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Abstract

This paper discusses the first steps towards the defi-
nition of novel statistics and metrics that character-
ize networks in terms of the complexity they pose
to the traffic assignment problem. Here, we follow
an approach in which the assignment emerges from
routes selected by learning agents. Specifically,
we deal with issues related to how routes are cou-
pled. We first define and quantify route coupling,
i.e., how much a given route is coupled with other
routes that can be used by learning agents. The in-
vestigation of route coupling is important in multi-
agent reinforcement learning settings since it mea-
sures how a change in action selection by one agent
interferes with the actions taken by other agents.
Our preliminary empirical results indicate that us-
ing route coupling to bias the learning process of
agents results in faster convergence in the traffic as-
signment problem.

1 Introduction

Traffic networks can be represented as directed graphs G =
(V,A), where V represents the set of nodes (street or road
intersections, points of interest, or districts), and A the set of
arcs (street or road segments). The topology of these graphs,
as well as other characteristics such as how demand is dis-
tributed and how latency (cost) functions are defined, have
a great influence on the traffic assignment problem (TAP),
whose goal is to assign the traffic demand (number of trips,
vehicles) onto the arcs of a network G.

Our objective is to characterize road networks by designing
qualitative metrics and statistics. In particular, given a graph,
an origin-destination matrix, and latency functions, we wish
to design metrics that numerically represent the degree of dif-
ficulty posed to the assignment task. We study the TAP not
under the traditional, centralized approach, but via an agent-
based variant. Here, each agent (in this context, a driver or
vehicle) learns to select a route taking it from its origin to its
destination. Given that in such a process a decision made by
an agent affects the outcome of other agents, this is a typical
multiagent reinforcement learning problem (MARL).

A closely related issue to the one studied in this paper is
that of how to characterize a traffic network in terms of how

high the price of anarchy (PoA); [Koutsoupias and Papadim-
itriou, 1999; Roughgarden and Tardos, 2002]) is. The PoA
measures the loss in performance caused by a situation in
which each driver seeks to minimize its travel time indepen-
dently. Some works refer to this as selfish routing. One of our
goals is to investigate how the magnitude of the PoA affects
the learning task. Knowing this, one could anticipate how
complex the assignment will be. As the Braess paradox—a
case in which the PoA can be very high—shows, the addition
of arcs to a network may end up causing more congestion
[Braess, 1968].

This paper discusses the first steps towards the definition of
novel statistics and metrics to characterize networks in terms
of the complexity they pose to the TAP. In particular, we pro-
pose a metric based on topological properties of the network,
whose goal is to measure how coupled routes are. Coupling
refers, intuitively, to how many points of interaction a route
has with other routes, and how likely it is that agents might
decide to switch routes. This serves as a way of estimating
how strongly an agent on one route might be affected by other
agents who might change their behavior. Measuring this ef-
fect is important since strong dependencies make learning in
MARL settings harder. We describe a way of using coupling
statistics to bias the learning process of agents in a way that
empirically counteracts the negative effects of non-stationary
in the learning process, and that is conducive to faster con-
vergence to an equilibrium. We evaluate our methods in sev-
eral road networks with different topologies and demands—
both real-world networks and synthetic ones, such as those
affected by the Braess paradox. In order to construct chal-
lenging networks that are affected by this paradox, we mod-
ify an existing method to extend Braess networks to arbitrary
sizes.

This paper is organized as follows: Section 2 introduces
the classical, optimization-based approach to the TAP, and an
alternative MARL-based approach to compute a user equilib-
rium. Section 3 introduces our main methods and presents a
few networks that we use to illustrate them. We present pre-
liminary results in Section 4, related work in Section 5, and
present concluding remarks in Section 6.

2 The Traffic Assignment Problem

This section introduces a mathematical formulation for the
traffic assignment problem and presents the notation that will



be used throughout the paper. As previously mentioned, a
transportation network can be represented as a directed graph
G = (V,A). Each arc a ∈ A has a latency function which
is a function of the traffic in that arc—it quantifies the effects
of network usage, such as traffic congestion. This function
depends on parameters of the arc such as the time τ to trans-
verse it without congestion (this is also known as free flow
time), and the nominal capacity ρ of the arc (e.g., in terms of
number of vehicles).

In this work we denote the set of incoming arcs to
node v ∈ V by IN (v), and the set of outgoing arcs
from node v ∈ V by OUT (v). In addition, let C =
{(o(1), d(1)), . . . , (o(|σ|), d(|σ|)} ⊆ V × V denote the set
of commodities, i.e., a set of origin-destination (OD) pairs.
Here, o(σ) and d(σ) represent, respectively, the origin and
destination nodes for σ = 1, . . . , |C|. Each commodity σ
has an associated demand rσ = ro(σ),d(σ); i.e., each OD pair

(o(σ), d(σ)) has an associated demand rσ that emanates from
node o(σ) and terminates in node d(σ).

Furthermore, each arc has a latency function that expresses
how travel time depends on the traffic flow on that arc. If
drivers were to selfishly select routes that minimize their in-
dividual travel times, they could simply select the shortest
path that satisfies their desired origin and destination nodes.
This strategy, however, makes several underlying assump-
tions which are often not met, or are unrealistic: for example,
that the time taken to traverse an arc is constant and inde-
pendent of other drivers. This is clearly not the case in real
traffic networks, where the maximum flow allowed in an arc
depends on which routes other drivers take and on how many
drivers occupy an arc at a given time.

When simulating traffic conditions on a given network, a
designer needs to select a latency function that approximates
the real-life costs of navigating in that network. One of the
best-known and widely used latency function for real-world
networks, often referred to as the BPR function, was intro-
duced by the U. S. Bureau of Public Roads [Bureau of Public
Roads, 1964]. This is a non-linear, convex, and strictly in-
creasing function. Linear functions are also frequently used
(e.g., in the case of networks affected by the Braess paradox)
to represent the latency on each arc. In this work, whenever
we refer to networks affected by this paradox, we assume that
the latency is represented by la(fa) = mafa + na, where
ma ∈ R+ and na ∈ R are parameters and fa is the flow on
arc a. We also assume that la(fa) ≥ 0.

In the next section we introduce a mathematical model for
assignment problem—this is a classical, optimization-based
method to solve the TAP. We then describe an alternative way
of solving a version of this problem, namely by searching for
a user equilibrium via MARL techniques.

2.1 A Model of Traffic Assignment

In this subsection we present mathematical models describ-
ing the two main principles that characterize the traffic as-
signment: the system optimum (SO) and user equilibrium
(UE) Wardrop [1952]. The latter principle states that “un-
der equilibrium conditions traffic arranges itself in congested
networks such that all used routes have equal and minimum
costs, while all those routes that were not used have greater

or equal costs”. The former principle refers to the system as
a whole and states that the average trip time is minimum.

Beckmann et al. [1956] were the first to propose and solve
a mathematical model to compute both the SO and UE solu-
tions. In what follows we present an arc-based mathematical
model for SO and for the UE model. A path-based mathe-
matical model may also be used to represent the respective
assignment problems. Let xσ

a be variables indicating the flow
on arc a for the commodity σ; let fa be the total flow on arc
a and Φa be the associated cost for the arc a. The SO model
for a multi-commodity network can be written as:

min Φ =
∑

a∈A

Φa (1)

subject to:

maf
2
a + nafa ≤ Φa (2)

fa =
∑

σ∈C

xσ
a ∀a ∈ A (3)

∑

a∈IN(v)

xσ
a −

∑

a∈OUT (v)

xσ
a =







dσ, if v = d(σ)

−dσ, if v = o(σ)

0, otherwise

∀v ∈ V, σ ∈ C (4)

xσ
a ≥ 0, ∀a ∈ A, ∀σ ∈ C (5)

fa ≥ 0,Φa ≥ 0 ∀a ∈ A. (6)

Objective function (1) aims at finding a flow assignment
for each arc that minimizes the total cost for the system—
resulting in an assignment respecting the SO principle. Con-
straints (2) associate the cost of each arc a to the variable Φa;
constraints (3) associate the total flow in arc a to variables fa;
constraints (4) ensure flow conservation, and constraints (5)
and (6) define the domain of variables. Note that this model
has quadratic constraints, since it contains a product between
flow variables in the constraints (2)—in particular, the prod-
uct of latency costs and arc flows (i.e., (mafa + na) fa). The
SO model can be extended to networks that consider the BPR
latency function by changing constraints (2). This formula-
tion uses a set of variables Φa and constraints (2) to define the
latency cost on each arc; this is especially useful for the case
where the latency function is a composition of linear func-
tions (see Case 2, Section 3.1, for more details).

We now consider the UE model, whose objective is to min-
imize the function

Φ =
∑

a∈A

∫ fa

x̄a

la(x)dx (7)

Since we assume that the latency function is la(x) =
max + na, we can simplify this expression. For the case
where na ≥ 0, x̄a = 0. For the case where na < 0, x̄a should
be the max x such that la(x) = 0; i.e., x̄a = −na/ma. Since
we also consider la(x) ≥ 0, the latency function becomes a
composition of two line segments, thereby defining a piece-
wise linear function which is convex and strictly increasing.
To completely define the UE model, we now only need to re-
place the constraints (2) with the following set of constraints:



1

2
maf

2
a + nafa −

(

1

2
max̄

2
a + nax̄a

)

≤ Φa. (8)

If na ≥ 0, then x̄a = 0 and constraints (8) are reduced to

1

2
maf

2
a + nafa ≤ Φa (9)

Solving the above-mentioned models involves assigning a
traffic flow to each arc in order to obtain a global assignment
that is consistent either with the SO or UE hypotheses. The
models can be solved via mathematical programming using
general-purpose solvers such as CPLEX and MOSEK.

2.2 Multiagent Learning for Route Choice

Mathematical programming-based methods like the ones pre-
viously mentioned may have difficulties if non-linear latency
functions are used. Furthermore, these methods can typi-
cally only solve static assignments. Unlike optimization ap-
proaches that use mathematical models suitable only for static
assignment with linear or convex latency functions, MARL
can be used to compute traffic assignment solutions by con-
sidering each individual driver as an autonomous agent, in a
microscopic fashion. This strategy can be used to tackle a
wide range of problems, such as those involving static or dy-
namic assignment, and also ones that require the simulation
of complex systems.

In this paper we assume that when using MARL to com-
pute traffic assignment solutions, each agent learns to make
decisions (i.e., to select routes) by using reinforcement learn-
ing. We use the Q-learning algorithm to update the value
of each state-action pair of the agent; this value represents
the expected long-term utility that the agent hopes to achieve
by selecting a given action in a state, and following the cur-
rent action-selection strategy thereafter. This update is per-
formed based on an experience tuple 〈s, a, s′, rew〉 accord-
ing to Equation 10, where α is the learning rate and γ is a
discount rate applied for future rewards. Details of the use of
Q-learning for the TAP are given in Section 4.

Q(s, a)← Q(s, a)+α
(

rew + γ max
a′

Q(s′, a′)−Q(s, a)
)

(10)

3 Methods

We are interested in characterizing traffic networks of differ-
ent types—for instance, synthetic (or pictorial) networks such
as those used to illustrate the Braess paradox; networks whose
demand distributions are closer to real-world cases (versus
symmetric-demand distributions such as those in Braess para-
dox); single versus multicommodity cases; networks with lin-
ear versus non-linear latency functions; etc. Hence, prior to
discussing the statistics we employ to measure the coupling
between routes, we introduce and discuss the nature of a few
selected networks: arbitrarily large Braess-paradox networks
(in Section 3.1), the OW network (Section 3.2), and the Sioux
Falls network (Section 3.3). We then introduce a metric for
characterizing some properties of these networks—the cou-
pling statistic (Section 3.4).

3.1 Arbitrarily Large Braess-Paradox Networks

The Braess paradox occurs whenever adding resources to a
transportation network deteriorates the quality of a UE. Us-
ing Beckmann’s model, Braess [1968] described situations in
which adding a road to a congested traffic network could have
a counter-intuitive outcome—namely, the overall travel time
could increase. This phenomenon can be interpreted as fol-
lows: suppose we close a road or increase its free travel time
by decreasing the maximum allowed speed; if the cost (e.g.,
the total travel time at UE) decreases, then we observe the
Braess paradox.

Roughgarden [2001] discusses the problem of designing
networks so that the Braess paradox does not occur—more
specifically, which edges should be removed from a network
to obtain the best possible flow at Nash equilibrium. This
author also discusses how to create arbitrarily large Braess
graphs, whose sizes depend on a factor p; a few examples are
shown in Figure 1. Although single-commodity, these net-
works are interesting since they are associated with a high
PoA. Roughgarden’s method allows the investigation of the
PoA in large graphs, rather than in simple ones like the net-
work in Figure 1a. Being able to produce large networks with
this property is useful in the context of our work because
we aim at defining novel statistics and metrics to character-
ize networks (such as Braess networks of different sizes) in
terms of the complexity they pose to the TAP—in particular
in the context of using MARL algorithms to solve it.
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Figure 1: Sample graphs that result in the Braess paradox.



Braess graphs of arbitrary size can be generated as fol-
lows: given a size parameter p, the p-th Braess graph Bp

is constructed with a set V p = {s, v1, ..., vp, w1, ..., wp, t}
of 2p + 2 vertices; and a set of arcs Ap defined by
{(s, vi), (vi, wi), (wi, t) : 1 ≤ i ≤ p}∪{(vi, wi−1) : 2 ≤ i ≤
p} ∪ {v1, t)} ∪ {s, wp)}. Next, we describe how to associate
latency functions with each of these arcs.

Latency Functions

A key decision when designing arbitrarily large Braess net-
works is how to associate latency functions to the arcs. We
extend the method described by Roughgarden [2001] in three
ways: (i) we allow networks with arbitrary constant arc costs
c, instead of unitary costs; (ii) we allow arbitrary demand val-
ues1 r instead of only fractions of a unitary demand; and (iii)
we introduce simpler piecewise latency functions which, al-
though resulting in lower PoA values, allow for solutions to
be more easily obtained via standard commercial optimiza-
tion packages.

In what follows, the demand for a given commodity (or
origin–destination pair) σ ∈ C is indicated as rσ . Let c > 0
be the cost associated with constant-cost arcs, and r ∈ R

∗+
be the total demand of the network. Roughgarden [2001] uses
c = 1 and r = p; this constrains the networks that can be
generated since p is typically much smaller than the demand.
We modify this formulation so that r can be arbitrarily large.
By default, we consider c = 10 and r = 4200.

We now define the latency function la(x) associated with
each arc a. The value of i of each arc is the same as described
in Section 3.1. We omit the subscript p in the latency function
to simplify notation. The latency functions are defined as:

• la(x) = 0 for arcs of form a = (vi, wi) ∀i ∈
{1, 2, . . . , p};

• la(x) = c for arcs of form a = (vi, wi−1) ∀i ∈
{2, . . . , p}, (s, wp) or (v1, t).

For the remaining arcs of the form a = (wi, t) or
(s, vp−i+1) ∀i ∈ {1, 2, . . . , p}, the latency function is defined
as a function of the flow in the arc. We use two strategies to
define the latency of these arcs. The first strategy is to use
a linear function with na = 0, and the second one is to use
a piecewise function based on the latency function described
by Roughgarden [2001]; these are henceforth referred to as
Case 1 and Case 2 respectively.

Case 1 - Linear function with na = 0
In this case, the latency function la(x) = max + na is a
simple line segment satisfying la(0) = 0 and lpa(

r
p
) = ic, i.e.:

ma =
icp

r
(11)

na = 0. (12)

Case 2 - Piecewise Linear function with na < 0
In this case, the latency function la(x) = max + na is
a composition of two line segments satisfying la(0) = 0,

1In this paper we use the term demand, rather than traffic rate,
but keep the symbol r used by Roughgarden [2001].

la(
r

p+1 ) = 0, and lpa(
r
p
) = ic, i.e.,

ma =
icp2 + cip

r
(13)

na = −cip. (14)

Figure 2 depicts fixed-cost arcs in blue, while arcs with cost
equal to zero appear in red. The remaining arcs (in black) are
the ones with latency functions that depend on the arc’s flow.
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Figure 2: Braess Graph B3 with latency functions.

Figure 3 shows a few sample latency functions: f0 is the
latency function for the family functions proposed by Rough-
garden [2001]; f1 represents the latency function for Case 1,
and f2 represents the latency function for Case 2.

x

l(x)

0 r

p+1

r

p

ci f0

f1
f2

Figure 3: Sample latency functions.

3.2 The OW Network

Besides Braess-paradox networks, another network of inter-
est in this work is the OW network (due to Ortúzar and
Willumsen [2001]), depicted in Figure 4 and henceforth re-
ferred to simply as OW. Although this not a full reproduction
of a real-world network, it contains interesting real-world el-
ements. This network represents two residential areas (nodes
A and B in the figure) and two major shopping areas (nodes L
and M). The numbers associated with arcs, τa, denote travel
times in those arcs under free flow (in both ways). The
proposed demand for this network corresponds to a total of
r = 1700 trips, distributed among four commodities: AL,
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Figure 5: Sioux Falls Road Network

AM, BL, and BM (600, 400, 300, and 400 trips respectively).
Furthermore, the network is defined via a latency function
that relates the latency la(fa) of an arc a and the flow fa as-
sociated with that arc.

3.3 Sioux Falls Network

The Sioux Falls (SF) network (Figure 5) is based on the real-
world city of Sioux Falls, USA. It is frequently used as a
testbed for traffic assignment approaches. The SF network
uses as a latency function the BPR function (Eq. 15), where
fa is the flow on arc a, τa is the free-flow travel time in a, and
ρa is its nominal capacity. In this paper we use ã = 0.15 and

b̃ = 4, as suggested in the literature.

la(fa) = τa

(

1 + ã

(

fa
ρ

)b̃
)

(15)

3.4 A Topological Coupling Statistic

In this section we introduce novel statistics and metrics to
characterize networks in terms of the complexity they pose to
the traffic assignment problem—in particular to multiagent
reinforcement learning algorithms. We do so by measuring
how coupled routes are. We first define and quantify route
coupling, i.e., how much a given route is coupled with other
routes that can be used by learning agents. The investigation
of route coupling is important in multiagent reinforcement
learning settings since it measures how changes in the actions
of one agent interfere with the actions taken by other agents.

Assume a graph G and latency functions la ∈ R, as pre-
viously defined; suppose that we have a demand r resulting
from drivers wishing to traverse this graph. Different drivers
may have different origins and may wish to reach different
destination nodes. Our goal is to have drivers select paths that
allow for an overall cost function to be minimized. To this
end, drivers may use a set R of routes, where each route Ri is
defined as a sequence of nodes connecting the starting node
oi of a route to a destination node di; i.e., Ri ≡ [oi, . . . , di].
Concretely, assume that there are |R| routes defined over the
graph G. If drivers were to selfishly select paths that min-
imize their own travel time, measured with respect to the
latency la of each arc in a route, we could simply compute
the shortest path between oi and di. This strategy, however,
makes assumptions that are often unrealistic: for example,
that the time taken to traverse an arc is independent of other
drivers. This is clearly not the case in real traffic networks.

Alternatively, we can minimize an overall cost function de-
fined over G by using learning methods capable of identifying
the optimal allocation of drivers to routes. In this case, one
recurring problem is that of non-stationarity: if each driver
independently observes the state of the network and makes
a decision, the effects of that decision (e.g., its impact on
total travel time) may seem to change with time in unpre-
dictable ways. The reason for this is that choices made by
other agents, and which the driver cannot always predict or
observe, cause properties of the network to remain as unob-
servable variables in the learning problem. From each driver’s
point of view, therefore, the overall learning problem seems
to change with time: even if it always selects the same action
when observing a same local state, the effective result of that
action depends on a series of latent factors. If drivers learn to
select routes in this manner, it may take a long time for the ag-
gregate effects of other drivers’ decisions to be averaged out
and for the learning algorithm to converge to an equilibrium.

We propose a way of analyzing topological properties of
the network in order to estimate how likely it is that non-
stationarity (caused by partial observation of other drivers’
decisions or intent) will negatively affect the learning process.
On one one hand, networks with sparse and non-interacting
routes will typically not be affected by non-stationarity; af-
ter all, each driver’s decisions will have almost no effect on
the travel time of other agents, therefore resulting in a pro-
cess in which drivers can independently optimize their route
choices. Networks where important routes share many arcs
with other routes, on the other hand, will be strongly affected
by non-stationarity: if a group of agents decides to change
their decisions and switch to a different route, this will di-
rectly affect the travel time of many other agents—even if
they do not change their own decisions.

The metric that we propose is called coupling, and consists
in a statistic computed based on topological properties of the
network. Our goal with it is to estimate how strong the effect
of non-stationarity might be and to describe a way of using it
to bias the learning process, in a way that empirically counter-
acts the negative effects of non-stationary and is conducive to
faster convergence to an equilibrium. Intuitively, the coupling
statistic measures how many points of interaction a route has
with other routes, and how likely it is that other agents might



decide to switch to any given alternative route. If two routes
share many arcs, for instance, the effective flow on both of
them will be more strongly affected by agents deciding to
travel on those routes or deciding to abandon them in favor of
other options; these routes are, therefore, highly coupled.

We define the coupling Ψ(Ri) of a route Ri as the expected
value of the interaction I(Ri, Rj) of that route with other
routes Rj in the system. This expectation is defined with
respect to a probability distribution P over possible routes:
routes that are more likely to be selected by agents (based on
their individual preferences for reaching particular places in
the network) have higher probability. Specifically, we define:

Ψ(Ri) = EP

[

I(Ri, ·)
]

=

|R|
∑

j=1

P (Rj)I(Ri, Rj) (16)

where I(Ri, Rj) is the normalized number of shared arcs be-
tween routes Ri and Rj :

I(Ri, Rj) =
1

|R|

|Ri ∩Rj |

|Ri|
(17)

Intuitively, I measures how much of the underlying struc-
ture and resources of the network are shared by two routes,
and P reflects the agents’ demands for different routes at
some point in time—defined according to their preferences
for reaching different regions of the network2.

In our experiments, we refer to Ψ(Ri) as the mean cou-
pling of a route Ri whenever P is assumed to be a uniform
distribution. This corresponds to the case where we have no
prior information about agents’ preferences for reaching par-
ticular nodes of the network. When we do have that informa-
tion, we can encode it in P , which then represents the relative
preferences of agents for choosing different routes.

To illustrate the use of the proposed coupling statistics, we
start with a simple example—the Braess graph B1, depicted
in Figure 1(a). This network has a single commodity: the
entire demand of r = 4200 drivers travels from s to t. There
are 3 possible routes they can select from: st1, st2, and st3, as
shown in Table 1. These form the set R of routes, which was
generated by using a k-shortest paths algorithm Yen [1971].
This algorithm returns k shortest paths (when analyzed under
free flow) associated with a given commodity. The st1 path
is the shortest one to satisfy the single demand in B1; st2 and
st3 are the second and third shortest paths, respectively.

Table 2 shows the normalized number of shared arcs be-
tween any two routes, which is the second term in Equation
17. This table should be read row-wise: e.g., st1 shares 33%
of its elements with st2. The coupling Ψ of each route (Equa-
tion 16) is shown in Table 3 for the case of uniform P . Un-
der this distribution, it is equivalent to the average normalized
number of shared arcs with other routes: Ψ(st2), for instance,

2Route coupling does not take into account interactions of a route
with itself. We abuse notation in Equations 16 and 17. In reality,
these are defined over the set R− {Ri}, not R.

is 1
2 (50.00 + 0.00). Note that st1 has the highest coupling—

but traditional MARL approaches ignore this information.
We propose to use the coupling statistic to bias the learning

process of each agent. We report results that relate to a very
simple type of biasing; namely, the Q-table of each agent is
initialized with the negative of the coupling for each route.
Continuing with our example (the B1 network), the Q-values
associated with action st1 were initialized with −33.33, and
the Q-values associated with actions st2 and st3 were initial-
ized with−25.00. This means we are using information about
route coupling to bias agents’ preferences in a way that leads
more agents to prefer routes st2 or st3, rather than st1. Our
hope is that this will successfully bias route selections, guid-
ing agents in their exploration of which are the best actions to
perform and accelerating convergence to an equilibrium.

Route Name Arcs

st1 sv1 → v1w1 → w1t
st2 sw1 → w1t
st3 sv1 → v1t

Table 1: k = 3 shortest routes for network B1

st1 st2 st3

st1 100.00 33.33 33.33
st2 50.00 100.00 0.00
st3 50.00 0.00 100.00

Table 2: Normalized number of shared arcs (B1)

Ψ
st1 st2 st3

33.33 25.00 25.00

Table 3: Route Coupling Ψ under uniform P (B1 network)

4 Simulations and Results

In order to evaluate the use of the coupling Ψ as a biasing
method in MARL we will use the OW network, since solv-
ing the traffic assignment problem in it has been shown to be
a complex task. In our experiments, agents use Q-Learning,
a standard reinforcement learning algorithm, to learn to se-
lect routes and reach a UE. Note that at this point we disre-
gard the fact that the UE may be socially bad; see discussion
in Section 5. In a traditional reinforcement learning setting,
each agent keeps its own Q-table. Q-values are associated
with each action—in this case, one of the k shortest routes
available for an agent to travel from its origin to its destina-
tion. Note that this formulation resembles a repeated game,
where there is just one state Claus and Boutilier [1998]. This
means that Equation 10 can be simplified and does not require
a discount rate. While this simplifies the learning problem,
the large number of concurrently-learning agents in MARL
makes the problem inherently more complex. Each agent se-
lects actions according to an ǫ-greedy strategy: with proba-
bility 1 − ǫ, the action with highest Q-value is selected; with



Figure 6: Mean latency as a function of number of episodes.

probability ǫ, a random action is selected. We initialize ǫ with
a high value and decay it by (1 − δ)% at the end of each
episode. This allows for high exploration at the beginning of
the learning process. In our experiments, the reward is the
negative of the individual travel time of an agent, α = 0.3,
ǫ = 1.0 at the first episode, and δ = 0.9. These values were
selected after extensive tests with different ranges of values.

The OW network, used in the following experiments, has
|C| = 4 commodities, and we associate with it a total de-
mand of r = 1700. We computed k = 5 shortest paths
per commodity. Table 4 shows the coupling for each of the
|C| × k = 20 shortest routes, computed via Equation 16.

In our experiments, we measure the average latency of the
r agents in the system and plot it as a function of time (Fig-
ure 6). We do so under three distinct situations: (i) the Q-
table of agents is initialized with zeros; (ii) the Q-table is
initialized with the negative of the coupling statistic Ψ(Ri)
associated with route Ri; (iii) the Q-table is initialized with a
random value between 0 and the (negative) maximum value
of Ψ. Note that an approximation of the UE for the OW net-
work (which can be computed, e.g., via CPLEX) is of approx-
imately 67 minutes of average latency. In Figure 6 we show
that biasing the Q-values of agents with Ψ leads to a faster
convergence to the UE.

In the future we plan to perform further experiments; first,
one that starts with a lower value of ǫ so that agents can ex-
ploit the bias provided at the beginning of the learning process
for longer periods of time. Due to lack of space, we omit a
table that shows that, at the end of the learning process, the
number of agents using each of the k paths is roughly cor-
related with Ψ of the corresponding path. This suggests that
the coupling statistic does serve, indeed, as a proxy to how
desirable different routes are—one that considers how agents
selecting between them are (as a consequence of the concur-
rent learning aspect of MARL) negatively impacted by non-
stationarity.

5 Related Work

A number of techniques from transportation planning, eco-
nomics, operations research, and computer science deal with
the TAP. Due to lack of space, we omit classical approaches.
The reader is referred to Ortúzar and Willumsen [2001]. For

Name Arcs
Mean

Coupling

AL1 AC → CG → GJ → JI → IL 36.84
AL2 AC → CG → GJ → JL 39.47
AL3 AC → CF → FI → IL 23.68
AL4 AC → CD → DG → GJ → JI → IL 30.70
AL5 AC → CD → DG → GJ → JL 31.58

AM1 AC → CD → DH → HK → KM 31.58
AM2 AC → CG → GJ → JK → KM 37.89
AM3 AC → CG → GH → HK → KM 32.63
AM4 AD → DH → HK → KM 22.37
AM5 AC → CG → GJ → JM 35.53

BL1 BD → DG → GJ → JI → IL 27.37
BL2 BD → DG → GJ → JL 27.63
BL3 BA → AC → CG → GJ → JI → IL 32.46
BL4 BA → AC → CG → GJ → JL 33.68
BL5 BA → AC → CF → FI → IL 21.05

BM1 BE → EH → HK → KM 21.05
BM2 BD → DH → HK → KM 27.63
BM3 BD → DE → EH → HK → KM 20.00
BM4 BE → ED → DH → HK → KM 18.95
BM5 BD → DG → GJ → JK → KM 28.42

Table 4: Meaning Coupling statistic of the k = 5 routes asso-
ciated with each of the four OD Pairs in the OW network.

approaches that seek to balance the UE and the SO, we refer
the reader to Bazzan and Chira [2015]. We focus on those
that seek to approximate the UE by means of reinforcement
learning or other agent-based approaches.

To the best of our knowledge, no attempts have been made
to bias the learning of the UE by using similar statistics and
metrics as the one we propose. Similar metrics such as the
Path Size Logit model [Ben-Akiva and Bierlaire, 1999] and
the C-Logit model [Cascetta et al., 1996] are used to se-
lect routes in a network in route choice models. However,
these strategies differ in the formulation metrics since they
are based on the length of arcs.

A natural way to tackle the problem of route choice is
via agent-based simulation techniques. Examples are MAT-
Sim Balmer et al. [2004], Klügl and Bazzan [2004] and
Dia and Panwai [2014]. A learning-based approach to route
choice was proposed by Tumer and Agogino [2006], where
agents learn to select from pre-computed routes in a single-
commodity network.

Finally, another topic related to our objective is the study
of performance degradation caused by the selfish behavior
of individual road users—this remains an important research
topic, as shown by Koutsoupias and Papadimitriou [1999] re-
garding the PoA problem.

6 Conclusions and Future Work

Traffic assignment and route choice are difficult learning
problems because the routes available for agents may be
highly coupled. Furthermore, the price of anarchy might be
strongly affected by issues such as the topology of the net-
work, the demand distribution, and the nature of the latency
functions, among other factors. In this paper we presented the



first steps towards the definition of statistics and metrics that
quantify how difficult the traffic assignment is, in general—
and in particular how difficult the computation of an UE is.

In this work we assumed that agents trying to reach an
UE learn to select routes independently. As a consequence,
their learning processes can be negatively affected by the non-
stationarity intrinsic to MARL settings. To counteract this ef-
fect, it might be beneficial to bias agents’ decisions in order to
accelerate convergence towards less coupled routes. We have
shown how to define and compute such a coupling metric and
experimented with using the coupling statistics as initial Q-
values; our objective was to give agents initial incentives to
select routes that are less coupled. Preliminary results show
that this strategy can lead to faster convergence.

Ongoing work is being developed to improve the biasing
strategy. We are also working towards evaluating the pro-
posed approach in more complex networks, such as the Sioux
Falls network and the Braess graphs with higher p values.
Since the Sioux Falls network has 528 commodities, it may
be time consuming to compute couplings for, say, all k = 4
routes for each of the commodities. We plan to use previous
results from Chudak et al. [2007] to pre-select routes that con-
tain the most congested arcs, and concentrate our analyzes on
them. Finally, given that we do have prior information about
agents’ preferences for reaching particular nodes of the net-
work (i.e., we do know rσ for each commodity), we can also
define a variant of the coupling statistic Ψ which is weighted
by these preferences. We also plan to extend the learning pro-
cess to a state-based one, such as that described in Bazzan and
Grunitzki [2016], where agents learn to select an arc (action)
at each node (state) of the network that is visited. This con-
trasts with our current model, where agents learn to select a
complete pre-defined route among k options.

Acknowledgments

Fernando Stefanello was supported by CAPES/PNPD.
Ana Bazzan is partially supported by CNPq.

References

Michael Balmer, Nurhan Cetin, Kai Nagel, and Bryan Raney.
Towards truly agent-based traffic and mobility simulations.
In N.R. Jennings, C. Sierra, L. Sonenberg, and M. Tambe,
editors, Proceedings of the 3rd International Joint Confer-
ence on Autonomous Agents and Multi Agent Systems, AA-
MAS, volume 1, pages 60–67, New York, USA, July 2004.
New York, IEEE Computer Society.

Ana L. C. Bazzan and Camelia Chira. Hybrid evolutionary
and reinforcement learning approach to accelerate traffic
assignment (extended abstract). In R. Bordini, E. Elkind,
G. Weiss, and P. Yolum, editors, Proceedings of the 14th
International Conference on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2015), pages 1723–1724. IFAA-
MAS, May 2015.

Ana L. C. Bazzan and Ricardo Grunitzki. A multiagent rein-
forcement learning approach to en-route trip building. In
To appear in 2016 International Joint Conference on Neu-
ral Networks (IJCNN), 2016.

Martin Beckmann, C. B. McGuire, and Christopher B. Win-
sten. Studies in the economics of transportation. Technical
report, Yale University Press, 1956.

Moshe Ben-Akiva and Michel Bierlaire. Discrete choice
methods and their applications to short term travel deci-
sions. In Proceedings of the International Series in Op-
erations Research & Management Science, pages 5–33.
Springer, 1999.
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