
Introducing EqArgSolver: an

argumentation solver

using equational semantics

Odinaldo RODRIGUES

King’s College London, Department of Informatics, email:

odinaldo.rodrigues@kcl.ac.uk

Abstract. In this paper we introduce EqArgSolver, an argumentation
solver using equational semantics. EqArgSolver is based on the proto-
type GRIS submitted to the first International Competition on Com-
putational Models of Argumentation, but provides two major advance-
ments over GRIS. Firstly, it uses the much more e�cient discrete version
of the Gabbay-Rodrigues Iteration Schema [7], and secondly, it requires
at most 1/8 of the memory footprint per node used by GRIS. Experi-
mental results show that EqArgSolver runs up to 12⇥ faster than GRIS
and is able to handle a much larger class of argumentation graphs.

Keywords. Numerical argumentation, argumentation solvers, numerical
methods

1. Introduction

One of the most important tasks in argumentation theory is the reasoning about
the status of arguments in a given argumentation framework hS,Ri. This can be
done according to several semantics mainly using the concepts of an extension or
a labelling function � that assigns a label from {in, out, und} to each argument in
S. The two concepts are interchangeable, as an extension can be obtained from a
labelling function and vice-versa. A third way of giving semantics is via Gabbay’s
equational approach [5] that sees an argumentation framework as a graph gener-
ating equations. Again, for some classes of equations, there is a direct correspon-
dence between the solutions to the equations and the concepts of extensions and
labelling functions via an appropriate mapping of the numerical values.

In [6], Gabbay and Rodrigues proposed the Gabbay-Rodrigues Iteration
Schema, a numerical iterative method that can be used in the computation of ex-
tensions of argumentation frameworks in the traditional Dung sense. The schema
takes an initial assignment of values V0 : S 7�! [0, 1] and produces a new as-
signment Vi+1 in terms of the values at iteration i. The values in the schema
eventually converge and in the limit of the sequence V0, V1, . . . we can construct
a complete extension simply by taking the nodes with value 1. The schema was
used in the prototype GRIS [10] submitted to the first International Competition
on Computational Models of Argumentation [3,4].

One disadvantage of the use of the schema in the computation of argumenta-
tion semantics is the need to determine the values in the limit of the sequence. In

22

a computer, this can only be approximated by iterating su�ciently many times
until one can be satisfied that the approximated values correspond to the values
in the limit. With this in mind, GRIS performed relatively well as a proof of
concept, but left open a number of theoretical and technical questions about the
use of the schema in more intensive argument computation tasks.

In [7], Gabbay and Rodrigues proposed a simplified version of the schema
called the Discrete Gabbay-Rodrigues Iteration Schema that under special condi-
tions is guaranteed to converge in time linear to the number of nodes in the argu-
mentation network. Besides requiring many fewer iterations than the full-fledged
schema, the discrete version requires less computation e↵ort at each step and its
implementation can be done on a much lower memory footprint.1

This paper describes the basic theoretical underpinnings of the discrete ver-
sion of the schema and the technical details involved in its implementation in
EqArgSolver. In experimental results, EqArgSolver performed up to 12⇥ faster
than GRIS and was able to handle much larger argumentation networks.

As for GRIS, EqArgSolver can be used in the solution to the following classes
of problems. Given an argumentation network hS,Ri: to produce one or all of
the extensions of the network under the grounded and preferred semantics; and
given an argument X 2 S to decide whether X is accepted credulously or scep-
tically according to one of these two semantics. Problems to EqArgSolver must
be submitted according to probo’s syntax (see [3]). EqArgSolver is not currently
able to handle problems in the complete and stable semantics, although these
enhancements are in the development pipeline (see Section 6).

The rest of the paper is organised as follows. Section 2 provides a basic back-
ground, including the main theoretical underpinnings on which EqArgSolver is
based. Section 3 provides an overview of the implementation of EqArgSolver. This
is followed by a comprehensive example illustrating the computation steps in Sec-
tion 4. The performances of EqArgSolver and GRIS are compared in Section 5.
Finally, Section 6 concludes the paper giving some directions for future work.

2. Background

In [6], Gabbay and Rodrigues proposed the so-called Gabbay-Rodrigues Iter-

ation Schema defined as follows. Let hS,Ri be an argumentation network,
Att(X) = {Y 2 S | (Y,X) 2 R}, and V0 be an initial assignment of values from
[0, 1] to the nodes in S. Let for each X 2 S, MAi(X) = maxY 2Att(X){Vi(Y)} and
let the equation below define the value of the node X at all subsequent iterations
(i.e., V1, V2, . . .):

Vi+1(X) = (1� Vi(X)) ·min {1/2, 1�MAi(X)}+ Vi(X) ·max {1/2, 1�MAi(X)}
To facilitate the explanations in the rest of this paper, if V : S 7�! [0, 1] is

any assignment of values from [0, 1] to a set of arguments S, then we define the
sets in(V) = {X 2 S | V (X) = 1} and out(V) = {X 2 S | V (X) = 0}.

Take the initial configuration of values V0 and for each i � 0 and X 2 S,
let the value Vi+1(X) be calculated from Vi(X) according to the schema above.
In [6], Gabbay and Rodrigues showed that, for all nodes X, the values in the

1In a 64-bit machine, 1
8 -th of the space required by GRIS.

23

sequence V0(X), V1(X), V2(X), . . ., converge to the so-called equilibrium value of
X, denoted Ve(X) =def limi!1 Vi(X). Gabbay and Rodrigues further showed
that the nodes with Ve(X) = 1 correspond to a complete extension. As for [2], this
extension corresponds to the minimal complete extension containing the maximal
admissible subset of in(V0). If V0(X) = 1/2 for all X 2 S, then the set in(V0) = ?
is the minimally (trivially) admissible subset of S and, consequently, the set in(Ve)
will correspond to the minimal complete extension of hS,Ri, i.e., its grounded
extension. If the argumentation network is decomposed into layers, the schema
can also be used to propagate the values of a solution of a layer to layers that
depend on them. These are its main computational tasks in the prototype GRIS
[10].

Obviously, in order to use the schema, one needs to find a way to determine
the equilibrium values in a finite number of computations. In GRIS, each iteration
i computes the values Vi(X) of all nodes X from the values Vi�1(X). The more
one iterates, the more this value approximates the real value Ve(X). As a result,
the number of nodes and edges in the network and the precision required in the
approximation of the limit values all have a direct e↵ect on GRIS’ overall execu-
tion time. Optimising the e�ciency of the approximation of the value Ve(X) was
hence an important objective of any future implementation using the equational
semantics.

In [7], Gabbay and Rodrigues proposed a discrete version of the schema.
Unlike its full-fledged counterpart, the discrete version cannot be used with any
set of initial values, but under certain initial values it converges to the exact same
values of its full-fledged version without the need for approximation and using
much simpler computation steps. It is therefore an ideal replacement. This schema
is presented below.

Definition 2.1 Let N = hS,Ri be an argumentation framework and V0 be an

assignment of values from {0, 1/2, 1} to the nodes in S. The Discrete Gabbay-
Rodrigues Iteration Schema is defined by the following system of equations (Td),
where the value Vi+1(X) of each node in iteration i+ 1 is defined in terms of the

values of the nodes in iteration i as follows:

Vi+1(X) = 1� max
Y 2Att(X)

{Vi(Y)} (Td)

The following correspondence between numerical values and argument labels
will prove useful.

Definition 2.2 (Caminada/Gabbay-Rodrigues Translation) A labelling function �
and a valuation function V can be inter-defined by identifying the value 1 with

the label in, the value 0 with the label out, and the value

1/2 with the label und.

Caminada and Modgil’s algorithm [9] does something similar, but with labels
instead. Their algorithm relies on searches through sets of nodes. Equation (Td),
on the other hand, can be implemented in terms of native data types and oper-
ations without the need for searches. This makes it very e�cient. Because of the
correspondence between numerical values and labels, it is, of course, also possible
to write (Td) in terms of labels by replacing subtraction and max with appropriate
conditional statements and assignments.

24

In what follows, we will refer to a valuation V defined from a labelling function
� by V� and to a labelling function � obtained from a valuation V by �V .

The discrete version of the schema can be used in several computational
tasks. For instance, it allows to quickly check whether a given assignment yields
a complete extension, as seen below.

Theorem 2.1 [7, Theorem 4] Let hS,Ri be an argumentation framework and Vi an

assignment of values from {0, 1/2, 1} to the nodes in S. �Vi is a complete labelling

function if and only if Vi+1(X) = Vi(X), for all X 2 S.

Remember that there is a direct correspondence between the nodes assigned
the label in by a complete labelling function � and a complete extension. It is
easy to see that the complexity of the checks in Theorem 2.1 is not higher than
that of the checks performed using labelling functions and that the checks can be
implemented in a single loop through all relevant nodes. However, the checks in
Theorem 2.1 can be implemented very e�ciently because of the arithmetic nature
of the operations.

Gabbay and Rodrigues have shown in [7] that under the particular initial as-
signment all-und, the discrete and full-fledged versions of the schema will always
converge to the same values. As a result, the discrete Gabbay-Rodrigues Iteration
Schema if started with the all-und initial assignment will compute the grounded
extension. The discrete version is much more e�cient, because it converges with-
out approximation and the computations at each iteration are much simpler. In
Section 3 we discuss how they can be implemented in terms on positive integers
only.

More details of the utilisation of the discrete schema are discussed in the
following section.

2.1. Using the Discrete Gabbay-Rodrigues Iteration Schema in the Computation

of Argumentation Semantics

It is well known that several semantics of an argumentation framework hS,Ri can
be computed by decomposing the network into layers [1,8]. In simple terms a layer
can be thought of as the maximum collection of nodes whose acceptability status
can be collectively calculated in the same step. This can be better understood
in terms of the strongly connected components (SCCs) of the graph. Loosely
speaking, a trivial SCC is an argument not involved in any cycle; and a non-trivial
SCC C of hS,Ri is a maximal subset C ✓ S, such that for all nodes X,Y 2 C,
there is a path from X to Y and a path from Y to X via the attack relation.
Note that self-attacking nodes always belong to some non-trivial SCC. Layer 0,
by definition, contains all non-trivial SCCs whose attackers only belong to the
SCC itself (called “initial” in [1]) plus all of the trivial SCCs whose nodes have
no attackers, plus all other trivial SCCs whose attackers are trivial SCCs also in
Layer 0. Layer 1 contains all SCCs having all attackers either in layer 0 or layer
1 and at least one attacker in layer 0, and so forth.

For example, layer 0 of the network in Figure 1 contains the two non-trivial
SCCs SCC1 = {A,B} and SCC2 = {C,D} and the collection of trivial SCCs
SCC3 = {G} and SCC4 = {H}. Layer 1 contains the non-trivial SCC SCC5 =

25

{E,F}. The intuition here is that the computation of the statuses of the nodes in
a layer of higher order depends on the computation of the statuses of the nodes
in the layers of lower orders. In our example, one can see that the statuses of E
and F can only be computed given the statuses of B and C. The statuses of the
nodes in the trivial SCCs G and H can be computed in sequence within the same
layer. An excellent explanation of this technique can be found in [8].

A B E F C D G H

Figure 1. A complex argumentation framework.

In the computation of the grounded semantics, all that is needed in the cal-
culation of the result of a non-trivial SCC C is the propagation of the results
of the nodes in the previous layers on which C depends (if there are any). For
example, since there are no prior dependencies in the SCCs in layer 0, the first
SCCs involved in the computation of the semantics of the network of Figure 1 are
SCC1, SCC2, SCC3 and SCC4. The only undisputed nodes in any network are
the ones with no attackers. These get value in. The nodes in cycles at layer 0 all
get value und. These values are then propagated down the layer until all nodes
in the layer get a value.

With this in mind, the nodes in the non-trivial SCCs of layer 0 get the
(unique) solution: A = und, B = und, C = und, D = und. Since G has no at-
tackers, it gets value in. When this value is propagated to H, it gets value out,
yielding the solution G = in, H = out for the trivial SCCs in layer 0.

In [7], Gabbay and Rodrigues showed that we can do the same task numer-

ically, if i) We use the correspondence in Definition 2.2; ii) We give the initial
value 1/2 to all nodes; and iii) We calculate final values for the nodes using the
Discrete Gabbay-Rodrigues Iteration Schema (Definition 2.1).2

The schema guarantees a correspondence between the nodes in the grounded
extension and those with final value 1.

Note that since the non-trivial SCCs in a layer are independent from each
other, we can use Equation (Td) in each one of them independently3 to obtain all
the partial solution(s) to a layer. The computation of layers of higher order pose
no problems either. All that needs to be done is to propagate the final values of
the nodes of lower order in a given solution to the nodes that they attack.

The example below illustrates these ideas.

Example 2.1 Consider SCC1 = {A,B} and give its nodes initial value

1/2 at

iteration 0. The sequence of values in the discrete scheme immediately converges

since the values of all nodes in the SCC remain the same at iteration 1. Therefore
1/2 is the final values of A and B. The reasoning for the SCC2 = {C,D} is the

same with both nodes also getting final value

1/2.
Now consider the collection of trivial SCCs SCC3 and SCC4, whose nodes

are also given initial value

1/2 at iteration 0. The value of G at iteration 1 becomes

1, whereas the value of H remains

1/2. At iteration 2, the value of G remains

1 and the value of H becomes 0. These values then remain the same at every

2The sequence will converge in time linear to the number of nodes in the SCC being computed.
3In fact, we could do this in parallel, although this is not currently used in EqArgSolver.

26

successive iteration, giving final solution G = 1 and H = 0. This completes the

computation of this layer.

Proceeding to layer 1, it is easy to see that E and F also get final value

1/2
and therefore the unique solution for the whole network is:

A = und, B = und, C = und, D = und, G = in, H = out, E = und, F = und

This corresponds exactly to the grounded extension of the network.

Given a solution to a layer, the discrete schema correctly propagates the
solution’s values to the appropriate nodes in a layer of higher order. For instance,
in the calculation of the solution to layer 1, the relevant nodes in layer 0 are B
and C. Therefore, given partial solution A = out ⌘ 0, B = in ⌘ 1, C = out ⌘ 0
and D = in ⌘ 1, we start the schema with initial values B = 1, C = 0, and
E = F = 1/2. In iteration 1, we get that E = 0, F = 1/2. In iteration 2, we
get E = 0 and F = 1. The values then converge and we get the final solution
A = out ⌘ 0, B = in ⌘ 1, C = out ⌘ 0, D = in ⌘ 1, E = out ⌘ 0 and F = in ⌘ 1,
which yields an extension.

The above ideas constitute the basis of the GR Grounder module (see Fig. 2).
A second module is responsible for generating preferred solutions. This works
basically by applying the grounder to a SCC and then checking whether nodes
with undecided values remain. If this is the case, then we may attempt to break
cycles down by making some nodes in the cycle in and then propagating the
results to layers of higher order. This component of the solver follows a similar
algorithm to that of Sanjay and Caminada [9]. This will become clearer in the
comprehensive example given in Section 4.

3. System Overview

EqArgSolver is implemented in C++ using basic C++11 data structures. No
special libraries for solving equations are needed, since the arithmetic operations
in the discrete version of the Gabbay-Rodrigues Iteration Schema are trivial.

As we mentioned in the Introduction, EqArgSolver is currently limited to
the grounded and preferred semantics. The basic workflow for the computations
involving problems in these semantics is depicted in Fig. 2, with the exception
that in the grounded semantics, intermediate preferred solutions do not need to
be generated and so the preferred solutions generator is not used and the partial

preferred solutions data store only contains one solution. All solutions are kept in
memory.

The solver receives a number of parameters as arguments in the command
line following probo’s syntax [3]. A validator module checks that the problem
definition is sound, in which case the solver proceeds to computing the strongly
connected components (SCCs) of the network using a specially modified version of
Tarjan’s algorithm [11] and arranging them into layers that can be used in succes-
sive computation steps as described in [8]. Once the network is decomposed into
layers, for decision problems involving the acceptance of an argument, the solver
stops at the last layer containing the input argument. This allows for instance to
give a “No” answer when an argument is found not to be accepted in a partial

27

input problem

input

graph

Validator

Tarjan

Layering

Argument

Acceptability

checker

Partial

preferred

solutions

Preferred

solutions

generator

GR Grounder

Layers

Yes/No

Extensions

problem

specification

graph file

valid problem

and graph

SCCs/

layers

layer

SCCs

base solutions

undecided nodes

previous layer

solutions

argument

partial

solutions

base

solutions

partial solutionspartial

preferred

solution

result

no more layers

Figure 2. Basic workflow of the preferred semantics calculator.

solution generated in a skeptical decision problem (or “Yes” if the argument is
accepted in a partial solution in a credulous decision problem).

We now detail some of the particularities in the computation of the grounded
and preferred semantics.

Grounded Semantics. For the computation of the solutions to the problems in-
volving the grounded semantics, the decomposition of the network into layers is
not strictly necessary. The Grounder module based on Equation (Td) can be ap-
plied to the entire network at once and the nodes with equilibrium value 1 will
correspond to its grounded extension. However, since the decomposition of the
network into layers can be performed very e�ciently in our implementation, this
extra cost is o↵set by gains obtained through the computation by layers in all but
a few special cases. Our strategy for the grounded semantics is then to feed the
result of each layer into the next layer’s computation until either all layers are
computed (e.g., in an enumeration problem) or we reach the minimum necessary
depth for an answer (e.g., in an argument acceptance check).

Preferred Semantics. As we have seen, the solution of problems involving the pre-
ferred semantics involves the computation of partial network solutions for each
layer. Each of these solutions needs to be propagated and adequately combined.
The key point in EqArgSolver’s implementation is that after the grounder module
is invoked for a particular SCC (using all required values from previous layers),
some nodes in the SCC may still be left with value und. These nodes could poten-
tially be assigned the value 1 in a preferred extension. So our (naive) implementa-
tion at this stage simply assigns the value 1 to all such nodes and then corrects il-
legal values in a manner which is the numerical counterpart to the Caminada and
Modgil’s labelling-based algorithm [9]. The results of every candidate solution are
then propagated to the next layer using the grounder again and the whole process
repeats. Obviously, these results need to be kept in memory until the computa-
tion is finished (alternative implementations may save on memory requirements
but involve more computation). In GRIS, the values in the sequence were real

28

numbers taken from the unit interval [0, 1], which in the implementation were
represented as a double native data type. In a 64-bit machine, this required at
least 8 bytes per node plus the memory requirements of the data structure used to
associate values to nodes (the exact details of the representation are not relevant
here). An extra advantage of the use of the discrete version is that we only have
values in {0, 1

2 , 1}. In order to avoid multiplication involving the rational number
1
2 , all equations are multiplied by 2, shifting the values to the set {0, 1, 2}, where
0 ⌘ out, 1 ⌘ und and 2 ⌘ in. This is not only more computationally e�cient
(since it only involves integer values), but also can be represented with as few as
4 bits per node. In order to avoid the use of custom data types, EqArgSolver uses
the smallest available native integer data type, char, which requires 8 bits.

There is still ample scope for optimisation. For instance, in decision prob-
lems, a careful analysis of the argument involved may identify partial solutions
of particular interest without the need to generate all partial solutions (the blind
generation of partial solutions can quickly exhaust resources in highly complex
networks).

Solutions to the problems in the complete and stable semantics are not cur-
rently supported may also be computed with appropriate modifications. A quick
and easy way to do so for the complete semantics is to generate all intermediate
solutions by invoking the grounder module at key points (each invocation result-
ing in an intermediate complete extension). Similarly, a simple check at the end of
the preferred solutions generation can identify if an extension is stable. Similarly,
it can quickly abandon a partial solution when nodes are left with value und.
These considerations will be taken into account in the development of the full
version of EqArgSolver for the next international competition.

4. A Comprehensive Example

This section provides a comprehensive example illustrating the ideas discussed so
far. For this, the sample network shown in Figure 1 will be used again.

Initially, the graph is decomposed into SCCs and each SCC is assigned a
layer. In this example, the decomposition generates two layers as explained in
Section 2.1. These two layers are then processed as follows.

Phase 1: Apply the discrete version of the schema to the SCCs SCC1, SCC2 and
SCC3 and SCC4 in layer 0 giving initial value 1/2 to all nodes.

The tables below show how the values of the nodes evolve through the itera-
tions of the schema. The subscript i in Vi indicates the iteration number. A value
in bold has converged and will no longer change. The computation can stop when
all values in a SCC have converged.

Node V0 V1

A 1/2 1/2
B 1/2 1/2

Node V0 V1

C 1/2 1/2
D 1/2 1/2

Node V0 V1 V2 V3

G 1/2 1 1 1
H 1/2 1/2 0 0

If the problem at hand only involves the grounded semantics, all we have
to do next is to run the discrete schema again giving value 1/2 to all nodes in
layer 1 and keeping the values computed above for the nodes in layer 0. It is
easy to check that the values of E and F will remain 1/2. Since layer 1 is the
last layer, this is the only solution and the grounded extension contains the only

29

node with value 1, i.e., G. The upshot of all this is that, strictly speaking, there
is no need to decompose the graph into layers in grounded semantics problems.
The grounded extension can be computed for the whole graph by calculating the
final values of all nodes in one fell swoop. In earlier experiments, the di↵erence
in execution time for the computation of the grounded extension with or without
decomposition into layers was negligible. However, decomposition o↵ers a definite
advantage in decision problems involving large graphs and arguments appearing
in shallow layers. Of course one can only identify the layer of an argument by
performing the decomposition itself and since the decomposition algorithm is very
e�cient, this is the strategy used in EqArgSolver.

We now proceed to explain the steps taken for the preferred semantics.
Phase 2: Generate partial preferred solutions to layer 0.

Some SCCs may still be left with undecided nodes after applying the discrete
schema to a layer. In this example, both SCC1 and SCC2 are left with undecided
nodes. For each such SCC, a version of Caminada and Modgil’s algorithm for find-
ing preferred extensions is then applied (see [9]). This will generate 2 complimen-
tary solutions for each SCC with exactly one node labelled in in each. Combining
these solutions “horizontally” gives us the 4 partial preferred solutions below to
layer 0 of the argumentation framework (the superscript indicates the layer):
S0

1 : A=1, B=0, C=1, D=0, G=1, H=0; S0
2 : A=1, B=0, C=0, D=1, G=1, H=0

S0
3 : A=0, B=1, C=1, D=0, G=1, H=0; S0

4 : A=0, B=1, C=0, D=1, G=1, H=0

Note that for decision problems involving the acceptance of an argument
belonging to layer 0 the correct answer can already be given without the need to
proceed to layer 1.
Phase 3: Propagate the partial solutions found for layer 0 into layer 1. We say
that we “ground” layer 1 with a base solution found for layer 0. The equations
for the nodes in layer 1 are: Vi+1(E) = 1 � max{Vi(B), Vi(F)}; and Vi+1(F) =
1�max{Vi(C), Vi(E)}.

As before, the values of all nodes in the layer itself are initialised to 1/2, giving
V0(E) = V0(F) = 1/2. Since the equations involve nodes belonging to layer 0, they
are computed using as initial values the final values of these nodes found in each
partial solution to layer 0. These partial solutions are called the base solutions of
the solutions to this layer. This yields S1

1–S
1
4 below:

S1
1 V0 V1 V2 V3

B 0 0 0 0
C 1 1 1 1
E 1/2 1/2 1 1
F 1/2 0 0 0

S1
2 V0 V1 V2

B 0 0 0
C 0 0 0
E 1/2 1/2 1/2
F 1/2 1/2 1/2

S1
3 V0 V1 V2

B 1 1 1
C 1 1 1
E 1/2 0 0
F 1/2 0 0

S1
4 V0 V1 V2 V3

B 1 1 1 1
C 0 0 0 0
E 1/2 0 0 0
F 1/2 1/2 1 1

Phase 4: As before, for each solution to a SCC in layer 1 where undecided nodes
remain, search for possible partial preferred solutions. Any solution found in this
way needs to be “vertically” combined with the base solution that originated it.

In our example, only S1
2 leaves some nodes with undecided values in SCC

SCC5 = {E,F}. There are 2 partial preferred solutions to this SCC with values
E = 1 and F = 0, and E = 0 and F = 1, respectively. Combining them vertically
with the solution S0

2 yields the two preferred solutions S1
2.1 and S1

2.2. The set of
all preferred solutions with their corresponding preferred extensions is then given
below.

30

S1
1 : A = 1 B = 0 C = 1 D = 0 E = 1 F = 0 G = 1 H = 0) {A,C,E,G}

S1
2.1: A = 1 B = 0 C = 0 D = 1 E = 1 F = 0 G = 1 H = 0) {A,D,E,G}

S1
2.2: A = 1 B = 0 C = 0 D = 1 E = 0 F = 1 G = 1 H = 0) {A,D, F,G}

S1
3 : A = 0 B = 1 C = 1 D = 0 E = 0 F = 0 G = 1 H = 0) {B,C,G}

S1
4 : A = 0 B = 1 C = 0 D = 1 E = 0 F = 1 G = 1 H = 0) {B,D,F,G}

In the next section, we discuss the results of some experiments we have done
in order to compare the performance gain obtained via the use of the discrete
schema over its full-fledged version.

5. Empirical Evaluation

The performance of EgArgSolver was compared with that of GRIS’ using probo’s
benchmark suite [3]. A number of graphs were randomly generated using probo’s
Grounded, SCC, and Stable generators. The Grounded generator generates graphs
that are likely to have a large grounded extension; the SCC generator generates
graphs that contain many SCCs; and the Stable generator generates graphs that
are likely to contain many stable, preferred and complete extensions. In our ex-
periments, graphs generated by the SCC and Stable generators were much harder
to produce (via probo) and solve (via EqArgSolver/GRIS). This is because of the
intrinsic nature of these graphs with respect to the number and type of SCCs
they contain. For this reason, the benchmarks were limited to a small set of 10
randomly generated graphs using the SCC and Stable generators. However, we
randomly generated 50 graphs of larger size using the Grounded generator – see
Table 1 for details. At generation time, the generators also eliminate graphs that
are deemed ‘too simple’ (using probo’s terminology), according to minimum re-
quirements the graphs must satisfy. In decision problems, we checked 10 randomly
selected arguments against each of the graphs in each category (i.e., 10 arguments
were checked against each of the 50 graphs generated by the Grounded genera-
tor, and 10 arguments were checked against each of the 10 graphs generated by
each of the SCC and Stable generators). The average execution times of GRIS
and EqArgSolver in the tests performed are given in Figures 3 and 4. Following
probo’s terminology, each problem in the tables is identified by a prefix, where
GR stands for the grounded semantics and PR stands for the preferred seman-
tics; and a su�x, where EE stands for “enumerate all extensions”; SE stands for
“give one extension”; DC stands for “decide if an argument is accepted in any
extension”; and DS for “decide if an argument is accepted in all extensions”.

Class graphs avg. nodes avg. edges decision problems

Grounded 50 945 9020 10 ⇥ 50

SCC 10 317 4800 10 ⇥ 10

Stable 10 277 2494 10 ⇥ 10

Table 1. Details of the graphs used in the benchmarking of EqArgSolver.

All test results show a large performance gain of EqArgSolver over GRIS.
The largest gains, as expected, are in the problems that depend more directly
on the grounding module. In Figure 3, we can see that EqArgSolver is up to
12⇥ faster than GRIS both in enumeration and decision problems in the graphs

31

 0

 200

 400

 600

 800

 1000

 1200

 1400

SE
-G

R

EE
-G

R

SE
-P

R

EE
-P

R

Av
g

Ti
m

e
(m

s)

Enumeration Problems

GRIS
EqArgSolver

 0

 200

 400

 600

 800

 1000

 1200

 1400

DC
-G

R

DS
-G

R

DC
-P

R

DS
-P

R

Av
g

Ti
m

e
(m

s)

Grounded Decision Problems

GRIS
EqArgSolver

Figure 3. Average execution times for enumeration (L) and decision problems (R) in graphs
using probo’s Grounded generator.

 0

 50

 100

 150

 200

 250

SC
C

SE
-G

R

SC
C

EE
-G

R

ST
 S

E-
GR

ST
 E

E-
GR

Av
g

Ti
m

e
(m

s)

SCC and Stable Enumeration Problems

GRIS
EqArgSolver

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

SC
C

DS
-P

R

SC
C

DC
-P

R

ST
 D

C-
PR

ST
 D

S-
PR

Av
g

Ti
m

e
(m

s)

SCC and Stable Decision Problems

GRIS
EqArgSolver

Figure 4. Average execution times using probo’s SCC and Stable (ST) generators. (L) shows
compartive times for the EE and SE enumeration problems in the grounded semantics and (R)
shows the comparative times for the DC and DS decision problems in the preferred semantics.

generated by probo’s Grounded generator. The execution time is slightly higher
in the decisions problems, although not very significantly so.

Figure 4 shows the statistics for the enumeration problems in the grounded
semantics (L) and for the decision problems in the preferred semantics (R) using
graphs generated by probo’s SCC and Stable generators. There are still perfor-
mance gains in all problems especially in the enumeration ones, but there is now
less variation between GRIS and EqArgSolver in the decision problems. This is
likely due to the fact that the types of graphs in this class of tests benefit less
from gains in performance of the grounding module.

These preliminary results, admittedly over a small sample, are very encourag-
ing and serve to clearly demonstrate the advantages of using the discrete version
of the schema over its full-fledged version.

6. Conclusions and Discussion

With GRIS, we showed that we could successfully use numerical methods in the
solution of computational problems of traditional argumentation semantics. GRIS
used the full version of the Gabbay-Rodrigues Iteration Schema, put forward
in [6], for “grounding” tasks (e.g., computation of grounded extensions and the
propagation of values of a solution through a network). The main disadvantage
of the schema for this purpose was the need for approximation of the values in
the limit of a sequence.

In [7], Gabbay and Rodrigues proposed a simplified version of the schema,
called the Discrete Gabbay-Rodrigues Iteration Schema. Giving initial value 1/2

32

to all nodes in a network, the simplified version will converge to exactly the same
values as its full-fledged counterpart without the need for approximation. The
iterations in the simplified schema also involve much simpler computations.

We used the discrete version of the schema in the implementation of EqArg-
Solver and made a number of data representation improvements. For instance,
given that the discrete version of the schema only uses the values {0, 1/2, 1}, we
multiplied all equations by 2 in the implementation, shifting the values to the set
{0, 1, 2}. This allowed us to use the smallest available native data type in C++,
i.e., char, which is only 8 bits long (as opposed to GRIS’ double which is 8 bytes

long). This allowed for an immediate 8-fold reduction in the memory require-
ments. In general, these improvements resulted in a vast gain in performance as
described in Section 5.

There is, of course, much more work to be done. We need to incorporate in-
termediate checks in the generation of preferred extensions to deal with problems
in the complete and stable semantics.

We have been running benchmarks over a much larger sample of graphs and
have identified areas where performance can be improved. In particular, the search
for a solution to some decision problems can be made more e�cient, by carefully
employing strategies specifically tailored to the problem at hand.

Finally, the computation of solutions to the problems in the preferred seman-
tics can be further improved by designing a more e�cient algorithm for maximi-
sation of accepted nodes. This is currently work in progress.

References

[1] P. Baroni, M. Giacomin, and G. Guida. SCC-recursiveness: a general schema for argu-
mentation semantics. Artificial Intelligence, 168(1):162 – 210, 2005.

[2] M. Caminada and G. Pigozzi. On judgment aggregation in abstract argumentation. Au-
tonomous Agents and Multi-Agent Systems, 22(1):64–102, 2011.

[3] F. Cerutti, N. Oren, H. Strass, M. Thimm, and M. Vallati. The first interna-
tional competition on computational models of argumentation (ICCMA15). http://

argumentationcompetition.org/2015/index.html, 2015.
[4] F. Cerutti, N. Oren, H. Strass, M. Thimm, and M. Vallati. Summary report of the

first international competition on computational models of argumentation. AI Magazine,
37(1):102, 2016.

[5] D. M. Gabbay. Equational approach to argumentation networks. Argument and Compu-
tation, 3:87–142, 2012. DOI: 10.1080/19462166.2012.704398.

[6] D. M. Gabbay and O. Rodrigues. Equilibrium states in numerical argumentation networks.
Logica Universalis, pages 1–63, 2015.

[7] D. M. Gabbay and O. Rodrigues. Further applications of the Gabbay-Rodrigues iteration
schema in argumentation and revision theories. In C. Beierle, G. Brewka, and M. Thimm,
editors, Computational Models of Rationality, volume 29, pages 392–407. College Publi-
cations, 2016.

[8] B. Liao. E�cient Computation of Argumentation Semantics. Elsevier, 2014.
[9] S. Modgil and M. Caminada. Proof theories and algorithms for abstract argumentation

frameworks. In Guillermo Simari and Iyad Rahwan, editors, Argumentation in Artificial
Intelligence, pages 105–129. Springer US, 2009.

[10] O. Rodrigues. GRIS system description. In M. Thimm and S. Villata, editors, System De-
scriptions of the 1st International Competition on Computational Models of Argumenta-
tion, pages 37–40. Cornell University Library, 2015. http://arxiv.org/abs/1510.05373.

[11] R. E. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Comput-
ing, 1:146–160, 1972.

33

