
Towards Model-Driven
Software Language Modernization?

Patrick Neubauer

Business Informatics Group,
TU Wien, Austria

neubauer@big.tuwien.ac.at
http://www.big.tuwien.ac.at

Abstract. The introduction of Extensible Markup Language (XML)
represented a tremendous leap towards the design of Domain-Specific
Languages (DSLs). Although XML-based languages are well adopted
and flexible, their generic editors miss modern DSL editor functionality.
Additionally, artifacts defined with such languages lack comprehensi-
bility and, therefore, maintainability, because XML has primarily been
designed as a machine-processable format with immutable concrete syn-
tax. While there exist techniques to migrate XML-based languages to
modeling languages, they are composed of manual steps demanding com-
plex language engineering skills that are usually not part of a domain
engineer’s skill set. To tackle these shortcomings, we propose a bridge
between XML-based languages and text-based modeling languages. This
includes the automated and customizable generation of Xtext-based ed-
itors from XML schema definitions (XSDs) providing advanced editor
functionality, individualized textual concrete syntax style, and round-
trip transformations enabling the exchange of data between the two lan-
guages. For the evaluation of the approach, we plan to conduct case
studies as well as user studies based on industrial-strength markup lan-
guages that will be transformed to textual modeling languages including
editors that are intended to be at least as powerful as those manually
built for XML-based languages.

Keywords: Domain Specific Language, Model-Driven Engineering, Lan-
guage Engineering, Markup Language, Language Modernization

1 Problem

With the introduction of machine-processable XML [11] in 1998, the World Wide
Web Consortium (W3C) accomplished a tremendous leap towards easing the de-
sign of software languages, leveraging the idea of having a generic editor, parser,
and validation methodology. Although for prominent XML-based languages —
which are themselves DSLs —, such as Business Process Model and Notation
(BPMN), advanced editors have been handcrafted, for others dedicated editor

? This research work is supervised by Manuel Wimmer and categorized as end of initial
stage and beginning of maturity stage. More details are depicted in Section 7.

support is missing. XML has been primarily designed as machine-processible
with immutable concrete syntax. More specifically, users of XML-based lan-
guages are bound to tree-based syntax that is described as verbose and complex
in terms of human comprehension [3]. One of the main consequences of such
syntax is the limited capability to improve upon human-comprehension and
therefore maintainability. Conquering this limitation requires breaking out of in-
flexible XML syntax by providing an approach to construct a fully-customizable
concrete syntax, which is also referred to as visual syntax or visual notation [23].

Bridging Modelware and Grammarware [26] for markup languages and mod-
eling languages will enable the reuse and ease the maintenance of a significant
amount of data encoded in the XML legacy format. Moreover, bridging Gram-
marware and Modelware for markup languages and modeling languages will
lower the entrance barrier for developers to capture models containing domain-
specific information and their management in an automated manner through the
use of Model-Driven Engineering (MDE) tools [16].

State-of-the-art Model-Driven Language Engineering (MDLE) [17] frame-
works, such as Xtext [8], allow the development of Domain-Specific Modeling
Languages (DSMLs) [32] and the customization of their textual syntax. However,
manually re-creating existing XML-based languages is a complex, error-prone,
and time consuming task requiring complex language-engineering skills [10, 20,
22]. Additionally, DSMLs that ought to replace markup languages leave open
backward-compatibility with usually comprehensive XML applications.

Evolving from machine-oriented languages to human-oriented languages en-
ables lowering barriers imposed by machine-oriented languages on characteristics
such as human perception, cognition, and usability. Likewise, human-oriented
languages tend to be less appropriate for executability and interoperability. This
suggests the need for automated transformations of languages between differ-
ent technical spaces [19] as well as the automated transformation of language
instances, i.e., XML instances and DSML models. In other words, the bridge
between Grammarware and Modelware for markup languages and modeling lan-
guages still needs to be established. Individual challenges tackled in the proposed
dissertation include but are not limited to the following:

Modernization Barriers between Markup Languages and DSMLs.
To pursue the modernization of markup languages, i.e., the evolution of markup
languages to languages supporting state-of-the-art technologies, such as, ad-
vanced editing capabilities, we need to identify barriers of existing MDLE frame-
works as well as develop solutions to automate the modernization procedure. In
more detail, we need to find a technique that bridges XSDs with DSMLs in terms
of a combined approach that allows to produce instances on both sides. Further,
the technique is intended to be applicable to any XSD-based language.

Generic Modernization of Markup Languages. Furthermore, we need
to formalize solutions for these barriers in a generic framework that is able to
modernize software languages and, in particular, XSD-based languages intended
to address individual limitations imposed by machine orientation and human
orientation. Whereas this includes appropriate language transformations, it also

requires the transformation of instances defined in such languages. Moreover,
state-of-the-art MDE frameworks and tools have to be extended to support in-
dividual solutions as well as extended editor features, such as syntax coloring,
content assistance, validation, and quick fixes, intending to increase comprehen-
sibility and therefore maintainability.

Language Comprehensibility Analysis. To establish a common ground
to evaluate a software language’s orientation towards machines and humans,
high-level metrics that describe the objectives of both machine-oriented soft-
ware languages and languages that are human-oriented have to be identified and
formalized such as executability and time to understand, create, and manipulate
language instances. Furthermore, such metrics have to be measurable in terms
of case studies, user studies, and/or other experiments. Therefore, to conduct
studies focusing on language comprehensibility and therefore maintainability
of individual instances we need to identify and construct or reuse appropriate
methods to analyze language comprehensibility metrics.

2 Related Work

With respect to our approach of modernizing markup languages, in particular
XSD-based languages, with modeling languages, such as Xtext-based languages,
there exists a set of related approaches which cover certain aspects regarding the
transition between involved technical spaces: (i) bridges between XMLware and
Modelware and (ii) bridges between Modelware and Grammarware. To the best
of our knowledge, there exists only one approach [9] to bridge XMLware and
Grammarware directly which focuses on XSD and Xtext. But of course, there
are other efforts in different contexts for bridging XML schemas and BNF-like
languages, e.g., in the context of grammar hunting [35].

XMLware and Modelware. There exist several approaches to either ap-
ply transformations from Modelware to XMLware [30, 6, 21, 29, 28] or transfor-
mations from XMLware to Modelware [5, 7, 31]. In most of these approaches,
Modelware is represented by Unified Modeling Language (UML) [27] models
(centered around UML class diagrams) and XMLware either by XSDs or Docu-
ment Type Definitions (DTDs). We propose an approach that differs from these
approaches in several ways. For example, while Wimmer et al. [30] employ DTDs
to generate Meta Object Facility (MOF)-based metamodels, we use XSDs to gen-
erate Ecore-based metamodels. Furthermore, our approach does not stop after
having created the abstract syntax of the language defined, for instance, with a
metamodel but also produces a textual concrete syntax using Xtext.

Modelware and Grammarware. There are two different kinds of ap-
proaches that aim to bridge Grammarware and Modelware by switching between
grammars and metamodels. On one hand, grammar-based approaches [34, 18, 1]
generate metamodels out of existing grammar definitions. On the other hand,
metamodel-based approaches generate grammars out of existing metamodels [13,
35, 24] or link metamodels with grammars [15]. Especially, EMFText [12] seems
to be an interesting alternative to Xtext used in our approach, as there is also the
possibility to automatically derive several configurable concrete textual syntaxes

for one metamodel. However, the syntax configuration in EMFText is limited
to predefined options and cannot be extended. Furthermore, Cánovas et al. [14]
present the Gra2Mol transformation language in which concrete syntax meta-
model instances are transformed to abstract syntax metamodel instances.

XMLware and Grammarware. Eysenholdt et al. [9] present a report on
the migration of a large modeling environment from XML/UML to Xtext/GMF.
In their legacy modeling environment, they identified that XML is inefficient due
to verbose syntax and lack of tool support, and that the loading of UML modules
and models is very inefficient. Therefore, they performed a modernization of
their modeling environment by starting from XML schemas from which Ecore
metamodels are created and then manually modified before creating concrete
syntaxes through hand-crafted customization. In contrast, the goal of our work is
to perform necessary metamodel adaptions in an automated fashion. Therefore,
we enable the automated modernization of any XSD-based language as well as
avoiding repeated manual adaptations caused by changed XSD specifications.

Language Comprehensibility. Aranda et al. [2] present a framework to
evaluate the comprehensibility of (graphical) model representations based on
theoretical frameworks in cognitive science. They list several challenges imposed
by empirical evaluation of comprehensibility. For example, information equiva-
lence of two different representations cannot be guaranteed even if the under-
lying conceptual content of different human readers is equal. Qualitative data
and a human’s inherent ability to operationalize such information is described as
notoriously difficult. However, it is possible to construct comprehensibility vari-
ables to capture affected comprehensibility—like time required to understand
the representation—and affecting comprehensibility—such as previous expertise
with the domain being modeled. Eventually, by employing such measures, we
hypothesize that human-comprehensibility of concrete syntax can be measured.

3 Proposed Solution

The increasing success of models in software development and model transforma-
tions in MDE during software development activities, such as automated forward
engineering, highlight reasons to benefit from the same infrastructure to auto-
mate other tasks. Hence, we propose a model-driven solution that automates
bridging XMLware, Modelware, and Grammarware. Our goal is to provide a
framework that automatically modernizes XSD-based languages to metamodel-
based languages that are supported by rich language workbenches, flexible syn-
tax, and model-based techniques such as code generation, transformation, and
validation. We achieve this by (i) chaining together tools and transformations
(into what is from now on referred to as Default Transformation Chain), (ii) in-
troducing new transformations that overcome existing gaps between XMLware,
Modelware, and Grammarware such as mixed content and wildcards, data types
and restrictions, and identifiers and identifier references, as well as (iii) introduc-
ing a Concrete Syntax Configuration Language enabling the flexible definition of
textual concrete syntaxes.

Modeling Language

Ecore
Metamodel

Model API

Ecore Model1
(abstract syntax)

DSML Model1
(concrete syntax)

2

B

Markup Language

XML Schema

EMF XSD
Importer

1

XMLware

XML Instance1
A

Le
ge

nd
:

conforms
to

transformed
to

redefined
transformation

introduced
transformation

Modelware

Textual Modeling
LanguageXtext

Workbench

Xtext Grammar

Grammarware

Xtext Grammar
Generator

3

Concrete Syntax
Configuration Language

Configuration Model

Fig. 1. Overview of the XMLText framework

Figure 1 depicts a conceptual overview of our XML to Xtext (XMLText)
framework [25]. Like in the Default Transformation Chain, the first step is to
transform a given XML Schema to an Ecore Metamodel by employing the EMF
XSD Importer 1 . To overcome limitations of this transformation, we comple-
ment it with novel transformations that adapt the generated Ecore Metamodel
2 . For example, in order to tackle the issue of not supported feature maps

occurring for mixed content and wildcards, we adapt the Ecore Metamodel by
replacing feature maps with generic concrete constructs. Next, the adapted meta-
model is used as input for generating the Xtext Grammar with the Xtext Gram-
mar Generator provided by the Xtext framework 3 . Also this step has to be
extended with novel transformations that overcome limitations of the existing
grammar generator, e.g., to enable storing actual values for attributes by import-
ing, and referencing a library of data types. Moreover, we enable the automated
customization of the target DSML’s textual concrete syntax by providing a Con-
figuration Model, i.e., a customizable template to specify the concrete syntax
striving to enhance human-comprehensibility and therefore maintainability. For
the adaptions of the Ecore Metamodel introduced by the XMLText framework,
it is necessary to customize existing transformations (cf. A in Figure 1) to act
upon them on instance level. Therefore, we customize (i) the deserializer that
reads XML Instances and creates in-memory Ecore Model representations con-
forming to the adapted Ecore Metamodel and (ii) the serializer that stores Ecore
Models as XML Instances. As a result of keeping the Xtext Grammar coupled

to the Ecore Metamodel, we are able to reuse the existing transformation B
between instances of the Xtext Grammar and the Ecore Metamodel.

With the introduction of transformation 2 and the adaption of the transfor-

mations 3 and A , our XMLText framework overcomes limitations of existing
bridges between XMLware and Grammarware and thus allows an improved auto-
mated modernization of XML-based languages to metamodel-based and textual
DSMLs. Listing 1.2 shows the result of applying the XMLText framework on an
exemplary XML-based language instance, i.e., specifying an Apache web server
cloud node, used in Listing 1.1.

1 <nodeTemplate id=" ApacheWebServer " type=" ApacheWebServerType " name="
↪→Apache Web Server ">

2 <p r op e r t i e s id=" ApacheWebServerProperties ">

3 <numCpus>1</numCpus>
4 <memory>1024</memory>
5 </ p r op e r t i e s>
6 </nodeTemplate>

Listing 1.1. Exemplary XML-based language instance

1 TNodeTemplate ApacheWebServer {
2 name : " Apache Web Server "
3 type : ApacheWebServerType
4 Properties ApacheWebServerProperties {
5 NumCpus : "1"
6 Memory : " 1024 "
7 }
8 }

Listing 1.2. Exemplary DSML model

4 Preliminary Work

Preliminary work in MDE and specifically in terms of interoperability between
languages ultimately led to this research topic. In earlier work [4] we realized
that many modeling languages targeting equal or similar purposes, e.g., modeling
of cloud applications, are built from scratch causing extensive mismatches and
difficulties in terms of interoperability among each other [33]. Hence, in [25] we
established an initial framework that exploits existing seams between the tech-
nical spaces XMLware, Modelware, and Grammarware as well as closes several
gaps between them. The resulting approach is able to generate Xtext-based edi-
tors from XSDs providing extended editor functionality, customization of textual
concrete syntax, and round-trip transformations enabling the exchange of data
between the involved technical spaces. The feasibility of the approach has been
evaluated by a case study on TOSCA—an XML-based standard for defining
Cloud deployments. The results show that the approach enables bridging XML-
ware with Modelware and Grammarware in several ways going beyond existing
approaches by integrating useful and independent parts as well as improvements
that allow the automated generation of editors that are at least equivalent to edi-
tors manually built for XML-based languages. However, while the results indicate
that most of the known gaps have been bridged, some, e.g., XML namespaces,
still need to be overcome. Further, XSD-based languages that employ a different
subset of XML Schema language constructs may uncover previously unknown
gaps that require further investigation.

5 Expected Contributions

The general idea to tackle the problem introduced in Section 1 is to address the
challenges involved in modernizing software languages using MDE techniques.
Hence, the following contributions are proposed:

Individual Language Modernization Techniques. This contribution in-
tends to overcome individual barriers of existing MDLE frameworks when em-
ploying them in the formalization of techniques for the purpose of modernizing
markup languages with DSMLs. For example, a technique has to be developed
to transform XSD constructs that are currently not natively supported by Ecore,

such as data types, restrictions, and wildcards. Moreover, a language is developed
that enables the configuration of the generated language in terms of configura-
tion models. Furthermore, for tackling the challenge of transforming instances
between XML-based languages and modernized DSML languages, we will de-
velop model transformations that start from the meta language level and enable
transformations on the instance level. Next, fitting techniques and extensions
thereof are then used to implement the transformation of language instances
starting from the meta language level. Finally, the soundness of individual mod-
ernization techniques will be validated using appropriate experiments.

Generic Framework and Initial Case Study. This contribution is desig-
nated to overcome challenges dictated by the generic modernization for markup
languages through (i) the implementation of a generic framework facilitating
existing MDE frameworks and tools, (ii) merging language modernization tech-
niques, and (iii) extending a language’s comprehensibility by incorporating the
concrete syntax configuration language as well as providing advanced editor
features, such as syntax coloring, content assisting, validation, and quick fixes,
and their implementation in a generic and automated way. Moreover, to show
that a markup language can be modernized into a machine-readable and human-
comprehensible language, an initial case study, based on an XSD-based language,
will be performed evaluating the feasibility of the developed generic framework.

Comprehensibility and Maintainability Analysis Framework. This
contribution seeks to overcome the challenges imposed by evaluating language
comprehensibility and therefore maintainability. First, a literature review on
comprehensibility analysis, such as empirical comprehensibility [2], will be per-
formed. This includes establishing a common ground to analyze a software lan-
guage’s orientation towards machines and humans and the formalization of high-
level metrics that describe the objectives of both machine orientation and human
orientation. Second, an evaluation mechanism for software languages in terms of
formalized metrics is provided by a set of analysis methods. Next, both metrics
and analysis methods thereof are implemented in an analysis framework that
can be executed in the form of case studies, user studies, or other experiments,
like machine analysis of software artifacts, or a combination of such.

6 Plan for Evaluation and Validation

The evaluation and validation of the proposed work are threefold. First, our so-
lution to the problem caused by the current state of the art and its inability to
transform instances between the technical spaces Grammarware and Modelware
for markup language and modeling languages has been and will be evaluated
by conducting case studies on the established bridge. In more detail, the ini-
tial case study evaluated the feasibility of our software language modernization
framework XMLText in modernizing a markup language with a DSML, i.e., a
modeling language, as well as validate the conformance of instances to their re-
spective language. Language semantics are evaluated by performing round-trip
transformations, i.e., comparing the source instance with the instance result-
ing from the round-trip transformation on the same source instance in terms
of equality, as well as supplying instances to existing interpreters and compar-

ing the resulting behavior. Moreover, the study also included a comparison of
the DSML produced by our framework as well as a hand-crafted DSML of the
same language in terms of their completeness to their source XSD-based lan-
guage. Furthermore, we plan to extend our initial case study by conducting a
case study on a set of markup languages ensuring that all language concepts
occurring in XSD-based markup languages are covered.

Second, we will evaluate the usability of our framework, in particular, the
usability for domain engineers that usually do not have language engineering
skills. In more detail, this study will involve professionals as well as students, a
categorization of their language engineering skills, an evaluation of their experi-
ence with modernizing markup languages with modeling languages by using our
framework, as well as the modernized language they produced.

Third, our solution to the problem of fixed concrete syntax of XML hindering
human-comprehensibility and hence maintainability will be evaluated by con-
ducting a user study. This study will involve engineers without advanced knowl-
edge in both XMLware and Modelware and evaluate several aspects that are con-
sidered important in human comprehensibility metrics. For example, time spent
to understand the representation and to create and manipulate instances by
employing generic XML editors and their modernized counterparts, i.e., DSML
model editors will be evaluated.

Relevant conferences for publishing the results include ECMFA, MODELS,
SLE, SPLC, ASE, and PLDI. Moreover, relevant journals include TOPLAS,
SoSyM, JSS, and IJPOP.

7 Current Status

Figure 2 shows the plan for conducting the presented research as well as its
current status.

Apr 2014 Jul 2014 Oct 2014 Jan 2015 Apr 2015 Jul 2015 Oct 2015 Jan 2016 Apr 2016 Jul 2016 Oct 2016 Jan 2017 Apr 2017 Jul 2017 Oct 2017 Jan 2018

Oct 2015

SLE’15
publication

Mar 2015

Ph.D. proposal
acceptance

Mar 2014 - Sep 2014

Towards integrating
modeling and programming languages

in the case of UML and Java;
UML-based cloud application modeling

Oct 2014 - Mar 2015

Ph.D. mentor selection
and proposal writing

Jan 2018

Ph.D. thesis
submission

 and defense

Jun 2017

Evaluation results
publication

Jun 2017 - Jan 2018

Writing of Ph.D. thesis
and further dissemination

Sep 2014

CloudMDE'14
publication

Mar 2014

Ph.D. program
Application
acceptance

Mar 2015 - Oct 2015

XMLText: From XML
 Schema to Xtext (initial

framework and case study)

Oct 2015 - Dec 2016

XMLText framework completion
and composition of analysis framework

Dec 2016 - Jun 2017

Evaluation of approach in industrial domain,
such as CPPS and their associated languages

Fig. 2. Project phases and events time-line

We started by working on UML-based cloud application modeling [4]. The
results have been published in September 2014. During the next phase a men-
tor has been selected as well as the proposal submitted and accepted. Next,
we started working on our software language modernization framework XML-
Text [25] which resulted in an initial framework and case study based on the
cloud topology and orchestration language TOSCA (cf. Section 4) published in

October 2015 at the International Conference on Software Language Engineer-
ing (SLE). Currently, we are working on completing the XMLText framework by
bridging not yet resolved gaps, develop the concrete syntax configuration lan-
guage, as well as establishing evaluation metrics and analysis methods required
in the following phase. In more detail, the following phase will involve an evalua-
tion of the overall approach in the industrial domain Cyber-Physical Production
Systems (CPPS) and its associated languages in terms of a case study as well
as a user study (cf. Section 6). The intention of selecting the domain of CPPS
is caused by the fact that our faculty runs a laboratory1 working in this domain
and therefore provides us access to an extensive range of industrial partners and
a real-world evaluation environment. The latter phase will be concluded with a
publication of evaluation results in mid-2017, followed by the composition of a
doctoral thesis as well as further dissemination of the established approach and
framework.

References

1. Alanen, M., Porres, I.: A Relation Between Context-Free Grammars and Meta
Object Facility Metamodels. Tech. rep., Turku Centre for Computer Science (2003)

2. Aranda, J., Ernst, N., Horkoff, J., Easterbrook, S.: A framework for empirical
evaluation of model comprehensibility. In: International Workshop on Modeling in
Software Engineering (MISE). pp. 7–7 (2007)

3. Badros, G.J.: JavaML: A Markup Language for Java Source Code. Computer Net-
works 33(1), 159–177 (2000)

4. Bergmayr, A., Troya, J., Neubauer, P., Wimmer, M., Kappel, G.: UML-based cloud
application modeling with libraries, profiles, and templates. In: Proceedings of the
2nd International Workshop on Model-Driven Engineering on and for the Cloud
(CloudMDE). pp. 56–65 (2014)

5. Bird, L., Goodchild, A., Halpin, T.: Object Role Modelling and XML-Schema. In:
Proc. of ER, pp. 309–322. Springer (2000)

6. Booch, G., Christerson, M., Fuchs, M., Koistinen, J.: UML for XML schema map-
ping specification. Rational White Paper (1999)

7. Conrad, R., Scheffner, D., Freytag, J.C.: XML Conceptual Modeling using UML.
In: Proc. of ER, pp. 558–571. Springer (2000)

8. Eysholdt, M., Behrens, H.: Xtext: Implement your Language Faster than the Quick
and Dirty Way. In: Companion Proc. of OOPSLA. pp. 307–309. ACM (2010)

9. Eysholdt, M., et al.: Migrating a Large Modeling Environment from XML/UML
to Xtext/GMF. In: Companion Proc. of OOPSLA. pp. 97–104. ACM (2010)

10. Fowler, M.: Domain-specific languages. Pearson Education (2010)
11. Harold, E.R., Means, W.S., Udemadu, K.: XML in a Nutshell, vol. 8. O’reilly

Sebastopol, CA (2004)
12. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Model-Based Lan-

guage Engineering with EMFText. In: GTTSE. pp. 322–345 (2011)
13. Heidenreich, F., Johannes, J., Karol, S., et al.: Derivation and Refinement of Tex-

tual Syntax for Models. In: Proc. of ECMDA-FA. pp. 114–129 (2009)
14. Izquierdo, J.L.C., Molina, J.G.: Extracting models from source code in software

modernization. Software and System Modeling 13(2), 713–734 (2014)

1 A list of currently ongoing Christian Doppler laboratories at the TU Wien can be
found online at http://goo.gl/HA95Rp

15. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual
concrete syntaxes in model engineering. In: Proc. of GPCE. pp. 249–254. ACM
(2006)

16. Kolovos, D.S., Rose, L.M., Williams, J.R., Matragkas, N.D., Paige, R.F.: A
Lightweight Approach for Managing XML Documents with MDE Languages. In:
Proceedings of Modelling Foundations and Applications - 8th European Conference
(ECMFA). pp. 118–132 (2012)

17. Kühne, T.: What is a model? In: Language Engineering for Model-Driven Software
Development (2004)

18. Kunert, A.: Semi-Automatic Generation of Metamodels and Models from Gram-
mars and Programs. Electronic Notes in Theoretical Computer Science 211, 111–
119 (2008)

19. Kurtev, I., Aksit, M., Bézivin, J.: Technical Spaces: An Initial Appraisal. In: Proc.
of CoopIS (2002)

20. Luoma, J., Kelly, S., Tolvanen, J.P.: Defining Domain-Specific Modeling Lan-
guages: Collected Experiences. In: Proc. DSM Workshop (2004)

21. Mani, M., Lee, D., Muntz, R.R.: Semantic Data Modeling using XML Schemas.
In: Conceptual Modeling (ER), pp. 149–163. Springer (2001)

22. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM computing surveys (CSUR) 37(4), 316–344 (2005)

23. Moody, D.L.: The physics of notations: toward a scientific basis for constructing vi-
sual notations in software engineering. IEEE Transactions on Software Engineering
35(6), 756–779 (2009)

24. Muller, P.A., Hassenforder, M.: HUTN as a bridge between modelware and
grammarware-an experience report. In: WISME Workshop (2005)

25. Neubauer, P., Bergmayr, A., Mayerhofer, T., Troya, J., Wimmer, M.: XMLText:
From XML Schema to Xtext. In: Proceedings of the International Conference on
Software Language Engineering. pp. 71–76. ACM, New York, NY, USA (2015)

26. Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Metamodelling for grammarware re-
searchers. In: Proc. of SLE. pp. 64–82 (2012)

27. Rumbaugh, J., Jacobson, I., Booch, G.: Unified Modeling Language Reference
Manual. Pearson Higher Education (2004)

28. Salim, F.D., Price, R., Krishnaswamy, S., Indrawan, M.: UML documentation sup-
port for XML schema. In: Australian Conference on Software Engineering. pp.
211–220. IEEE (2004)

29. dos Santos Mello, R., Heuser, C.A.: A Rule-Based Conversion of a DTD to a
Conceptual Schema. In: Proc. of ER, pp. 133–148. Springer (2001)

30. Schauerhuber, A., Wimmer, M., Kapsammer, E., Schwinger, W., Retschitzegger,
W.: Bridging WebML to model-driven engineering: from document type definitions
to meta object facility. IET Software 1(3), 81–97 (2007)

31. Skogan, D.: UML as a schema language for XML based data interchanging. In:
Proc. of UML (1999)

32. Tolvanen, J., Kelly, S.: Defining domain-specific modeling languages to automate
product derivation: Collected experiences. In: Proc. of SPLC. pp. 198–209 (2005)

33. Vallecillo, A., et al.: MDWEnet: A practical approach to achieving interoperability
of model-driven web engineering methods. In: Proceedings of the 3rd International
Workshop on Model-Driven Web Engineering (MDWE) (2007)

34. Wimmer, M., Kramler, G.: Bridging grammarware and modelware. In: Proc. of
Satellite Events at MoDELS. pp. 159–168. Springer (2006)

35. Zaytsev, V.: Grammar Zoo: A corpus of experimental grammarware. Sci. Comput.
Program. 98, 28–51 (2015)

