
MapReduce Frameworks:
Comparing Hadoop and HPCC

Work in Progress

Fabian Fier, Eva Höfer, Johann-Christoph Freytag

Humboldt-Universität zu Berlin, Institut für Informatik,
Unter den Linden 6, 10099 Berlin, Germany

{fabian.fier,eva.hoefer,freytag}@informatik.hu-berlin.de

Abstract. MapReduce and Hadoop are often used synonymously. For
optimal runtime performance, Hadoop users have to consider various
implementation details and configuration parameters. When conducting
performance experiments with Hadoop on different algorithms, it is hard
to choose a set of such implementation optimizations and configuration
options which is fair to all algorithms. By fair we mean default config-
urations and automatic optimizations provided by the execution system
which ideally do not require manual intervention. HPCC is a promising
alternative open source implementation of MapReduce. We show that
HPCC provides sensible default configuration values allowing for fairer
experimental comparisons. On the other hand, we show that HPCC users
still have to consider implementing optimizations known from Hadoop.

1 Introduction

In our research, we use MapReduce and its implementation Hadoop to exper-
imentally compare the runtime of various scalable algorithms. Along these ex-
periments, we identified practical issues that make a fair comparison and experi-
mental reproducability hard. Hadoop offers many configuration parameters that
influence the runtimes of programs such as the number of Reducers or whether
data compression is to be used between Map and Reduce. Furthermore, there are
numerous possible optimizations in Hadoop programs, such as custom datatypes
and very efficient byte-wise comparators. It is possible to “tweak” every imple-
mentation with a certain set of options and implementation optimizations. The
same set of options and optimizations can lead to poor execution times for the
implementation of different algorithms [1]. The literature barely discusses these
configuration parameters and implementation details, although they are crucial
for the validity of experimental results.

Another promising open source MapReduce implementation is HPCC (High
Performance Computing Cluster) from LexisNexis [2]. Unlike Hadoop, HPCC
hides many configuration details from the user. We are interested in how HPCC
might replace Hadoop in our context and whether it allows for a fairer compar-
ison when implementing MapReduce algorithms in it. As a running example,

we describe a common MapReduce-based textual similarity join algorithm. We
introduce our implementation of this algorithm in Hadoop and its pitfalls con-
cerning system configuration and code details. We compare this implementation
to our corresponding implementation in HPCC and discuss our findings.

The paper is structured as follows. Section 2 describes HPCC and ECL.
Section 3 contains the textual similarity join problem and the MapReduce-based
approach we use as a running example. Section 4 introduces and compares our
implementations of the algorithm in Hadoop and HPCC. The last section sums
up our findings and gives an outlook on future research on this topic.

2 HPCC and ECL

HPCC is an open source parallel distributed system for compute- and data-
intensive computations [2]. It contains a distributed file system. The main user in-
terface of HPCC is ECL (Enterprise Control Language). ECL follows a dataflow-
oriented programming paradigm and has declarative components. The following
example code1 computes a word count:

Define record structure “WordLayout” consisting of string “word”:
WordLayout := RECORD

STRING word;

END;

Read given dataset into the variable “wordsDS”, apply WordLayout:
wordsDS := DATASET([{'HPCC'}, .., {'ANALYTICS'}], WordLayout);

Define record structure “WordCountLayout” consisting of “word” and “count”.
Note the count is defined by COUNT(GROUP) which implies that this record
structure is to be applied to a grouped dataset:

WordCountLayout := RECORD

wordsDS.word;

wordCount := COUNT(GROUP);

END;

Apply WordCountLayout on dataset wordsDS and group by “word”:
wordCountTable := TABLE(wordsDS, WordCountLayout, word);

ECL allows to incorporate user-defined first-order functions written in C++
or Java [2]. These functions can be called from ECL functions. The semantics
of the Map operator is represented in the ECL function PROJECT. It applies
a user-defined function to each record in a given dataset. Reduce semantics
can be emulated by partitioning and distributing the data with DISTRIBUTE,
sorting it locally with SORT, and running a user-defined function on each group
with ROLLUP. Although HPCC is not originally designed for the MapReduce
programming paradigm, it is straightforward to adapt a MapReduce program to
ECL. Thus, we regard HPCC as an alternative implementation of Hadoop.

1 Adapted from https://aws.hpccsystems.com/aws/code-samples/

3 Textual Similarity Join

This section describes the textual similarity join problem and outlines the algo-
rithmic approach from Vernica et al. [3] to compute it. We subsequently use this
algorithm as an example to compare Hadoop to HPCC.

The textual all-pairs similarity join is a common operation that detects sim-
ilar pairs of objects. Objects can either be strings, sets, or multisets. The sim-
ilarity is defined by similarity functions such as Cosine or Jaccard similarity.
Applications of this join are near-duplicate removal, document clustering, or
plagiarism detection. Without loss of generality, we assume a self-join on sets.

Definition 1 (Similarity Join). Given a collection of sets S, a similarity func-
tion sim, and a user-defined threshold δ, a similarity join finds all pairs with a
similarity above the threshold: {〈s1, s2〉|sim(s1, s2) ≥ δ, s1 ∈ S, s2 ∈ S, s1 6= s2}.

A naive approach of computing this join is to compare each possible pair
of objects. Due to its quadratic complexity, it is not feasible even for small
datasets. More advanced approaches use a filter-and-verification framework. The
framework consists of two steps. The first step computes candidate pairs, which
are a superset of the result set. Due to the use of filters, the candidate set is much
smaller than the cross product (assuming that a majority of pairs of objects of S
is not similar). The second step computes the actual similarity for each candidate
pair to verify if its similarity is above δ.

A prominent filter-and-verification MapReduce-based algorithm for set simi-
larity joins is the VernicaJoin [3]. The main filtering idea is to only compare short
prefixes of two objects to generate candidate pairs. Given a similarity function,
a threshold δ and an object length |s|, we can compute a prefix length. It can
be shown that two objects can only be similar if they have an overlap of at least
1 in their prefixes. One optimization is to sort the words in the objects by their
global frequency in ascending order. This assures that the prefixes only contain
the least frequent words which reduces the number of candidate pairs.

For our experimental comparison of similarity join algorithms, we adapted
VernicaJoin to use already integer-tokenized input (instead of raw string input)
and to output ID pairs of similar objects (instead of string pairs). These changes
enable us to compare this algorithm to others. In the following, we describe our
implementations of this adapted algorithm.

4 Comparison of Implementations

In this section, we introduce our implementations of the previously described
algorithm in Hadoop and HPCC. We discuss the most runtime-relevant details
concerning implementation and configuration. Due to space restrictions, we refer
to the upcoming full version of this paper for experimental results.

The implementations consist of three steps. In the first step, we compute the
global token frequency. In the second step, we sort the tokens in each object by
this frequency and replicate each object for each token in its prefix. We group

all objects by their prefix tokens and verify for each pair in this group if it meets
the threshold δ. The third step removes duplicates.

PROJECT

SORT

ROLLUP

SORT

SORT

NORMA
LIZE

DISTRI
BUTE

ROLLUP

PROJECT

Input
Dataset

Job 1

Job 2

Freq.
Map

Swap
Map

Freq.
Reduce

Assign
Reduce

Input
Dataset

Tokens

Sorted
Tokens

(combine)

1 a b c
2 d e f
...
10 f g
11 a b f

g
...
a
b
f
...

(a, 1)
(b, 1)
...

(a, 2)
(f, 3)
...

(2, a)
(3, f)
...

(f, 1)
(g, 1)
...

(b, 2)
(g, 1)
...

(2, b)
(1, g)
...

read input

add
frequencies
locally

hash-partition
by word, add
frequencies
locally

sort by
frequency

(only 1 instance)

C
o
m

p
u
te

 G
lo

b
a
l To

ke
n
 F

re
q
u
e
n
cy

Hadoop HPCC Comment Example

...

Fig. 1. Hadoop and HPCC Dataflows (First Step).

Figure 1 shows the dataflows in Hadoop and HPCC for the first step. Con-
sider the example in the right column of the figure. The example assumes a
parallelization degree of 2. The input has the form 〈recordId, 〈tokenId1, .., N〉〉.
For each token in each object, we create a new record 〈tokenId, 1〉. The 1 rep-
resents the initial count of the token. In the following step, we add the token
count for each partition. In the last two steps, we order the tokens according to
their frequency.

Note that we use a Combine in Hadoop Job 1, which computes the token
counts locally on the Map side. This significantly reduces network traffic and
shuffle costs at the the Reduce side. We apply the same idea in HPCC by using
ROLLUP and SORT in local mode. As in Hadoop, it is important to apply this
concept. The ECL compiler does not automatically insert such an optimization.

In Hadoop, the number of Map instances is dependant on the HDFS block
size by default. The default block size is either 64 or 128 MB. If the number of
data blocks is smaller than the number of available Map instances, only a subset
of the available Map instances is used by default. If in addition the first-order
function is compute-intensive, this can lead to a longer runtime compared to
executing Map on all available Map instances. This issue might be solved for

example by manually changing the input split size parameter of Hadoop. The
distributed file system of HPCC splits the data at object borders and evenly
distributes it amongst the available compute nodes. If the subsequent operator
can operate on independant data chunks, it is executed on each data split.

In Hadoop, we manually set the number of Reduce instances. The default
number is 1. If it is set too low, the computing nodes are under-utilized. If
it is set too high, resources like main memory or network get overloaded. An
optimal value is usually application- or even data-dependant. HPCC handles
this parallelization implicitly.

NORMA
LIZE

SORT

SORT

ROLLUP

ROLLUP

DISTRI
BUTE

DISTRI
BUTE

NORMA
LIZE

PROJECT

Input
Dataset

Job 3

Job 4

Prefix
Map

Dedup
Map

Verific.
Reduce

Dedup
Reduce

Input
Dataset

Result w/
duplicates

Output
Dataset

Output
Dataset

Sorted
Tokens

1 a b c
2 d e f
...
10 f g
11 a b f

(a,(1 abc))
(c,(1 abc))
...

1 11 0.6
...

...

1 11 0.6
...

1 11 0.6
...

(g,(10 fg))
(a,(11 baf))
...

sort
tokens by
global
frequency

replicate
by prefix

compute
join for
each
partition
locally

remove
duplicates

Hadoop HPCC Comment Example

(setup)

Jo
in

D
e

d
u

p
lica

tio
n

(sorted tokens
from previous step)

Fig. 2. Hadoop and HPCC Dataflows (Second and Third Step).

Figure 2 shows the dataflows for the second and third step of the implemen-
tations. Consider the data example in the right column. We read the input, sort
the tokens by their frequency in ascending order, and replicate each object for
each token in the prefix. We illustrate the prefix with bold numbers in the in-
put. Since this replication can be computed on independent data partitions, we
use two boxes for the resulting partitions. We group all records with the same
tokens and compute their pairwise similarity. If two records share more than one
common token in the prefix, the similarity of this pair is computed more than
once. In the last step, we deduplicate the result.

The Map in Hadoop Job 3 uses a setup function, which initially reads the
word frequencies from the first step. It sorts the words in each object according

to their global frequency and computes the prefix length. For each word in the
prefix, it outputs the key-value pair 〈〈word, objectLength〉, object〉. Note that the
key consists of two integers, the word and the length. As proposed by Vernica
et al. [3], we use a combined key consisting of the word and the length of the
containing record. The word in the key partitions the data. The length is used
additionally for local sort on the Reduce side. The Reducer retrieves the objects
ordered by length. Since it performs a local nested-loop, we can prune locally
buffered objects which cannot be similar anymore to all subsequent objects due
to their length difference. We implemented a custom partitioner, sorter and
grouper for this. This approach has an impact on the runtime. If the number of
locally buffered objects exceeds memory boundaries, the computation becomes
slow. In ECL, we implement the same approach by sorting the records by length
within each partition. For each partition, we run a user-defined Java function
that computes the similarity join locally. As in Hadoop, the user-defined function
is stateful and can cause memory overflow.

5 Summary, Future Work

We were interested in how HPCC might be an alternative to Hadoop as an exe-
cution platform to allow for a fairer comparison when implementing MapReduce
algorithms. Using the VernicaJoin to implement a textual similarity join, we
showed that a complex MapReduce algorithm can be adapted to HPCC in a
straightforward way. HPCC takes away some configuration details from the user
like the parallelization degree (number of Map and Reduce instances). However,
ECL still requires its users to carefully partition data so that intermediate buffers
do not get overloaded. It is also necessary to explicitly implement optimizations
such as local Combines. We plan to investigate further the influence of memory
configuration on runtime. Especially in Hadoop, it is usually not clear to the
user how its memory-related parameters impact performance. Furthermore, we
plan to adapt this textual similarity join approach to use even more native ECL
functions rather than user-defined “black box” code. This opens optimization
possibilities which can potentially be integrated into the HPCC system.

Acknowledgements. This work was supported by the Humboldt Elsevier Ad-
vanced Data and Text (HEADT) Center.

References

1. Babu, S.: Towards Automatic Optimization of MapReduce Programs. In Proceed-
ings of the 1st ACM symposium on Cloud computing. ACM (2010)

2. Middleton, A. M., Bayliss, D. A., and Halliday, G.: ECL/HPCC: A Unified Ap-
proach to Big Data. In: Furth, B. and Escalante, A.: Handbook of Data Intensive
Computing, pp. 59–107. Springer, New York (2011)

3. R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity joins using mapre-
duce. In Proceedings of the 2010 ACM SIGMOD International Conference on Man-
agement of data, pages 495506. ACM (2010).

