
GrowingLeaf: Supporting Requirements Evolution over
Time

Alicia M. Grubb, Gary Song, Marsha Chechik

University of Toronto, Toronto, Canada
{amgrubb, gary, chechik}@cs.toronto.edu

Abstract. Goal modeling and analysis techniques help stakeholders consider
possible tradeoff alternatives in their requirements and answer “what if” ques-
tions about those alternatives. Software projects today exist in an ephemeral state,
and current goal modeling approaches do not answer questions about model evo-
lution and changes in actors’ intentionality. We have developed a technique [8]
that allows stakeholders to explicate the dynamic nature of their intentional ele-
ments, and ask questions about how this dynamicity affects project outcomes.
In this paper, we present GrowingLeaf , a new web-based goal modeling and anal-
ysis tool that implements this technique for iStar models. We discuss its support
for modeling, simulation, and static analysis and illustrate it for a small example
of making lunch.

1 Introduction
Goal modeling and analysis techniques [3, 6, 9] help stakeholders consider possible

tradeoff alternatives in their requirements and answer “what if” questions about those
alternatives. Software projects exist in an ephemeral state [7], and current goal model-
ing approaches do not answer questions about model evolution and changes in actors’
intentionality, such as when a resource becomes available at a specific point in time, or
a goal’s satisfaction is cyclic in nature.

Running Example: Jake is interested in having a quick and inexpensive lunch.
Generally, his lunch options consist of either making a sandwich or buying fancy pizza.
If he makes a sandwich, he has to prepare one with bread and meat. Currently, Jake
has bread that will expire soon, but does not have any beef or chicken, his favourite
sandwich meats. With this information, Jake wants to answer the questions (1) “given
that he currently has bread and can buy other items, what possible scenarios exist?”,
and (2) “what possible scenarios exist that eventually result in him having lunch?”.

We have developed a technique [8] that allows stakeholders to explicate the dynamic
nature of their intentional elements, and ask questions about how this dynamicity affects
project outcomes1. We use static analysis and simulation to answer questions such as
those proposed by Jake. In this paper, we present GrowingLeaf 2, a new web-based goal
modeling and analysis tool that implements this technique for i* (iStar) models.

In the remainder of this paper we give an overview of the tool and its features
(in Sect. 2), present the architecture (in Sect. 3), and discuss the tool’s usability and
development decisions/challenges (in Sect. 4).

1 See [8] for a discussion of how this technique compares with other iStar reasoning techniques.
2
http://www.cs.toronto.edu/˜amgrubb/growing-leaf

Copyright © 2016 for this paper by its authors. Copying permitted for private and academic purposes. 

http://www.cs.toronto.edu/~amgrubb/growing-leaf


Fig. 1: Screenshot of GrowingLeaf with an iStar model of Jake’s lunch plans.

2 Tool Overview and Features
Using our running example, we describe how GrowingLeaf is used to both draw

iStar goal models and probe questions about model evolution and future evaluations of
a specified goal. See [11] for an overview of iStar.

Modeling: We extend the static notion of an iStar model by allowing the qualitative
satisfaction evaluation label (i.e., �, �•, �•, and � in decreasing satisfaction order) of
each intentional element (i.e., goals, tasks, resources, and qualities/soft-goals) to change
over time. We capture this information by assigning each intentional element (inten-
tion) a dynamic function type. Basic dynamic functions include increasing, decreasing,
constant, and stochastic. Compound functions consist of one or more basic functions
that occur sequentially over multiple time periods (called Epochs). For example, the
Denied-Satisfied (DS) function consists of two Epochs, a period of constant � followed
by a period of constant �, separated by an Epoch Boundary (EB). Monotonic Negative
(MN), another compound function, is a period of decreasing satisfaction followed by
a period of constant �, again separated by an EB. We create a unique symbolic con-
stant for each combination of intention and EB. Users can also model more complex
dynamics using the User-Defined function type. This allows the user to define arbitrary
patterns of satisfaction, as well as model cyclic behaviour by creating functions with a
repeating segment. See [8] for a complete list of dynamic functions.

GrowingLeaf allows users to build iStar strategic rationale models with actors, their
intentions, dependencies, and intention links. The modeling view of GrowingLeaf is
shown in Fig. 1 with Jake’s lunch model in the centre canvas. The left panel contains
the stencil of model elements, while the right shows attributes for the clicked element.
Jake’s top goal Have Lunch is decomposed into requisite tasks. He selects � as the
initial evaluation label for Buy Bread. All other leaf nodes in the model are set to �
(as shown). Using our dynamic function labels (appearing on the bottom left corner

32

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674



Fig. 2: Screenshot of GrowingLeaf Analysis view.

of each intention),he models Buy Bread as a MN function, while Buy Chicken, Buy
Beef, and Prepare Sandwich are all modelled using the DS function. Since Buy Bread
is currently clicked on the model, its attributes are shown in the right panel including a
chart demonstrating the behaviour of the MN function.

Generally, users begin modeling by dragging actors and intentions (from the stencil
on the left) onto the model canvas. When an intention is clicked, the right panel is popu-
lated and users can change the element’s name, qualitative satisfaction evaluation label,
and dynamic function type (with a chart demonstrating the behaviour to make dynamic
functions more intuitive). These updates are then shown on the canvas. Dependency and
intention links are created by dragging the > icon from the source intention to the target
intention. After selecting a link, its type can be changed in the right panel.

Analysis: With these dynamic functions, we generate simulation paths for goal
models. A path is a series of models where between each step in the series intentions are
updated based on their dynamics and new intention values are propagated throughout
the model. We generate paths based on known initial satisfaction values, and desired
intermediate/final satisfaction values (by encoding the model and dynamics as a Con-
straint Solving Problem). We use constraints to dictate relationships between symbolic
constants (generated from intention EBs) for the purpose of improving analysis results.

GrowingLeaf’s analysis view allows users to generate and view simulation results.
To answer his first question about lunch, Jake selects Leaf Simulate in GrowingLeaf,
with the initial model in Fig. 1. Fig. 23 shows the analysis view of GrowingLeaf with
Jake’s simulation results in the centre canvas. The slider, which appears at the bottom
of the canvas, indicates that the model is showing time step 12 of the simulation. The
simulation is now listed in the History Log in the left panel. At time step 12, Jake can

3 Forward Analysis implements the analysis in [9], and Stochastic Simulation generates ran-
dom values ignoring dynamic function types; both are outside the scope of this work.

33

GrowingLeaf: Supporting Requirements Evolution over Time



see that Prepare Sandwich became 3 despite Buy Bread having already transitioned to
7. This simulation path does not make sense because the sandwich must be prepared
before Jake’s bread expires. Jake uses the constraint view to add the constraint that
the EB of Prepare Sandwich must happen before the EB of Buy Bread (as modeled
in Fig. 3). Jake generates a new simulation path with this added constraint, by returning
to the analysis view and again selecting Leaf Simulate. With this added constraint Buy
Bread becomes 3 and Prepare Sandwich remains 7, resulting in Jake’s original goal
to Have Lunch remaining 7. To answer his second question, Jake selects CSP Analysis,
and now the centre canvas shows him a path where Buy Pizza and Have Lunch become
3. He then repeats this analysis by clicking CSP History and obtains a path that shows
Buy Chicken and then Prepare Sandwich becoming 3, again resulting in Have Lunch
becoming 3. CSP History allows users to generate a new path taking into account the
previously generated path.

Generally, in the analysis view the user clicks an analysis type from the right panel.
The analysis type is then shown in the History Log and the resulting analysis is shown
on the centre canvas as a series of models with a slider at the bottom allowing the user
to step through each time point. In the right panel, the user can also change the maxi-
mum number of simulation steps. We encourage users to iteratively ask questions over
their models and permit stacking analysis results in the History Log. When an additional
simulation is performed from the selected point on the slider, all satisfaction values up
to the current time point are saved, and new satisfaction values are appended. Users
can choose to merge previous analysis results forming a new sequence, by selecting
the Merge Analysis button in the right panel. At any point, the user can return to the
modeling view from either the initial or currently viewed state of the model. The con-
straint view (not shown) looks similar to the modeling view, but with dependency and
intention links removed to enable users to add constraints visually with directed edges.

3 Tool Architecture
GrowingLeaf uses a simple client-server architecture. The front-end (client-side) is

built using Javascript and HTML; the back-end (server-side) is implemented in Java. For
analysis, we connect the front-end with the back-end through a Python CGI script, and
an Apache HTTP Server. A high level overview of the architecture is shown in Fig. 4.

The front-end is built on top of Rappid, a modeling framework by client IO [4].
Rappid allows users to generate graphs using a drag and drop interface. Backbone is
used to render customized side panels. In these side panels, GrowingLeaf allows users
to specify constraints, relationships, and dynamics, as well as the type of analysis to
be performed. Attributes specified in these side panels are stored in their corresponding
objects in the model graph. The front-end handles all aspects of model creation and
manipulation in order to eliminate the need for model storage on the server and reduce
server calls. Our front-end extension is ∼13900 lines.

The back-end analysis, consisting of ∼5000 lines of Java code, uses a modified ver-
sion of jUCMNav’s systems architecture [3], and includes Java modules for producing
both random simulation paths and creating constraint-based paths by interfacing with
the JaCoP constraint solver [10]. When an analysis call is made by the client, all model
objects are checked for appropriate syntax and then formatted into a text string. A server
call is made, passing this string with the pre-specified type of analysis, and storing it a

34

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674



text file on our server. After the computation, the tool generates a results file with each
model intention corresponding to a row of satisfaction values, one for each time point.
The results file is returned to the client side for rendering – see Fig. 2.

Fig. 3: Segment of lunch model
showing the constraint between
Prepare Sandwich and Buy Bread. Fig. 4: Architecture of GrowingLeaf.

4 Discussion

Tool Usability: The tool is in its second version and has been used to model sev-
eral non-trivial examples including the ones presented in [8], with further case studies
underway. We have yet to conduct a usability study of the tool, but we have completed
two rounds of user testing with SE graduate students, with and without exposure to
goal modeling. None of the students had a formal exposure to our techniques. In the
first round, we found that students had difficulty resizing intentional elements and had
issues with their intuitive expectations of the ‘enter’ and ‘backspace’/‘delete’ keyboard
keys. They also had trouble understanding icons that appear when they clicked on a
canvas element. We have since addressed many of these issues by disabling/simplifying
elements. We did not have these same issues in the second round (with the exception of
the ‘delete’ key problem); instead we found that students were not sure which analysis
technique to use for the different questions they wanted to ask. We hope to mitigate this
by adding descriptions of each analysis technique. Overall, everyone liked that the tool
was web-based and found model creation and editing easy. This data is consistent with
studies associated with the Creative Leaf tool4 (which was built on top of the beta ver-
sion of our tool5).We have completed the ethics approval process at our institution for
an in-depth study of our tool and technique with graduate students who have training in
iStar, and expect to complete the usability study shortly.

Design Decisions: Given the full array of iStar tools on the iStar wiki [1], we were
hoping to add our analysis to an existing tool. We surveyed the available tools and re-
viewed a systematic comparison done in the literature [2]. None of the tools in active
development/support appeared to have an easy way to extend their iStar meta-model
and the ability to add icons/labels on top of intentions. Since we chose to make our own
tool, we decided to create a web-based tool. We first built a beta version of our tool5 to
draw and evaluate goal models. We also introduced the concept of dynamic functions to
represent temporal changes in the satisfaction value of intentions. Our original design

4
http://creativeleaf.city.ac.uk

5
http://www.cs.toronto.edu/˜amgrubb/leaf

35

GrowingLeaf: Supporting Requirements Evolution over Time

http://creativeleaf.city.ac.uk
http://www.cs.toronto.edu/~amgrubb/leaf


used a separate window for analysis results, but we observed that it was too taxing for
users to switch between windows. When we added the constraints feature and inves-
tigated questions that took into account previous paths, we experimented with several
layouts, ultimately settling on the one shown in Fig. 2.

Design Challenges: In developing our tool we encountered two major challenges.
Since we chose to build a web-based tool, the first challenge was dealing with the many
browsers and their versions. Thus, we limited our development to ensure that our tool
works in Google Chrome first. Although we have experimented with our tool on mobile
platforms, we do not intend to support them at this time.

When we wanted to add constraints between EBs, we were not able to show them
on the canvas because the data model only contained a single type of link which we
were using for dependency, decomposition, and contribution links. We had to revamp
the architecture to add a second type of link. Given our substantial development effort
prior to this discovery, we had to significantly refactor our codebase.

Future Work: Further work is necessary to evaluate the usability of our interface
and the effectiveness of our tool with user studies. We want to make the tool compliant
with the new iStar 2.0 Language Guide [5]. If our analysis achieves wider adoption,
we will need to revamp the tool’s architecture to make the communication between the
front-end and back-end more efficient and allow for simultaneous server calls. Finally,
we want to allow multiple users to simultaneously edit the same model from different
browser sessions.

Acknowledgements: We would like to thank Jake Fear and the Software Engineer-
ing Group at the University of Toronto for their contributions to this work.

References
1. i* Wiki: i* Tools. http://istar.rwth-aachen.de/tiki-index.php?page=

i%2A+Tools, 2015. Accessed: 2015-02-20.
2. C. Almeida, M. Goulão, and J. Araújo. A systematic comparison of i* modelling tools based

on syntactic and well-formedness rules. In Proc. of iStar’13, pages 43 – 48, 2013.
3. D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and E. Yu. Evaluating Goal

Models Within the Goal-Oriented Requirement Language. Int. J. of Intell. Syst., 25(8):841–
877, 2010.

4. Client IO. JointJS/Rappid - HTML 5 diagramming toolkit. http://jointjs.com/
rappid/tour, 2016. Accessed: 2016-02-21.

5. F. Dalpiaz, X. Franch, and J. Horkoff. iStar 2.0 Language Guide. arXiv:1605.07767, 2016.
6. P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented Requirements Analysis and

Reasoning in the Tropos Methodology. Eng. Appl. Artif. Intell., 18(2):159–171, 2005.
7. M. W. Godfrey and D. M. German. The past, present, and future of software evolution. In

Frontiers of Software Maintenance, 2008. FoSM 2008., pages 129–138, Sept 2008.
8. A. M. Grubb and M. Chechik. Looking into the Crystal Ball: Requirements Evolution over

Time. In Proc. of RE’16, 2016.
9. J. Horkoff and E. Yu. Interactive Goal Model Analysis For Early Requirements Engineering.

Requirements Engineering, 21(1):29–61, 2016.
10. K. Kuchcinski and R. Szymanek. JaCoP - Java Constraint Programming solver. http:

//jacop.osolpro.com, 2016. Accessed: 2016-02-21.
11. E. Yu. Towards Modeling and Reasoning Support for Early-Phase Requirements Engineer-

ing. In Proc. of RE’97, pages 226–235, 1997.

36

Proceedings of the Ninth International i* Workshop (iStar 2016), CEUR Vol-1674

http://istar.rwth-aachen.de/tiki-index.php?page=i%2A+Tools
http://istar.rwth-aachen.de/tiki-index.php?page=i%2A+Tools
http://jointjs.com/rappid/tour
http://jointjs.com/rappid/tour
http://jacop.osolpro.com
http://jacop.osolpro.com

	GrowingLeaf: Supporting Requirements Evolution over Time



