
Finding Trees in Mountains – Outlier Detection
on Polygonal Chains

Michael Singhof, Daniel Braun, and Stefan Conrad

Heinrich-Heine-Universität Düsseldorf, Institut für Informatik,
Universitätsstr. 1, 40225 Düsseldorf, Germany

{singhof,braun,conrad}@cs.uni-duesseldorf.de

Abstract. In this work, we present an approach to the detection of out-
liers in certain polygonal chains. These originate from images of moun-
tains which are first segmented in order to extract the mountains silhou-
ette. In general, the aim of our framework is to recognise the mountain in
the image in order to overcome the problem of large amounts of images
on the internet that are not tagged and thus cannot be searched in a
sensible fashion.

The appearance of outliers in our case is specific by them either being
obstacles in the image that are in front of the mountain or they are
due to problems during the silhouette extraction step. In this work, we
show, how outliers are defined in our context, namely as sub-sequences
that are found by a double threshold technique. Therefore, we describe
how the anomaly scores for single vertices in the polygonal chains are
computed via a histogram distance based approach. We also introduce
an improved way to compute reference data and outlier scores and show
that this changes allow for significant better outlier detection results.

1 Introduction

Social networks and image sharing platforms enable users to easily share their
photos, with millions of pictures uploaded every day. However, most of these
photos are not properly tagged. Because of this, they are not easily accessible
since they cannot be simply searched for. The aim of our framework presented
in [3] therefore is, to be able to recognise mountains in a given image. We hope
to overcome this problem for the example of mountain recognition by being able
to automatically tag them.

Since our idea is to be able to annotate every image of a mountain, even
without GPS information, we have to extract much more precise silhouettes
than approaches that will work on GPS tagged images, only. Therefore, it is of
imminent importance to correct errors that occur during the initial segmentation
step. In this work, we present an enhancement to our outlier detection step from
[3], that uses clustering on the reference silhouettes in order to enable a more
precise outlier detection.

2 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

2 Related Work

There are approaches for automatic tagging, which provide solutions for other
motifs than mountains [13]. However, this work is based on image features, which
are very similar for di↵erent mountains and not feasible for mountain recognition.

The area of mountain recognition is rather small. Baatz et al. [1] use hu-
man interaction to correct silhouettes that are first computed by an algorithm.
They also have released their data set, which is used in this work. However,
our approach is intended to be able to recognise a mountain without human
intervention. Other approaches to mountain annotation, such as [2, 6, 12], rely
on GPS tags in order to estimate the position of the mountain in the picture.
Thus, the number of mountains to compare with is relatively small and because
of this, the extraction of the silhouette from the mountain does not have to be
as exact as in our case. To our knowledge, our approach is the only approach
that uses adaptive correction techniques in order to enhance the quality of the
extracted silhouette.

A silhouette is essentially a two dimensional polygonal chain. However, there
is not much work on outlier detection on polygonal chains. A closely related
problem is outlier detection in time series. There are many approaches to this,
such as Hot Sax [8] and its variants [11, 4, 9]. These approaches search for discords
rather than outliers in our sense. A discord is defined as the sub-sequence of a
given time series that has the greatest distance to all other sub-sequences of the
same length. These methods have advantages in cases, where periodic events
are measured with a time series, since the length of the discord is given as a
parameter. To our problem, this is not directly applicable because neither do we
know the length of outliers in the silhouette nor do we want to find the most
unusual outlier, only.

Another, but less closely related, approach to outlier detection in time series
is change point detection [5, 7]. A change point is a point in a time series, that is
unusual for the part of the time series up until that point but introduces a new
behaviour to the time series that might be repeated later on. While this method
is useful on time series it cannot be adapted easily to polygonal chains, since the
latter do not have a strong time dimension where one can assume that earlier
events a↵ect later ones.

3 AdaMS Framework and Mountain Identification

In this section we shortly introduce our adaptive mountain silhouette (AdaMS)
framework that initially has been presented in [3] to put the outlier detection
task presented in this work into perspective. The task of mountain recognition
can be divided in two large parts: first, the silhouette extraction from an input
image and second, the identification of that silhouette by mapping it to a known
silhouette of a mountain.

AdaMS is our approach to solve the first of these problems. It uses a grid
based segmentation algorithm for the initial silhouette extraction. This silhouette

Finding Trees in Mountains – Outlier Detection on Polygonal Chains 3

is then, as a second step, searched for outliers which then get classified. Regions
around correctable outliers are then resegmented with a di↵erent parameter set.
The resulting silhouette is again searched for outliers, until no more correctable
outliers are found or a maximum number of iterations has been reached.

The identification of the silhouette itself can be divided into two problems,
namely the mapping to a known silhouette and the creation of the reference
data, i.e. the known silhouettes. Due to the great number of mountains, the
mapping of an extracted silhouette to a labelled silhouette has to be precise and
with as little computing cost as possible. Therefore it seems advisable to use a
step wise process that uses fast to compute distance measures in a first step in
order to exclude reference data with low resemblance. As the number of relevant
silhouettes decreases, more precise similarity measures can be applied.

The creation of the reference data is a task, that could theoretically be car-
ried out by humans. However, that would be an immense workload because one
labelled silhouette per mountain would not su�ce to support a reliable identifi-
cation. This is because mountains look di↵erent from di↵erent angles. It seems
much more feasible to automatically extract the reference silhouettes from digital
elevation maps.

4 Enhancing Outlier Detection in AdaMS

For finding outliers, we first have to define outliers for our application case.
Based on this definition, we show the basic AdaMS outlier detection and then
introduce recent improvements.

4.1 Outlier Definition

A silhouette is a two dimensional polygonal chain that can be converted to a
relative silhouette:

Definition 1 A relative silhouette RS = (v1, . . . , vn), n > 0, is a polygonal

chain with v
i

= (l
i

, a
i

) for all 1 i n, where l
i

> 0 is the length of a line

segment and a
i

2 (�180�, 180�] is the angle relative to the x-axis. [3]

On such a relative silhouette we want to find unusual parts that are caused
by obstacles such as trees or segmentation faults due to low contrast. So an
outlier o = (v

i

, . . . , v
j

), 1 i < j n, is a part of a relative silhouette, where
the combination of vertices v

i

, . . . , v
j

does not fit the usual patterns in relative
silhouettes extracted from mountain images. This is introduced formally in the
following definition.

Definition 2 Let l > 0, and RS = (v1, . . . , vn) be a relative silhouette.

We call o = (v
i

, . . . , v
j

) an l-outlier if the following is true:

1. For all v
k

, i k j, it holds that v
k

is a weak anomaly.

2. There exist m1,m2 2 {i, . . . , j} such that m2 � m1 � l and for all v
k

,

m1 k m2, it holds that v
k

is a strong anomaly. [3]

4 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

An outlier o = (v
i

, . . . , v
j

) is called a maximum l-outlier if and only if neither

(v
i�1, . . . , vj) nor (v

i

, . . . , v
j+1) are l-outliers.

Definition 2 mentions strong and weak anomalies. These, in contrast to out-
liers, are single vertices that have unusual properties, that is, high anomaly
scores. We therefore show how these concepts can be defined. Anomaly scores
are computed via histograms of parts of relative silhouettes.

Definition 3 Given a relative silhouette RS, then H
RS

(s, l) denotes the his-

togram consisting of the points v
s

, . . . , v
s+l�1 of RS and H

RS

denotes the his-

togram over all vertices of RS. [3]

Based on these histograms and the distance to the reference histogram H
ref

,
we are now able to introduce the vertices’ anomaly scores:

Definition 4 Given a relative silhouette RS = (v1, . . . , vn) and a reference his-

togram H
ref

.

The anomaly score

an(v
i

) :=
1

l

iX

j=i�l+1

d
j

of vertex v
i

is the average of the distances d
j

= dist(H
RS

(j, l), H
R

).

With the anomaly scores we can now finally introduce the di↵erent kinds of
anomalies used in definition 2:

Definition 5 Let RS = (v1, . . . , vn) be the silhouette of an image with corre-

sponding anomaly scores an(v
i

) for vertex v
i

, reference anomaly score distribu-

tion mean µ and standard deviation � and two thresholds 0 < ⌧
out

< ⌧
in

.

Then we call v
i

a weak anomaly if

an(v
i

) � µ+ ⌧
out

· �

and a strong anomaly if

an(v
i

) � µ+ ⌧
in

· �. [3]

This shows, that an outlier in our case is an application of a double threshold
technique. The idea here is that often, within an obstacle or a segmentation fault,
only small parts of the outlier consist of vertices with unusually high anomaly
scores. The rest of the outlier consists of vertices whose anomaly scores are still
high, but on their own would not su�ce to identify an outlier. Figure 1 shows
such an example.

Finding Trees in Mountains – Outlier Detection on Polygonal Chains 5

Fig. 1. An outlier – strong anomalies are marked red, weak pink and the silhouette
yellow.

4.2 SingleRef Outlier Detection and Reference Data Computation

As in [3], our first version outlier detection algorithm computes the vertices
anomaly via a sliding window approach, following the idea outlined in the pre-
vious section. More than one window length can be used and the same window
length may be used multiple times to induce a weighting to the distances com-
puted by the di↵erent window lengths. This is necessary, because a longer window
length gives a single vertex more distance scores than a shorter one and thus is
represented stronger in the anomaly score.

Given the anomaly values an(v
i

) for the vertices, finding the maximum l-
outliers according to definition 2 is straightforward. In the first step, we search
for sequences of vertices with a length of at least l that all are strong anomalies.
Once we have found such a sequence, we let it grow by adding vertices that are
neighbours of the currently detected outlier and weak anomalies on both sides.

In regard to reference data computation, the algorithm gets a selection of
outlier free silhouettes that where chosen by hand and computes a single refer-
ence histogram H

ref

of all those silhouettes. We therefore refer to this version
of the algorithm as SingleRef outlier detection. The statistical properties µ and
� are then computed by using the same window lengths as in the actual out-
lier detection to compute the anomaly score of every vertex in the reference
silhouettes.

4.3 MultiRef – Improving SingleRef

Computing one histogram, in a certain manner, aggregates the data represented
by the histogram. Due to the di↵erences in details, a stronger aggregation results
in higher standard deviation of the single data points to this aggregates than

6 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

a weaker aggregation. This, in turn, leads to obscured real anomalies, since
distances to the reference data are in general rather high. As the evaluation
chapter shows, this leads to either high rates of false positives or relatively low
detection rates for SingleRef.

A solution to this problem would be the usage of multiple reference his-
tograms. Intuitively, one would choose one histogram per silhouette, resulting
in Histograms H1

ref

, . . . , Hn

ref

if we assume n reference silhouettes. In order to
use more than one reference histogram, however, we have to adjust the distance
computation. The base distance used in AdaMS is the following:

Definition 6 Let G = (g1, . . . , gn), H = (h1, . . . , hn

) be histograms with n buck-

ets.

The above average distance of G to H is defined by

dist(G,H) := max(|aab(G)|, |aab(H)|)� |aab(G) \ aab(H)|,

where

aab(F) :=

(
i 2 {1, . . . , n}

�����fi �
1

n

nX

i=1

f
i

)

with F = (f1, . . . , fn) being a histogram with n buckets.

Essentially, by the above average distance, the number of above average buck-
ets that are the same in both histograms is subtracted from the higher number
of above average filled buckets.

Theorem 7 The above average distance from definition 6 is a pseudometric.

For the proof of this theorem see appendix A.
Now, when comparing a histogram with not just one reference histogram but

several, we compute the above average distance to all reference histograms and
then choose the minimum of that distances.

Definition 8 Given a histogram H and reference histograms H1
ref

, . . . , Hn

ref

,

then

dist
mr

(H) := min
1in

�
dist(H,Hi

ref

)

is called the min-ref distance.

As the number of reference silhouettes is potentially large and it is beneficial
to add further silhouettes free of outliers to the reference data, it is clear that
the usage of a reference histogram per reference silhouette is not feasible and
the number of histograms has to be reduced. On the other hand, we want to
minimise the loss of detail due to aggregation. We therefore utilise a k-means
clustering [10] on the reference silhouettes’ histograms.

By this, we are able to reduce the number of reference silhouettes to any
given k while ensuring, that we loose as little detail as possible, because the
subadditivity holds for the above average distance. This means, the distance

Finding Trees in Mountains – Outlier Detection on Polygonal Chains 7

to the cluster representative is an upper bound on the distance to the closest
silhouette’s histogram. We ensure small distances between representatives and
members of the cluster by clustering with random start representatives 1000
times and choosing the clustering with the smallest quadratic distance. It is also
noteworthy, that by setting k = 1 we only get one reference silhouette that is
identical to the reference silhouette of the SingleRef method.

By this, as the evaluation shows, we are able to achieve better outlier detec-
tion without changing our outlier detection algorithm as such nor do we need
more reference data.

4.4 Further Steps

The next steps after identifying the outliers are to classify them into obstacles in
the picture and errors in the segmentation step, for example due to low contrast
between parts of the mountain and the sky. As described in [3], we use four
classes of outliers, namely obstacles, segmentation errors where the silhouette is
too high, segmentation errors where the silhouette is too low and false positives.
For the classification we utilise a k-nearest neighbour approach on the outliers’
histograms.

5 Evaluation

In order to evaluate the approaches introduced in the previous section, we manu-
ally annotated a test set of 111 outliers from 14 silhouettes, that, in total, consist
of 3580 vertices. The silhouettes have been automatically extracted from the im-
ages by a variant of the the segmentation algorithm presented in [3], but without
the outlier detection steps and therefore without the adaptive correction.

The outlier detection algorithm has been trained with 48 silhouettes that are
mostly free of outliers and have been extracted with the same mechanism as
described above. These have been clustered 1000 times per number of clusters
and the clustering with the lowest overall quadratic distance of histograms in
respect to their cluster representative has been chosen.

We first evaluated the precision and recall based on detected outlier vertices
for di↵erent values for k, the number of reference silhouette clusters and thus
reference histograms. As parameter set we chose the minimum length for an
inner outlier l = 3. The inner and outer thresholds have been set to ⌧

in

= 2 and
⌧
out

= 1. The results of this are shown in table 1. Note here, that for k = 48 no
clustering is used, but here one reference histogram per reference silhouette is
used.

Precision and recall are computed by counting the vertices that have been
declared as parts of outliers correctly and dividing that number by the total
number of detected outlier vertices respectively the total number of annotated
outlier vertices. The last number is shown in the last row of the table. It can be
seen here, that MultiRef, for every tested value of k shows better results than
SingleRef. Especially recall is much better than with SingleRef and gets higher

8 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

Method Value
Silhouette

Total
1 2 3 4 5 6 7 8 9 10 11 12 13 14

SingleRef
Precision 86 0 18 0 0 0 82 0 58 0 27 98 48 90 72
Recall 54 0 15 0 0 0 65 0 25 0 5 43 47 46 33

k = 3
Precision 87 0 69 42 0 42 79 22 51 88 52 95 72 86 73
Recall 66 0 41 29 0 66 72 20 64 8 17 58 69 47 46

k = 5
Precision 82 0 68 37 0 70 82 43 44 80 56 89 73 89 74
Recall 68 0 39 37 0 66 71 43 52 19 28 65 75 62 54

k = 7
Precision 89 0 57 40 0 100 82 42 45 79 61 97 71 89 77
Recall 68 0 17 28 0 60 71 40 50 19 27 53 68 58 49

k = 10
Precision 85 0 59 41 0 100 78 42 45 79 73 95 72 89 77
Recall 65 0 18 29 0 60 71 40 51 19 28 60 63 56 49

k = 20
Precision 88 0 57 40 0 65 79 39 45 82 74 94 72 89 74
Recall 68 0 18 37 0 64 88 41 52 18 28 49 70 56 49

k = 30
Precision 84 0 78 41 0 65 89 41 46 76 61 89 76 90 76
Recall 70 0 59 48 0 64 91 39 59 24 38 68 79 71 61

k = 48
Precision 84 0 78 41 0 65 71 45 46 67 66 89 78 91 75
Recall 70 0 59 48 0 64 91 39 59 24 38 69 79 71 61

#Outlier vertices 305 30 71 234 46 47 144 121 147 344 192 682 315 902 3580
Table 1. Evaluation on detected outlier points. Precision and Recall are given in
percent. Thresholds are ⌧

in

= 2 and ⌧

out

= 1, l = 3.

overall with increasing k. Interestingly, while there is a huge improvement in
recall from k = 20 to k = 30, recall does not get any better when using one
histogram per reference silhouette. Precision, too, is higher for the MultiRef
variants in respect to SingleRef, but it is noteworthy here, that, instead of rising
with the number of clusters, a maximum is reached for k = 7 respectively k = 10
and for bigger values, a slight decrease can be noticed. Note here, that the results
in table 1 are given without carrying out the classifying of outliers. By that
step, some outliers will be classified as false positives and thus precision after
classification should increase.

Table 1 also shows, that for silhouettes 2 and 5, no correct outliers have been
found at all. The outliers in both silhouettes are rather short. The three outliers
in silhouette 2 have a length of 8, 9 and 13 vertices and the four outliers in
silhouette 5 have a length of 9, 10, 12 and 15 vertices.

Based on this observation, table 2 shows the number of outliers that have
been hit by the detection algorithm. The same parameter set as above has been
used for this. An outlier is counted as being hit by the detection algorithm, if at
least one vertex of it has been detected as being part of an outlier. In context
with AdaMS, if this happens, the silhouette will be recomputed in this region
and can thus be corrected. It is clear, that all algorithms have problems with
smaller outliers. For the extraction of good silhouettes, it is more important to
find huge outliers, and our detection rates for those are promising, in general.
The detection rate increases with the length of the outlier for every variant. On

Finding Trees in Mountains – Outlier Detection on Polygonal Chains 9

Method |out| 5 5 < |out| 10 10 < |out| 20 20 < |out| 50 50 < |out| Total

SingleRef 0 1 2 5 10 18
k = 3 2 5 7 14 12 40
k = 5 5 7 9 15 13 49
k = 7 4 5 7 14 13 43
k = 10 4 5 8 14 13 44
k = 20 4 8 8 15 12 47
k = 30 6 10 11 16 15 58
k = 48 6 10 11 16 15 58

#Outliers 18 38 19 21 15 111
Table 2. Number of detected outliers. The length of outliers is denoted by |out|.
Thresholds are ⌧

in

= 2 and ⌧

out

= 1, l = 3.

the other hand, with increasing k, the detection rate in general increases, too.
Interestingly, for k = 5 more outliers have been detected than for surrounding
values of k. However, due to the relatively small numbers of outliers used in our
evaluation, this might be coincidence.

⌧

in

⌧

out

l |out| 20 20 < |out| 50 50 < |out| Total Precision Recall

2 1 3 21 15 13 49 74 54

1.5 1 3 25 17 14 56 69 58
2.5 1 3 12 13 12 37 77 49
2 0.75 3 24 15 13 52 71 59
2 1.25 3 20 15 13 48 76 50
2 1 1 21 15 13 49 72 55
2 1 5 17 14 13 44 76 53

Table 3. E↵ect of parameter changes based on MultiRef with k = 5.

The results in table 3 show the results of our investigation of the e↵ects of
parameter changes. Essentially, lowering ⌧

in

or l results in a greater number
of detected outliers, while raising that values reduces the number of outliers.
Changes to ⌧

out

a↵ect the size of detected outliers. The lower ⌧
out

becomes, the
bigger are the resulting outliers. Due to overlaps with the real outliers, lowering
of one of the values leads to higher recall and decreased precision. Increasing
them raises precision but induces losses to recall.

In summary, the results show that even for the worst choice of k, the number
of hit outliers is more than two times higher than that detected by SingleRef,
while at the same time precision and recall are increased.

10 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

6 Conclusion and Future Work

In this work, we have presented our definition of outliers and our approach to
make the detection of outliers in polygonal chains that represent silhouettes
extracted from pictures of mountains more e↵ective. Our results show, that the
MultiRef variant introduced in this work greatly improves the outlier detection
results. The number of detected outliers is increased by a factor of two to three,
depending on the number of clusters, while precision and recall are also increased.

However, there are some points that we want to address in the future. One
of the main questions is, whether our distance function as given in definition 6 is
ideal or if a more elaborate histogram distance function such as the earthmover’s
distance [14] will yield better results. Also, we plan to use additional data for
the outlier detection. The contrast strength seems to be a good measure, since
segmentation faults usually occur in regions of low contrast.

A Appendix

The fact of the above average distance being a pseudometric is of importance
since it ensures that the triangle equation is satisfied by that construct. From
this it can be derived that the greater the distance between two histograms is,
the greater the di↵erence between those is and there are no short cuts by using
intermediate histograms.

Proof. In order to show that the above average distance is a pseudometric, four
properties have to be shown. Let g, h, k be histograms with the same number of
buckets.

Non-negativity dist(g, h) � 0. This is trivial since |aab(g)| � |aab(g) \ aab(h)|
and |aab(h)| � |aab(g) \ aab(h)|, thus

max(|aab(g)|, |aab(h)|) � |aab(g) \ aab(h)|.

Identity of indiscernibles

dist(g, g) = max(|aab(g)|, |aab(g)|)� |aab(g) \ aab(g)|
= |aab(g)|� |aab(g)| = 0.

Symmetry

dist(g, h) = max(|aab(g)|, |aab(h)|)� |aab(g) \ aab(h)|
= max(|aab(h)|, |aab(g)|)� |aab(h) \ aab(g)|
= dist(h, g)

since both max(·, ·) and the intersection of sets are symmetric functions.

Finding Trees in Mountains – Outlier Detection on Polygonal Chains 11

aab(g)

aab(h)aab(k)

a

bc

d

e

f

m

Fig. 2. Sets for proof of subadditivity.

Subadditivity In order to proof the subadditivity an auxiliary construction is
necessary. As shown in figure 2, the sets aab(g), aab(h) and aab(k) are split in
four disjoint sets each, such that aab(g) = a [d [f [m, aab(h) = b [d [e [m
and aab(k) = c [e [f [m.

Now, without loss of generality, let |aab(g)| � |aab(h)|. Then dist(g, h) =
|aab(g)|� |aab(g) \ aab(h)| = |a|+ |f |.

Case 1 Now, let |aab(h)| � |aab(k)|. Then it holds that dist(k, h) = |b|+ |d| and
dist(g, k) = |a|+ |d|, since |aab(g)| � |aab(h)| � |aab(k)|. Thus, in this case

dist(g, k) + dist(k, h)� dist(g, h)

=|a|+ |d|+ |b|+ |d|� |a|� |f |
=|b|+ 2|d|� |f | � 0,

because

|aab(h)| � |aab(k)|
) |b|+ |d|+ |e|+ |m| � |c|+ |e|+ |f |+ |m|

) |b|+ |d| � |c|+ |f | � |f |.

Case 2 Assume now, that |aab(h)| < |aab(k)|, so dist(k, h) = |c|+ |f |.

Case 2.1 Let |aab(g)| � |aab(k)|. It follows that

dist(g, k) + dist(k, h)� dist(g, h)

=|a|+ |d|+ |c|+ |f |� |a|� |f |
=|d|+ |c| � 0.

Case 2.2 The last case to be considered occurs if |aab(g)| < |aab(k)| which
results in dist(g, k) = |c|+ |e|. Then

dist(g, k) + dist(k, h)� dist(g, h)

=|c|+ |e|+ |c|+ |f |� |a|� |f |
=2|c|+ |e|� |a| � 0.

12 Finding Trees in Mountains – Outlier Detection on Polygonal Chains

This is because of a similar argument to case 1, because

|aab(k)| � |aab(g)|) |c|+ |e| � |a|+ |d| � |a|.

ut

References

1. Baatz, G., Saurer, O., Köser, K., Pollefeys, M.: Large Scale Visual Geo-Localization
of Images in Mountainous Terrain. In: Computer Vision - ECCV 2012 (2012)

2. Baboud, L., Čad́ık, M., Eisemann, E., Seidel, H.P.: Automatic Photo-to-terrain
Alignment for the Annotation of Mountain Pictures. In: Proc. of the 2011 IEEE
Conference on Computer Vision and Pattern Recognition (2011)

3. Braun, D., Singhof, M., Conrad, S.: AdaMS: Adaptive Mountain Silhouette Ex-
traction from Images. In: Proc. of MLDM 2016 (2016)

4. Buu, H.T.Q., Anh, D.T.: Time Series Discord Discovery Based on iSAX Symbolic
Representation. In: Third International Conference on Knowledge and Systems
Engineering (2011)

5. Fawcett, T., Provost, F.: Activity Monitoring: Noticing Interesting Changes in
Behavior. In: Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (1999)

6. Fedorov, R., Fraternali, P., Tagliasacchi, M.: Mountain Peak Identification in Vi-
sual Content Based on Coarse Digital Elevation Models. In: Proc. of the 3rd ACM
International Workshop on Multimedia Analysis for Ecological Data (2014)

7. Kawahara, Y., Sugiyama, M.: Change-Point Detection in Time-Series Data by
Direct Density-Ratio Estimation. In: Proc. of 2009 SIAM International Conference
on Data Mining (SDM2009), (2009)

8. Keogh, E., Lin, J., Fu, A.: Hot Sax: E�ciently Finding the Most Unusual Time
Series Subsequence. In: Fifth IEEE International Conference on Data Mining
(ICDM’05) (2005)

9. Khanh, N.D.K., Anh, D.T.: Time Series Discord Discovery Using WAT Algorithm
and iSAX Representation. In: Proceedings of the Third Symposium on Information
and Communication Technology (2012)

10. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Obser-
vations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statis-
tics and Probability (1967)

11. Pham, N.D., Le, Q.L., Dang, T.K.: HOT aSAX: A Novel Adaptive Symbolic Rep-
resentation for Time Series Discords Discovery. In: Asian Conference on Intelligent
Information and Database Systems (2010)

12. Porzi, L., Buló, S.R., Valigi, P., Lanz, O., Ricci, E.: Learning Contours for Au-
tomatic Annotations of Mountains Pictures on a Smartphone. In: Proc. of the
International Conference on Distributed Smart Cameras (2014)

13. Rischka, M., Conrad, S.: Image Landmark Recognition with Hierarchical K-Means
Tree. In: Database Systems for Business, Technology and Web (BTW 2015) (Mar
2015)

14. Rubner, Y., Tomasi, C., Guibas, L.J.: A Metric for Distributions with Applications
to Image Databases. In: Computer Vision, 1998. Sixth International Conference on.
IEEE (1998)

