTrExp = {τ} ⋃ AlreadyMetTrExp
d) call extract(ID, NewAlreadyMetTrExp, NewStr1,

Level+1, τ1)
e) call extract(ID, NewAlreadyMetTrExp, NewStr2,

2*Level+1, τ2)
Given a protocol identified by ID and represented by the

trace expression τ , extract(ID, {}, Λ, 1, τ) generates and
asserts all the edges in IGext. The generation of IGext nodes
is straightforward. The idea behind this function is that edges
whose labels share the same prefix have a strong dependency
as they belong to the same intersection. In fact, the only case
where labels of edges share the same prefix is that of ∧ (case
4), where the same string and level are passed to the recursive
calls. If the operator is not an intersection (case 5), the strings
and levels passed to the recursive calls are different, meaning
that the two operands are independent from one another and
so will be the edges generated during their exploration.

For example, the edges in the auxiliary IGext graph ex-
tracted from the ABP3 protocol are:

(bob, alice, ((∧, 2) (∧, 3) (∧, 4) (�, 5)))
(bob, carol, ((∧, 2) (∧, 3) (∧, 4) (�, 5)))
(bob, dave, ((∧, 2) (∧, 3) (∧, 4) (�, 5)))
(bob, alice, ((∧, 2) (∧, 3) (∧, 4) (�, 5) (:, 6)))
(bob, carol, ((∧, 2) (∧, 3) (∧, 4) (�, 5) (:, 6) (:, 7)))
(bob, dave, ((∧, 2) (∧, 3) (∧, 4) (�, 5) (:, 6) (:, 7) (:, 8)))
(alice, bob, ((∧, 2) (∧, 3) (∧, 4) (�, 5) (:, 6) (:, 7)))
(bob, carol, ((∧, 2) (∧, 3) (�, 4)))
(carol, bob, ((∧, 2) (∧, 3) (�, 4)))
(bob, carol, ((∧, 2) (∧, 3) (�, 4) (:, 5)))
(carol, bob, ((∧, 2) (∧, 3) (�, 4) (:, 5) (:, 6)))
(bob, dave, ((∧, 2) (�, 3)))
(dave, bob, ((∧, 2) (�, 3)))
(bob, dave, ((∧, 2) (�, 3) (:, 4)))
(dave, bob, ((∧, 2) (�, 3) (:, 4) (:, 5)))

The IG nodes are alice, bob, dave, carol and the edges are
(alice, bob), (dave, bob), (carol, bob), which are extracted in
a trivial way from IGext.

2) Identification of unsplittable agents. Not all the agents
can be monitored independently from one another, as some
interaction patterns that must be respected by a set of agents
seen as a whole, could be lost when looking at subsets of the
agents.

As an example, alice, bob, carol and dave in the ABP3
represent an unsplittable set of agents. In fact, if we monitored
interactions involving alice and bob only, we could find that
they respect the second constraint of the protocol, but we could
never ensure that the first constraint – which also depends on
the interactions of bob with carol and dave – is respected as
well. The notions of dependence and independence are related
to the protocol but also to the formalism used for modeling
it, so no general rule for this step can be devised. When the
interaction formalism F is that of trace expressions, however,
dependencies among interactions are naturally modeled using
the intersection operator. Thus, although it may be an over-
cautious approach, when using trace expressions we define
“unsplittable” the agents involved in interactions connected
by an intersection operator.

The algorithm for performing the identification of
unsplittable agents looks at the labels in IGext and creates
sets of agents involved in interactions whose label has the
same prefix before the first ∧ operator in the label, if any.
For example, in SaS no label contains ∧ and hence the set
of unsplittable agents is empty, whereas in ABP3 all the
edge labels share the (∧, 2) prefix, meaning that all the
interactions in the protocol belong to branches connected
by the same intersection operator. As a consequence, all the
agents involved in the ABP3 protocol interactions belong to
the same set of unsplittable agents, which coincides with all
the agents in the MAS.

3) Graph collapse. In this stage, we transform the unweighted
undirected interaction graph IG into a weighted undirected
graph CIG, obtained by collapsing each node in IG corre-
sponding to an agent belonging to unsplittable set U , into a
single node with label U and weight equal to U cardinality.
Nodes in CIG are labeled with sets of agents, which can be
the singleton set for agents belonging to no unsplittable set.
Edges exiting from (resp. entering into) a node are all those
which, in IG, exited from (resp. entered into) one of the nodes
in the label.

Considering the running examples above, the
weighted nodes in the SaS CIG are ({right robot},1)
({right node monitor},1) ({plan monitor},1) ({left robot},1)
({left node monitor},1) namely, no collapse took place,
while the only weighted node in the ABP3 CIG is
({alice,bob,carol,dave},4) labeled with the set of unsplittable
agents.

The edges in the SaS CIG are the same as those in the
SaS IG, while there are no edges in the ABP3 CIG due to
the presence of only one node.

4) Graph partitioning. This stage of the algorithm consists in
partitioning the CIG graph obtained by the collapse stage.
The number of expected partitions is given as an input by the
user and must be grater than one. Any suitable partitioning
algorithm could be used during this stage. We will discuss
our implementative choice in Section V.

The partition of the original, not collapsed graph IG, is
trivially derived by that of CIG by making the union of
the agents in the labels of the nodes in each CIG partition.

40

7

By using a graph partitioning algorithm where the sum of
the node weights in each partition is about the same and
the number of edges connecting nodes in two different parti-
tions is minimized (by associating the unit weight with each
edge), we can obtain the following partition for the agents
involved in the SaS protocol: {{left node monitor, left robot},
{plan monitor, right node monitor, right robot} } .

The agents involved in the ABP3 protocol cannot be
partitioned because the collapsed graph consists of only one
node.

5) Projection. Once the agents belonging to the same partition
have been devised, the projection algorithm presented in
Section III-B can be used to project the global interaction
protocol onto each of them.

V. IMPLEMENTATION AND EXPERIMENTS

The MAS-DRiVe algorithm is fully implemented in SWI-
Prolog (http://www.swi-prolog.org/, accessed on June 2016),
apart from the graph partitioning stage which exploits the
METIS tool described in Section III. The extraction of the
IG from the protocol, the identification of the unsplittable
agents sets, and the generation of the collapsed graph CIG
are performed by Prolog predicates. After them, a predicate for
encoding CIG into a format suitable for METIS and saving
it into a file is called. The command line for running METIS
on that file is launched from inside Prolog, and the result is
read and decoded.

In order to run the algorithm, the user must call the
partition/3 predicate with three arguments: the identifier
of the agent interaction protocol to distribute, the number
of partitions to be obtained, and the name of the file where
Prolog will write the result of the partition. For example,
given that abp3 identifies the ABP3 protocol, and that the
trace expression associated with this identifier has been
read into the Prolog knowledge base, the user should call
partition(abp3, 2, ’./abp3Out.txt’) obtaining
the following content for the abp3Out.txt file:

Unsplittable list:
[((/\),2)],[alice,bob,carol,dave]

Partition failed

Nodes
node(abp3,bob)
node(abp3,alice)
node(abp3,carol)
node(abp3,dave)

Extended edges
edge(abp3,bob,alice,[((/\),2), ((/\),3),

((/\),4), ((>>),5)])
edge(abp3,bob,carol,[((/\),2), ((/\),3),

((/\),4), ((>>),5)])
....

Collapsed nodes
cnode(abp3,[alice,bob,carol,dave],4)

The content of the socksOut.txt file that we obtain by
calling partition(socks, 2, ’./socksOut.txt’)
is:

Unsplittable list: []

The trace expressions
@((S_1|S_2),
[S_1=
(put_right_sock:put_right_shoe:ok_right:lambda)\/
(put_right_shoe:oblige_remove_right_shoe:

removed_right_shoe:S_1),
S_2=
(put_left_sock:put_left_shoe:ok_left:lambda)\/
(put_left_shoe:oblige_remove_left_shoe:

removed_left_shoe:S_2)])

can be partitioned into

{[left_node_monitor],[left_robot]}
{[plan_monitor],[right_node_monitor],[right_robot]}

Nodes
node(socks,right_robot)
node(socks,right_node_monitor)
node(socks,plan_monitor)
node(socks,left_robot)
node(socks,left_node_monitor)

Extended edges
edge(socks,right_robot,right_node_monitor,
[((|),2), ((\/),3), ((:),4)])

edge(socks,right_robot,right_node_monitor,
[((|),2), ((\/),3), ((:),4), ((:),5)])
........

Collapsed nodes
cnode(socks,[right_robot],1)
cnode(socks,[right_node_monitor],1)
cnode(socks,[plan_monitor],1)
cnode(socks,[left_robot],1)
cnode(socks,[left_node_monitor],1)

Collapsed edges
cedge(socks,[right_robot],[right_node_monitor])
cedge(socks,[right_node_monitor],[plan_monitor])
cedge(socks,[left_robot],[left_node_monitor])
cedge(socks,[left_node_monitor],[plan_monitor])

We run experiments with protocols that involve distinct
groups of agents each following the ABP3 protocol. For
example, in the DoubleABP3, alice, bob, carol and dave follow
the ABP3 protocol, alice2, bob2, carol2 and dave2 follow the
ABP3 protocol as well, and both bob and bob2 interact with
boss. Since alice, bob, carol and dave have no interactions
with alice2, bob2, carol2 and dave2, the two groups are
independent from each other and can be safely partitioned
for the purpose of decentralized runtime verification. In such
a situation, the partition computed by MAS-DRiVe is the
following:
Unsplittable list:
[((*),3), ((\/),7), ((:),8), ((:),9), ((/\),10)],

[alice2,bob2,carol2,dave2]
[((*),3), ((\/),4), ((:),5), ((:),6), ((/\),7)],

[alice,bob,carol,dave]

The trace expressions
@((bobasks:lambda|bob2asks:lambda)*
((okbob:nobob2:msg3>>S_1/\msg_ack(1)>>S_2/\
msg_ack(2)>>S_3/\msg_ack(3)>>S_4)\/
(okbob2:nobob:mmsg3>>S_5/\mmsg_ack(1)>>S_6/\
mmsg_ack(2)>>S_7/\mmsg_ack(3)>>S_8)),
[S_1=m1:m2:m3:S_1,S_2=m1:a1:S_2,
S_3=m2:a2:S_3,S_4=m3:a3:S_4,S_5=mm1:mm2:mm3:S_5,
S_6=mm1:aa1:S_6,S_7=mm2:aa2:S_7,S_8=mm3:aa3:S_8])

41

can be partitioned into

{[boss],[alice2,bob2,carol2,dave2]}
{[alice,bob,carol,dave]}

The algorithm correctly recognizes that alice, bob, carol and
dave must be monitored all together, and that the same holds
for alice2, bob2, carol2 and dave2. No other constraints on
the partition are found. We got the expected correct results
also with the TripleABP3 protocol, with three distinct groups
of agents following the ABP3.

The code of the MAS-DRiVe algorithm can be downloaded
from http://www.disi.unige.it/person/MascardiV/Software/
masdrive.html. It requires SWI Prolog and the METIS
software installed and accessible via the command line from
everywhere. We tested it on Mageia Linux.

VI. CONCLUSIONS AND FUTURE WORK

This paper addresses the problem of how to partition a
MAS into agents’ subsets that can be verified at runtime,
independently from one another, in such a way that the results
obtained by the decentralized runtime verification are the
same as those obtained by monitoring the whole MAS in a
centralized way.

We designed and implemented the MAS-DRiVe algorithm,
whose results are consistent with those discussed in [2]. In that
paper, the feasibility of distributing the runtime monitoring
over user-defined sets of agents was empirically validated by
checking the traces of events compliant with the decentralized
subprotocols up of a given length, and verifying whether they
were compliant with the original global protocol as well. That
approach gave a semi-decidable information: if all traces up
to a given length l were found to be compliant with the
protocol, this did not ensure that problems could not arise
with traces of length l + 1. With MAS-DRiVe we propose a
constructive way to partition agents in the MAS, rather than
letting the user decide how to partition them, and we overcome
the problems due to the empirical validation approach by
proposing partitions that are “safe” w.r.t. the trace expression
operators. In particular, we assume that agents involved in
an intersection can never be partitioned. This is an over-
cautious approach, but since intersection is the construct used
to state constraints across different independent branches of the
protocol, we assume that those branches cannot be monitored
independently.

In its current version, then, the MAS can not get split if
no semi-independent parts of the system can get identified.
Although this is a limitation of our approach, this could have
an interesting side effect that we aim to explore in the close
future, namely the possibility to come up with suggestions
for MAS designers in terms of good practices for better sub-
systems encapsulation based on interaction protocol analysis.
Such suggestions could be applied to distributed systems in
general, and not only to MASs, and could prove useful in
those approaches where there is an embedded notion of some
sort of encapsulation.

As far as graph partitioning is concerned, we point out
that the obtained partitions do not correspond to partitions of

events. For example, an interaction between the plan monitor
and the left node monitor, corresponding to a (plan monitor,
left node monitor) edge in the graph, will be monitored by
both the monitor in charge of {left node monitor, left robot}
and that in charge of {plan monitor, right node monitor,
right robot}, as it involves agents in both of them. This
redundancy cannot be avoided, but can be kept as small as
possible by selecting a partitioning algorithm that minimizes
the number of edges across partitions. Graph partitioning is
another area of improvement of our work: strategies could
be employed to automatically detect the optimal number of
monitors to deploy, or at least guidelines may be provided in
the future.

Finally, as part of our future work, we plan to make an ex-
haustive experimentation of MAS-DRiVe on existing complex
protocols. METIS can easily partition graphs with hundreds
of nodes so we will model protocols involving hundreds of
agents and test the scalability of the approach. Studying its
computational properties from a theoretical viewpoint is on
our agenda as well.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their useful
remarks and constructive comments.

REFERENCES

[1] M. Alberti, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni.
The SCIFF abductive proof-procedure. In AI*IA, pages 135–
147, 2005.

[2] D. Ancona, D. Briola, A. El Fallah Seghrouchni, V. Mascardi,
and P. Taillibert. Efficient verification of MASs with projections.
In EMAS 2014. Revised Selected Papers, volume 8758 of LNCS,
pages 246–270. Springer, 2014.

[3] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Global
protocols as first class entities for self-adaptive agents. In
G. Weiss, P. Yolum, R. H. Bordini, and E. Elkind, editors, Pro-
ceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, pages 1019–
1029. ACM, 2015.

[4] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi. Runtime
verification of fail-uncontrolled and ambient intelligence sys-
tems: A uniform approach. Intelligenza Artificiale, 9(2):131–
148, 2015.

[5] D. Ancona, S. Drossopoulou, and V. Mascardi. Automatic
Generation of Self-Monitoring MASs from Multiparty Global
Session Types in Jason. In M. Baldoni, L. A. Dennis,
V. Mascardi, and W. Vasconcelos, editors, DALT 2012. Revised
Selected Papers, volume 7784 of LNCS. Springer, 2013.

[6] D. Ancona, A. Ferrando, and V. Mascardi. Comparing trace
expressions and linear temporal logic for runtime verification.
In E. Ábrahám, M. M. Bonsangue, and E. B. Johnsen, editors,
Theory and Practice of Formal Methods, volume 9660 of LNCS,
pages 47–64. Springer, 2016.

[7] A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL
semantics for runtime verification. J. Log. and Comput.,
20(3):651–674, June 2010.

[8] A. Bauer, M. Leucker, and C. Schallhart. Runtime verification
for LTL and TLTL. ACM Trans. Softw. Eng. Methodol.,
20(4):14:1–14:64, Sept. 2011.

842

[9] F. L. Bellifemine, G. Caire, and D. Greenwood. Developing
Multi-Agent Systems with JADE. Wiley, 2007.

[10] D. Briola, V. Mascardi, and D. Ancona. Distributed runtime
verification of JADE multiagent systems. In D. Camacho,
L. Braubach, S. Venticinque, and C. Badica, editors, IDC 2014,
volume 570 of Studies in Computational Intelligence, pages 81–
91. Springer, 2014.

[11] M. Brörkens and M. Möller. Dynamic event generation for
runtime checking using the JDI. Electr. Notes Theor. Comput.
Sci., 70(4):21–35, 2002.

[12] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz.
Recent advances in graph partitioning. In Algorithm Engi-
neering: Selected Results and Surveys, volume 9220 of LNCS.
Springer, 2015 (in press).

[13] F. Chen and G. Rosu. Mop: an efficient and generic runtime
verification framework. In OOPSLA 2007, pages 569–588,
2007.

[14] C. Colombo, G. J. Pace, and G. Schneider. LARVA — Safer
Monitoring of Real-Time Java Programs (Tool Paper). In SEFM
2009, pages 33–37, 2009.

[15] F. S. de Boer and C. P. T. de Gouw. Combining Monitoring
With Run-Time Assertion Checking. In SFM 14, pages 217 –
262. Springer, 2014.

[16] A. Ferrando, V. Mascardi, and D. Ancona. Monitoring patients
with hypoglycemia using self-adaptive protocol-driven agents:
a case study. In Workshop Proceedings of EMAS 2016, 2016.

[17] L. Giordano, A. Martelli, and C. Schwind. Specifying and ver-
ifying interaction protocols in a temporal action logic. Journal
of Applied Logic, 5(2):214 – 234, 2007.

[18] K. Havelund and G. Rosu. Synthesizing monitors for safety
properties. In J. Katoen and P. Stevens, editors, TACAS 2002,
volume 2280 of LNCS, pages 342–356. Springer, 2002.

[19] G. Karypis and V. Kumar. Analysis of multilevel graph
partitioning. In Proceedings of the 1995 ACM/IEEE Conference
on Supercomputing, Supercomputing ’95, New York, NY, USA,
1995. ACM.

[20] G. Karypis and V. Kumar. A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM J. Scientific
Computing, 20(1):359–392, 1998.

[21] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan.
Java-mac: a run-time assurance tool for java programs. Electr.
Notes Theor. Comput. Sci., 55(2):218–235, 2001.

[22] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Commun. ACM, 21(7):558–565, July 1978.

[23] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi. The flooding
time synchronization protocol. In SenSys ’04, pages 39–49.
ACM, 2004.

[24] M. C. Martin, V. B. Livshits, and M. S. Lam. Finding
application errors and security flaws using PQL: a program
query language. In OOPSLA 2005, pages 365–383, 2005.

[25] S. Rajsbaum. Distributed runtime verification – where combina-
torics, fault-tolerance and formal methods meet. Keynote Talk
at the SSS 2015, August 2015, 2015.

943

