
Model-Driven Engineering of Simulations for Smart Roads

Alberto Fernández-Isabel, Rubén Fuentes-Fernández
Department of Software Engineering and Artificial Intelligence

Univesidad Complutense de Madrid
Madrid, Spain

afernandezisabel@ucm.es, ruben@fdi.ucm.es

Abstract

Smart Roads (SRs) are systems that provide traffic-
related services, based on a combination of sen-
sor and actuator networks deployed in roads, vehi-
cles, and surrounding elements. They are complex
distributed systems that involve multiple heteroge-
neous components and technologies. This makes
their development a challenging and costly process.
Simulations are a key tool to deal with these issues,
as they allow developing and testing in fully con-
trolled environments with simplified software com-
ponents. Nevertheless, they still need to consider
multiple perspectives (e.g. experts and designers),
which frequently cause problems to understand and
validate them. Model-Driven Engineering of sim-
ulations appears as a solution. It uses models to
represent explicitly these perspectives, and trans-
formations to link them and generate new artifacts
(including code). This paper presents a framework
to develop simulations of SRs following this ap-
proach. Its base is an existing modeling language
related to road traffic which is adapted to specify
the aspects of these systems (i.e. sensors, networks,
and services), and their context (i.e. users, vehicles,
and their environment). A process guides its use
in the transition from abstract models to code sup-
ported by tailored tools. A case study on a system
to track vehicles using sensors in roads illustrates
its use.

1 Introduction
The availability of affordable sensors and actuators suitable
for traffic settings is leading experts to redesign the related
facilities. The goal is that they become smart environ-
ments, able to gather and analyze information, and react to
it [Figueiredo et al., 2001]. Intelligent Transportation Sys-
tems (ITSs) integrate these environments to provide services
like [Figueiredo et al., 2001] [Varaiya, 1993] vehicle track-
ing, congestion detection, or identification of road conditions.
In this context, Smart Roads (SRs) [Wang et al., 2006] are
systems where the key devices are those deployed in roads
and their elements.

The development of systems for SRs (and in general of
ITSs) presents multiple challenges [Figueiredo et al., 2001]
[Varaiya, 1993] [Wang et al., 2006]. First, these are com-
plex and distributed systems. They comprehend multiple and
heterogeneous software and hardware components. Their op-
erating conditions are changing and demanding, as they are
frequently deployed over wide geographical areas and partly
outdoors. Among other issues, this implies that they have to
deal with the failure and redeployment of components, en-
ergy saving, and limited and intermittent connectivity. Sec-
ond, they affect activities that involve living beings and un-
controlled environments, so carrying out realistic and exhaus-
tive testing is difficult and expensive.

Simulations help to mitigate the previous problems [Pur-
sula, 1999]. With them, experts can control and observe the
relevant variables of a problem, and designers perform an
incremental development of systems. However, simulations
also present some important drawbacks [Axtell and Epstein,
1994]. People involved in their development have different
backgrounds, e.g. authorities, traffic experts, systems design-
ers, or programmers of simulations and control. It is difficult
for them having a complete understanding of the simulation
at the different levels of abstraction and its multiple facets.
For this reason, there are frequent problems to validate that
simulation results correspond to the initial requirements.

Model-Driven Engineering (MDE) [Schmidt, 2006] can be
used to address these issues [Fuentes-Fernández et al., 2012].
In these developments, participants specify systems mainly
using models. Transformations perform recurrent modifica-
tions of models and other artifacts, and describe mappings
among them. In the case of simulations for SRs, traffic ex-
perts would model the abstract system (i.e. independently of
specific platforms), and designers would ground it to specific
devices and target simulation platforms. Part of the transi-
tion between both groups of models could be automated with
transformations. For instance, abstract sensors and actuators
usually correspond to certain classes in the target platform. In
this way, the development of simulations becomes an iterative
and incremental process of refining models and transforma-
tions where all the information is explicit. Since models have
a higher level of abstraction than code, and transformations
describe the relevant correspondences, this approach facili-
tates the exchange and discussion of information on simula-
tions and artifact reutilization.



The adoption of MDE to develop SR simulations needs
to have available an infrastructure that includes several ele-
ments. Domain Specific Modeling Languages (DSMLs) de-
fine the vocabulary to specify models in a determined con-
text. There must be also languages to describe transforma-
tions, though here both specific Transformation Languages
(TLs) and general-purpose programming languages are used.
Participants need tools to work with these elements, such
as model editors, transformation engines, or code genera-
tors. Finally, processes guide participants in developments
with these elements. This work introduces a DSML for the
high-level specification of simulations of SRs. Work with it
is based on a process with tailored tools.

The DSML is adapted from a previous one related to road
traffic [Fernandez-Isabel and Fuentes-Fernandez, 2015]. It is
formed by three clusters according to the context they con-
sider: a behavioral cluster, an environment cluster and an in-
teractive cluster. The first describes the profiles and behavior
of individuals, while the second takes into account the place
where the simulation occurs and its elements. The last one
uses elements commonly used by Agent-Oriented Software
Engineering (AOSE) [Argente et al., 2009] (i.e. goals and
tasks) and a perception, evaluation, action cycle to represent
the decision-making of individuals.

New primitives are introduced to model the main elements
of SRs. These are the sensors and actuators that provide
the interface of the system with the external world. That
world includes people, their vehicles, and the environment.
The environment in turn includes, at least, roads, signals,
and general conditions (e.g. weather, daytime, or type of
road). Part of these concepts are extracted from research in
related domains, including Agent-Based Modeling (ABM)
[Axtell and Epstein, 1994], traffic simulations [Fernandez-
Isabel and Fuentes-Fernandez, 2015], and sensor networks
[Fuentes-Fernández et al., 2009].

Most of elements in these problems are represented in the
DSML as model elements. These are related to the original
DSML or to SRs components, having the latter an internal
state, and an interface with methods to consult and manipu-
late them. Examples of components are sensors, actuators,
and vehicles. A particular type of element are the spots.
They represent components in the environment that can be
observed and manipulated by devices (i.e. sensors and actua-
tors). For instance, a tracking magnetic sensor can detect the
passing of a bodywork spot of a vehicle.

SRs elements with complex behaviors are modeled as
agents. They are defined in a similar way of individuals in-
volved in road traffic (i.e. in terms of the goals they pursue
and the information they have), and their capabilities to ma-
nipulate both their internal and the environment states.

The language also includes general mechanisms of inher-
itance between concepts and definition of instances of types
in the adaptation to SRs. They facilitate the modification to
different modeling needs through extensions of the language
and the specification of simulations using models.

The related tools are a model editor and a code genera-
tor. Experts use the first one to specify graphically models
compliant with the DSML. It is based on the INGENME
[Pavón et al., 2011] meta-editor. Designers and program-

mers use the generator (adapted from [Fernandez-Isabel and
Fuentes-Fernandez, 2015] and based on Eclipse [Steinberg et
al., 2008] frameworks) to map model elements to code tem-
plates. These templates are fragments of code with marks cor-
responding to primitives of the DSML. Then, the code gen-
erator reads the models and mappings, instantiates the tem-
plates, and generates the code of simulations.

The case study that illustrates this approach is the simu-
lation of the system in [Karpiriski et al., 2006]. That work
presents an architecture with road sensors to track vehicles.
This case study models the system and generates its code for
the JADE agent platform [Bellifemine et al., 2007]. This il-
lustrates how working in this way facilitates understanding
the different aspects of the simulation and reduces the effort
to code it.

The rest of the paper is organized as follows. Section 2
makes an introduction to MDE. Section 3 presents the DSML,
while Section 4 the development guidelines of the proposal.
Section 5 describes the support tools, and Section 6 applies
the framework to the case study of tracking vehicles. Then,
Section 7 compares the approach and its results with related
work. Finally, Section 8 discusses the conclusions and future
work.

2 Background
MDE [Schmidt, 2006; Kent, 2002] is an approach to software
development based on models and transformations. Mod-
els are specifications of information regarding the system to
build. Transformations are automated modifications of mod-
els and other artifacts to generate new products. In this con-
text, developers work specifying their models incrementally,
and running transformations to integrate models or perform
certain modifications (e.g. adding design information or gen-
erating code). All the information relevant for the develop-
ment is thus presented as models or transformations, so devel-
opers have it explicitly described. This improves traceability
between artifacts across development. Working effectively in
this way requires having support tools for certain tasks.

Models are described following Modeling Languages
(MLs) that establish their primitives and constraints, so all
developers can interpret them in similar ways. Model editors
support developers when specifying models, and guarantee
the compliance of models with their MLs. In order to allow
this functionality, MLs are defined formally. There are alter-
natives for this definition depending on the ML features and
the context and needs of its use. Domain Specific Modeling
Languages (DSML) [Luoma et al., 2004] are MLs oriented
only to one context.

Graphical graph-oriented MLs are the most popular ones
in contexts such as Software Engineering and graphical sim-
ulations. Their models specify graphs where entities are
connected by links, and all of them can have related prop-
erties. Metamodels are the most widely used means to
specify these languages [Steinberg et al., 2008]. The de-
scription of metamodels relies on meta-modeling languages
such as the Meta-Object Facility (MOF), Ecore [Steinberg
et al., 2008], or Graph-Object-Property-Relationship-Role
(GOPRR) [Smolander, 1993]. MOF is used by the Object-



Figure 1: Excerpt of the road traffic metamodel.

Management Group (OMG) to define standards such as the
Unified Modeling Language (UML). Ecore is almost aligned
with Essential MOF, a subset of MOF. It is supported by the
Eclipse communities related to MDE with a complete and
widely supported set of tools. GOPRR has a richer set of
primitives than the previous two languages, as it allows for in-
stance the direct definition of n-ary relationships. INGENME
[Pavón et al., 2011] is a framework for it.

The implementation of transformations has two main ap-
proaches. They can be implemented as modules in main-
stream programming languages; or they can be described
with specific transformation languages and executed by an
engine. The first approach reuses existing expertise and re-
sources, and it is usually more efficient. Examples of it
are INGENME [Pavón et al., 2011] and the traffic simula-
tion framework in [Fernandez-Isabel and Fuentes-Fernandez,
2015], both based on Java and XML. The second approach
makes easier to examine the mappings between the source
and target artifacts of the transformation. Examples of it are
Eclipse projects such as JET and ATL [Steinberg et al., 2008].

This work adopts GOPRR as its meta-modeling language.
Its tools are based on the INGENME MDE framework.

3 Domain specific modeling language
The foundations of the DSML for SRs is adopted from
another DSML focused on general purpose road traffic

[Fernandez-Isabel and Fuentes-Fernandez, 2015]. It is en-
hanced modifying its structure and introducing various ab-
stract entities. The model element is the main one. It allows
describing elements from road traffic (e.g. profile and knowl-
edge of individuals involved in traffic) and specific compo-
nents related to SRs (e.g. sensors and spots).

Regarding the naming, nodes are the meta-classes and links
are meta-relationships among them. Meta-relationships with
triangles represent inheritance and with filled diamonds ag-
gregation. The attributes and adornments of the previous el-
ements are meta-properties. It is specified with a GOPRR
metamodel, being this notation similar to that also used in
MOF and Ecore [Steinberg et al., 2008].

The original metamodel is introduced in Section 3.1 where
its structure and meta-classes are explained. The DSML ex-
tension developed to represent the SRs components is de-
scribed in Section 3.2.

3.1 Traffic DSML
The DSML is originally focused on modeling the behavior of
individuals involved in road traffic (i.e. drivers, pedestrians
and passengers). It is a flexible language that presents specific
mechanisms to ease its fitness to the large amount of theories
evaluated by traffic studies.

It is described by a metamodel [Steinberg et al., 2008]
which provides a set of meta-entities in order to represent the



Figure 2: Information and ModelElement related elements.

Figure 3: Environment and Container related elements.

notions, relationships, properties and explicit constraints.
Metamodel concepts are inspired in AOSE [Argente et al.,

2009] and are classified into three clusters. The mental clus-
ter (i.e. profile, knowledge and their components) is based on
[Shinar, 1978] and considers the features and internal state of
individuals. The environment cluster (i.e. environment, ve-
hicle and their respective components describes the elements
extracted from DVE model [Amditis et al., 2010]. The inter-
active cluster (i.e. evaluator, executor, goal and task) repre-
sents the decision-making of individuals. It includes a per-
ception, evaluation, and acting cycle.

Regarding the metamodel bedrock, it revolves around the
person notion (see Fig. 1). It symbolizes a kind of human
being involved in road traffic. According to their means of
transport and how they interact with them, these people can
take different roles (i.e. drivers, passengers, or pedestrians).
Thus, person are able to interact with an environment. This
interaction is immediate (for pedestrians) or indirect (in the
case of drivers and passengers). The information people have
is illustrated with the knowledge, while their features are rep-
resented by the profile. The purposes of people involved in
traffic are described by goals, and the actions to carry out
them by tasks. Evaluators study the information obtained
from the environment and decide how the individuals must
act according to it. Tasks for achieving their implicit instruc-
tions are picked up by an executor.

The metamodel uses inheritance hierarchies with the pur-
pose of providing notion specializations and a flexible struc-

ture. The main one is the general element from which the
model element and the general relationship extend (see Fig.
1). The first acts as a basis for the traffic DSML and the
SRs DSML parts and is extended to the behavioral element
and the meta-classes involved in the interactive cluster. The
behavioral element is the parent meta-class of the main el-
ements (i.e. not components) that compound the mental and
environment clusters. Component extended from it and is also
the parent of the components of both clusters. The second
supports introducing relations (e.g. affect or impact) between
the rest of entities that are extended from model element.

Another kind of hierarchies are considered in this part of
the metamodel. In the both mental and environment clus-
ters composition hierarchies are introduced between main el-
ements (e.g. profile or vehicle) and their respective compo-
nents (e.g. pcomponent or vcomponent). These components
can be decomposed into others of the same type, promoting
the creation of complex structures.

3.2 DSML extension to SRs
This module of the DSML is mainly focused on people mov-
ing in their vehicles in roads unless there are other elements
in the environment such as traffic signals, obstacles, and
weather. These elements can be observed with sensors, and
systems that can actuate on them using actuators. The DSML
makes of these concepts its core categories.

Elements are modeled in terms of the information they
manage. There are two basic types of information: facts are
internal to elements, and events can be perceived from out-
side.

The root concept that embraces both modules of DSML
is the ModelElement entity (see Fig. 2). In this case, it is
characterized in terms of an identifier, an internal state, an in-
terface compose of methods, and the events it can generate.
The internal state is a set of facts. A method is defined by
its parameters and results, which are information. It can also
have execution conditions defined in terms of their parame-
ters and the internal state of its model element. Methods can
be internal (only accessible from the component) or external
(accessible from other components).

The environment meta-class of the traffic DSML is related
to a set of elements over a map. These are the places, and
can be located in sections or junctions. Examples of places
are things in the environment, like the road surface or protec-
tive fence. Environment has attributes (e.g. AvailableArea) to
store the relevant information of the map. This latter is rep-
resented through a graph that describes the road sections that
link two junctions (one when the section in an entering or exit
point).

Places contain spots (see Fig. 3). These are the compo-
nents that sensors can actually observe and where actuators
can act upon. For instance, a vehicle have several spots, e.g.
the bodywork, the electronic system, or the engine. Sensors
and actuators constitute the interface of systems with the ex-
ternal environment. They run on containers attached to spots.
Besides this, a sensor is linked by the perceives relationship
to the spot it observes, and an actuator by the actuates re-
lationship to the spot it affects. In both cases, sensors and
actuators access to the external interface of the spot, i.e. they



use its external methods. For instance, a rain sensor runs in a
container of the bodywork, where it perceives the raindrops
from an abstract weather spot. The containers of a system
are linked through communication channels.

Beyond these elements, complex entities related to SRs are
modeled as agents. Typical agents are the controllers of sen-
sors and actuators. The control of components can be repre-
sented directly with their methods, but controller agents are
recommended when there are complex algorithms and com-
munication with other controllers.

Similarity to a person (see Fig. 1), an agent has an identi-
fier, and goals that it can achieve through tasks that manipu-
late information. As the environment of SR systems is unpre-
dictable, the execution of a task can fail or not to produce the
expected results. Thus, a goal defines satisfaction conditions
in terms of information to indicate when it has been fulfilled.

Tasks can be organized (or decomposed) into others ac-
cording to the traffic DSML (see Fig. 1). Also, they can be
linked to methods related to the information they produce and
consume. In this way, tasks can use methods of components,
including sensors and actuators.

Agents communicate among them using notifications.
These are a type of event addressed to a certain agent identi-
fier.

Agents behave internally following a perceive-reflect-act
cycle. First, they execute those tasks that imply access to
external components (e.g. sensors and other elements related
to SRs) to gather data. Then, they update their internal state,
both facts and goals. Finally, they pre-select for execution
those tasks that can satisfy some of their still non-fulfilled
goals. Among them, they choose one to actually execute.

The external elements that agents can access are those
linked to them using manages relationships. For controllers,
these relationship can be only with other elements in their
containers. In contrary, persons can relate only to sensors
and actuators from containers, or other elements outside con-
tainers like vehicles or components in the environment.

This part of the language also includes some general mech-
anisms applicable to most of the previous concepts. It sup-
ports inheritance of concepts and relationships to allow their
specialization. For instance, the concept of component can
have additional and different features according to the target
simulation platform.

4 Development guidelines
The framework to develop SR simulations provides guide-
lines to model using the previous DSML and support tools.
They include 11 activities. The process is decomposed in two
different stages. The first one (nodes 1-9) is focused on the
expert work and specifications with the proposed DSML. The
second one (nodes 10-11) deals with the design of simulation.
After concluding the first one with the specific infrastructure
of this work, the second part can be addressed with a MDE
methodology for general software development. Given that
our DSML oriented to SRs follows ABM [Axtell and Epstein,
1994], methodologies from AOSE are a suitable choice [Ar-
gente et al., 2009]. Both ABM and AOSE make of agents
their core concept. Though there are differences among spe-

cific works, most of them conceptualize agents in terms of
mental entities and communication capabilities, and consider
the existence in their environment of artifacts they can use.
This common core facilitates the transition from abstract to
design models with transformations.

The first stage is organized around the services that the SR
should provide. It starts identifying potential services pend-
ing to specify (activity 1). If there are any, work follows with
its definition in terms of the information it needs and it pro-
vides, and the actions it should take (activity 2). This infor-
mation and actions appear in elements of the system and its
environment that next activities specify.

The service interacts with spots, either observing or chang-
ing them. Experts identify them and their potential contain-
ers, and specify them as model elements (activity 3).

The service also communicates with spots using the sys-
tem sensors (described in activity 4) and actuators (in activ-
ity 5). These devices are initially specified as model elements.
In case that their functioning needs complex control or com-
munications with other containers, they also need controller
agents. Channels must be added for those containers that
need to be linked.

The spots identified in previous activities are located in el-
ements of the SR environment. These elements are places,
vehicles (considered in activity 6), persons (activity 7) and (in
activity 8) other components from environment (i.e. ecompo-
nents). All of them are specified as model elements. They
also have a location in the environment. Thus, these activities
also define the map and locate the places in it.

The last element to specify is the behavior of individuals
(in activity 9). It is defined in terms of the goals and tasks
adapting existing road traffic theories [Fernandez-Isabel and
Fuentes-Fernandez, 2015], and the steps of the perception,
evaluation and acting cycle. As people act on the environ-
ment, tasks to check the actual result of their actions and
update its information must be included (e.g. route path or
position in the environment).

When all the services have been identified, the process can
move to the design of the simulation. Transformations map
abstract to design models (activity 10). These transformations
can be reused when they are available from other projects
with the same target AOSE methodology. Then, the design
models act as the initial specification for the simulation in
that methodology (activity 11). For instance, our work can be
easily linked to the INGENIAS AOSE methodology [Pavón
et al., 2005]. The INGENME [Pavón et al., 2011] infrastruc-
ture our work uses is the same of INGENIAS, and both share
similar definitions of concepts such as agent, goal, task, and
fact.

5 Support tools
This MDE approach uses two development tools to achieve
the different steps of the process (see Section 4). A model ed-
itor based on INGENME supports the specification of models
compliant with the DSML. It is the main tool of the first stage.
For the second stage, most of AOSE methodologies have
their own tailored model editors and transformation tools.
Here, the last steps of code generation are achieved with a



Figure 4: Excerpt of the simulation model for the system to track vehicles. Stereotypes indicate DSML types.

code generator adapted from [Fernandez-Isabel and Fuentes-
Fernandez, 2015]. Then, designers specify graphically the
mappings from elements in models to classes in the target
platform. The generator outputs the simulation code from
this information.

The INGENME model editor is based on INGENIAS
methodology. It present a graphical canvas where models
can be captured. The resulting outcome can be exported as
a XML file. It promotes the modularity of the proposal and
the ability to maintain the independence among the different
artifacts created.

The code generator is a graphical tool implemented in Java
which provides an engine to generate source code from a
model specification. In this case, the specification comes in
form of XML file from the model editor. This tool is mainly
focused on easing the work to developers. In order to that, it
provides an intuitive navigation through the elements of the
models, and uses multiple wizards to guide the users in the
achievement of the most complex tasks. It also takes as input
a metamodel, code templates compliant with it and libraries
from the target simulation platform. The templates support
the preliminary automated code generation while the libraries
can be used to adapt the simulation platform to the models
requirements. To achieve it, the tool offers the possibility
of creating new classes (empty or extended) through which
producing a new simulation platform specialized in specific
models [Fernandez-Isabel and Fuentes-Fernandez, 2015].

6 Case study
This section applies the previous framework (see Sections 3
and 4) to develop the simulation of one of the services for SRs
described in [Karpiriski et al., 2006]. It is a vehicle tracking
service based on magnetic sensors located in nodes of cat eyes
every few meters in road borders. These sensors are able to

perceive car passing. Nodes know their relative order and dis-
tance to others. They make up an ad-hoc network to exchange
information, so they can determine the position and speed of
vehicles.

The first stage of the process generates the abstract model
of the simulation with the DSML. Fig. 4 shows part of it.

Activities 1 and 2 identify the services the SR offers. The
definition of the problem points out only to the tracking vehi-
cle service. Activity 3 identifies the spots related to it. There
are two. The sensors are placed in eye cats in the road bor-
ders. These sensors track the passing of vehicles sensing their
metal, for instance in their bodywork. Activities 4 and 5 con-
sider the related sensors and actuators. There are magnetic
tracker sensors, but no actuators. The specification of car ve-
hicles in activity 6 does not consider any particular feature of
them. In the proposed DSML, decisions regarding maneuvers
are placed in persons. Activity 7 models them. The original
work does not introduce any specific model of drivers. The
problem also identifies elements in the environment (see ac-
tivity 8) and models them in particular as ecomponents (see
Section 3.1) or places (e.g. road borders).

The previous first round allows identifying the main con-
cepts of the problem, and their types and relationships. A sec-
ond round is focused on their state and functionality. Given
that individuals with driver role and their actions trigger most
of activities in the system, the analysis starts with them.

A simple path-following behavior is proposed for persons
with driver role. Following a perception, reflect and acting
cycle (no evaluation is considered), there is a first step of cal-
culating position and a second of moving. The first one corre-
sponds to goal got info and task sense, and the second to goal
ended route and task move (see Fig. 4). Sense generates the
fact perceived position consulting the method toSense. This
fact is compared with the fact route to determine if the car has



arrived to its destination. That is the satisfaction condition of
goal ended route. If the goal is unfulfilled, the task move can
be triggered. It calls a method toMove that updates the car
and its fact position.

In the system, several elements do not have specific state
or methods, as only their location is relevant. This is the case
of road border and eye cat. In order to have a precise location
of sensors, road borders are modeled as multiple elements of
this type, each one with its own location.

The eye cat spot has node containers for the sensors and
controllers of the system. The magnetic tracker sensor trig-
gers events when it perceives a car. Its magnetic controller
has a task pass car to sense that event (see Fig. 4), and gener-
ates through the toPass method a car passed event addressed
to a central tracking controller (not shown in the diagram).
This would implement the services for end users described
in [Karpiriski et al., 2006]. Given the constraints imposed
by the DSML, the model needs to introduce a tracking node
container for this last controller. In order to enable commu-
nication between controllers in different containers, these are
connected with a road channel.

The previous discussions has not considered the map. The
studied work focuses on two-way single carriageways. With
the DSML, these correspond to junctions that connect at least
two sections, one for each direction. Crossroads are junctions
that connect more sections. The previous model elements (ve-
hicles and road borders) are placed in them.

These steps complete the first stage and the abstract model
of the simulation. Activity 10 maps the abstractions of that
model to those of INGENIAS [Pavón et al., 2005]. Then,
activity 11 follows the steps of this methodology adding the
design information required for the JADE platform [Bellifem-
ine et al., 2007]. There are several entities of the DSML with
direct mappings to JADE: agent to agent and task to behavior.
Others need to be mapped to specific ad-hoc classes. This is
the case of the model elements, facts, goals, spots, sensors
and actuators. Their implementation only requires attributes
and methods to get and set their values, as agents manage the
updates of the simulation state.

7 Related work
The presented framework is mainly related to the modeling
and development of SRs. This section discusses existing al-
ternatives for them.

Under the label of SRs literature presents a variety of
complex heterogeneous systems [Figueiredo et al., 2001]
[Varaiya, 1993] [Wang et al., 2006]: they provide different
services, for a wide range of users, and integrating multiple
devices. Nevertheless, several common elements can be ab-
stracted in most of them [Varaiya, 1993] [Wang et al., 2006]
[Sun et al., 2006]. There are sensors and actuators embed-
ded in an environment that includes roads and their elements,
weather, vehicles, and sometimes people. Vehicles and peo-
ple are usually modeled focusing on their movement. In the
case of simulation [Kotusevski and Hawick, 2009], works
offer more complex models of vehicles and people moving,
with paths to follow and principles of movement (e.g. colli-
sion avoidance or observe traffic norms). These elements are

considered in the proposed DSML, though the use of com-
ponents, agents, and information makes possible setting up
richer models than in other works. The DSML also offers
extension mechanisms frequently disregarded in other works.

In most cases, there is no information about the adopted
development process (see for instance the already mentioned
works). However, this is a key aspect to evaluate approaches
regarding, for instance, ease of adoption and modeling or
costs. When there is some information on that [Pursula, 1999]
[Kotusevski and Hawick, 2009], it usually shows approaches
with a manual transition from abstract models to code, and
focused on the later. The advantages of MDE in this con-
text were pointed out in the introduction: explicit definition
of all the information related to that transition, which facil-
itates its discussion and reutilization, and support tools for
it. There are already some works in this line in the context
of traffic studies [Fernandez-Isabel and Fuentes-Fernandez,
2015] [Vangheluwe and De Lara, 2004]. Their main differ-
ences with our work are their focus and purposes (general
traffic versus SRs) and the use of infrastructures less adopted
than ours (in [Vangheluwe and De Lara, 2004] graph rewrit-
ing grammars for transformations), which hinders their adop-
tion.

8 Conclusions and future work
This paper has introduced a framework for the model-driven
development of simulations of SRs. It is based on a DSML
and tailored standard infrastructures.

The DSML adopts a previous one focused on road traf-
fic that integrates concepts from studies and simulations of
traffic [Fernandez-Isabel and Fuentes-Fernandez, 2015]. It
is adapted through ABM concepts (e.g. agents) [Axtell
and Epstein, 1994] and elements related to sensor networks
[Fuentes-Fernández et al., 2009]. Based on a general concept
of model element (could be a modeling entity or a component
with state and an interface that manipulates information), it
introduces new concepts related to sensors, actuators, spots
in the environment and vehicles. A higher level of abstrac-
tion comes from agents, which are used to describe complex
controllers.

The framework also proposes a development process based
on this DSML. It comprehends a specific first stage to spec-
ify the abstract models of simulations, and connects with an
AOSE MDE methodology [Argente et al., 2009] for the low
level design and code generation. A model editor based on
INGENME [Pavón et al., 2011] and a code generator sup-
ports it. This latter is a graphical engine based on wizards
that allow guiding users in some of the complex steps of the
development process.

The case study has shown how a simulation can be speci-
fied to a large extent with the DSML, including the behavior
of its components. Only algorithms to manipulate informa-
tion are demoted to code templates. This approach focus de-
velopment efforts on models and transformation, which can
be reused more easily than code.

The previous work has still several open issues. The SR
module of the DSML needs extensions to consider aspects
such as time or specific constraints. There are studies on



these issues but further work is required to integrate them.
The process needs to incorporate additional advice on how to
use the DSML and deal with the design. In particular, that de-
sign should be consistent with the expected semantics of the
DSML. Finally, additional experiments are needed with other
works and target platforms to validate the approach. Specifi-
cally, the combination of road traffic theories and services for
SRs taking advantage of the potential of the DSML described
here (it is a general purpose traffic DSML adapted to SRs) is
another important next step to consider.

Acknowledgments
This work has been done in the context of the project Social
Ambient Assisting Living - Methods (SociAAL) (TIN2011-
28335-C02-01) supported by the Spanish Ministry for Econ-
omy and Competitiveness. Also, we acknowledge support
from the Programa de Creacin y Consolidacin de Grupos de
Investigacin (UCM-BSCH GR35/10-A).

References
[Amditis et al., 2010] Angelos Amditis, Katia Pagle,

Somya Joshi, and Evangelos Bekiaris. Driver–vehicle–
environment monitoring for on-board driver support
systems: Lessons learned from design and implementa-
tion. Applied Ergonomics, 41(2):225–235, 2010.

[Argente et al., 2009] Estefanı́a Argente, Ghassan Beydoun,
Rubén Fuentes-Fernández, Brian Henderson-Sellers, and
Graham Low. Modelling with agents. In Agent-Oriented
Software Engineering X, pages 157–168. Springer, 2009.

[Axtell and Epstein, 1994] Robert L Axtell and Joshua M
Epstein. Agent-based modeling: understanding our cre-
ations. The Bulletin of the Santa Fe Institute, 9(2):28–32,
1994.

[Bellifemine et al., 2007] Fabio Luigi Bellifemine, Giovanni
Caire, and Dominic Greenwood. Developing multi-agent
systems with JADE, volume 7. John Wiley & Sons, 2007.

[Fernandez-Isabel and Fuentes-Fernandez, 2015] Alberto
Fernandez-Isabel and Ruben Fuentes-Fernandez. Devel-
oping an integrative modelling language for enhancing
road traffic simulations. In Computer Science and Infor-
mation Systems (FedCSIS), 2015 Federated Conference
on, pages 1745–1756. IEEE, 2015.

[Figueiredo et al., 2001] Lino Figueiredo, Isabel Jesus,
JA Tenreiro Machado, J Ferreira, and JL Martins
De Carvalho. Towards the development of intelligent
transportation systems. In Intelligent Transportation
Systems, volume 88, pages 1206–1211, 2001.

[Fuentes-Fernández et al., 2009] Rubén Fuentes-Fernández,
Marı́a Guijarro, and Gonzalo Pajares. A multi-agent
system architecture for sensor networks. Sensors,
9(12):10244–10269, 2009.

[Fuentes-Fernández et al., 2012] Rubén Fuentes-Fernández,
Samer Hassan, Juan Pavón, José M Galán, and Adolfo
López-Paredes. Metamodels for role-driven agent-based
modelling. Computational and Mathematical Organiza-
tion Theory, 18(1):91–112, 2012.

[Karpiriski et al., 2006] M Karpiriski, Aline Senart, and
Vinny Cahill. Sensor networks for smart roads. In Per-
vasive Computing and Communications Workshops, 2006.
PerCom Workshops 2006. Fourth Annual IEEE Interna-
tional Conference on, pages 5–pp. IEEE, 2006.

[Kent, 2002] Stuart Kent. Model driven engineering. In In-
tegrated formal methods, pages 286–298. Springer, 2002.

[Kotusevski and Hawick, 2009] G Kotusevski and KA Haw-
ick. A review of traffic simulation software. Computer Sci-
ence. Institute of Information and Mathematical Sciences,
Massey University, 2009.

[Luoma et al., 2004] Janne Luoma, Steven Kelly, and Juha-
Pekka Tolvanen. Defining domain-specific modeling lan-
guages: Collected experiences. In 4 th Workshop on
Domain-Specific Modeling, 2004.

[Pavón et al., 2005] Juan Pavón, Jorge J Gómez-Sanz, and
Rubén Fuentes. The ingenias methodology and tools.
Agent-oriented methodologies, 9:236–276, 2005.

[Pavón et al., 2011] Juan Pavón, Jorge Gómez-Sanz, and
Adolfo López Paredes. The sicossys approach to sos engi-
neering. In System of systems engineering (SoSE), 2011
6th international conference on, pages 179–184. IEEE,
2011.

[Pursula, 1999] Matti Pursula. Simulation of traffic systems-
an overview. Journal of Geographic Information and De-
cision Analysis, 3(1):1–8, 1999.

[Schmidt, 2006] Douglas C Schmidt. Model-driven engi-
neering. COMPUTER-IEEE COMPUTER SOCIETY-,
39(2):25, 2006.

[Shinar, 1978] David Shinar. Psychology on the Road. The
Human Factor in Traffic Safety. John Wiley & Sons, 1978.

[Smolander, 1993] Kari Smolander. Goprr: a proposal for a
meta level model. University of Jyväskylä, Finland, 1993.

[Steinberg et al., 2008] Dave Steinberg, Frank Budinsky,
Ed Merks, and Marcelo Paternostro. EMF: eclipse model-
ing framework. Pearson Education, 2008.

[Sun et al., 2006] Zehang Sun, George Bebis, and Ronald
Miller. On-road vehicle detection: A review. Pattern
Analysis and Machine Intelligence, IEEE Transactions on,
28(5):694–711, 2006.

[Vangheluwe and De Lara, 2004] Hans Vangheluwe and
Juan De Lara. Computer automated multi-paradigm
modelling for analysis and design of traffic networks. In
Proceedings of the 36th conference on Winter simulation,
pages 249–258. Winter Simulation Conference, 2004.

[Varaiya, 1993] Pravin Varaiya. Smart cars on smart roads:
problems of control. Automatic Control, IEEE Transac-
tions on, 38(2):195–207, 1993.

[Wang et al., 2006] Fei-Yue Wang, Daniel Zeng, and Li-
uqing Yang. Smart cars on smart roads: an ieee intelli-
gent transportation systems society update. IEEE Perva-
sive Computing, (4):68–69, 2006.


