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ABSTRACT
As learning robots and smart devices become common house-
hold occurrences, their users will be required to invest more
time to train them on the details specific to their household
and lifestyle. This burden of personalization may eventually
become a roadblock to the adoption of smart devices and
robots. We are interested in reducing the burden of per-
sonalization by leveraging learned information from other
households. However, machine learning methods incorpo-
rating such data will require smart recontextualizations that
can map the preferences from a collection of similar users
onto the user’s own household space. We present several
collaborative filtering based methods to solve the problem
of a robot organizing the items in a kitchen for their user:
a traditional collaborative filtering method based on prior
work incorporating user’s item–item distance ratings, and a
context-aware collaborative filtering method, which enables
direct learning of item–location ratings. We present results
on user-annotated kitchens.

CCS Concepts
•Information systems→Recommender systems; •Applied
computing → Command and control;
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1. INTRODUCTION
As learning robots become common household items, peo-

ple will be required to train their robot on the details specific
to their household and lifestyle. In the context of house-
hold automation, smart devices like the Nest thermostat
can learn user’s preferred heating and cooling schedules from
tracked manual inputs [11]. Even more so than smart de-
vices, robots will need to learn significantly larger amounts
of household information, putting a substantial burden on
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the user for training. As this burden of personalization be-
comes more commonplace in home automation and robotics,
users may find themselves investing more and more time into
training their smart devices and robots. We are interested in
reducing the burden of personalization by leveraging learned
information from other households.

The challenge lies in the inability to directly transfer learned
information from one household to another, due to unique-
ness of household designs, schedule, demographics and com-
position of the household members, and the combined pref-
erences of all users interacting with the system. Therefore,
it is important to identify certain contextual facets of the
learning problem to work on.

We consider one such personalization problem in the area
of household robotics: the problem of a robot tasked with
learning the organization of items in a user’s kitchen like
putting away groceries or the items from a dishwasher. Ask-
ing for the location of every item would be time consuming—
possibly more so than having the person put away the items
themselves. Therefore, we were motivated to design an algo-
rithm that leverages the organization of other users’ kitchens
to help predict the user’s organization of items.

In the context of videos, products, and news articles, col-
laborative filtering techniques used for recommender sys-
tems have been developed to transfer the experience of other
users to help identify items a target user would find desir-
able. Typically, these techniques predict ratings of user-
item pairs, that is, how would a given user rate an item
based on their past ratings [18]. Recently, context has been
incorporated into recommender systems to improve their
performance—a crucial element for our application.

Context-aware collaborative filtering, for example as pre-
sented by Panniello et al. [12] and Rendle et al. [17], as-
sumes that more information exists that predicts or informs
a user’s choice of ratings than just the item itself. Context
may include information about the user or about the item
being rated. In the case of household organization, the con-
text can include the set of possible locations, the identities
of the items known to be in those locations, or categori-
cal information related to the items and locations. For this
application, we envision a robot with sufficient perceptual
abilities to identify these pieces of context.

One of our proposed methods employs a context-based
recommender system, factorization machines (FMs) [15], to
predict a user’s item–location ratings—the degree of accept-
ability of the placement of a given item at a given location
in a kitchen. In contrast, we also present an alternative col-
laborative filtering method that predicts locations based on
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the item’s predicted rating distance to items already placed
in that location, which builds directly on prior work [1]. The
important difference is, while the previous collaborative fil-
tering technique required explicit item–item ratings, the FM
method enables direct predictions of item–location ratings,
which can even be boosted by learning on the contextual
features of these variables.

We present data collected from participants on Amazon
Mechanical Turk who annotated kitchens with locations of
items. We describe several methods for enabling a learning
robot to predict item–location ratings for novel users from
this data. We also discuss how these ratings can be used
in an interactive system that attempts to find a trade-off
between asking the user for the correct input and making
a wrong choice. We demonstrate results on a collection of
user-annotated, simulated kitchen examples.

2. RELATED WORK
Researchers have long argued that user interfaces can ben-

efit from learning from their users [10]. However, devices in
the home like the Nest thermostat [11] require a significant
amount of learning effort. Yang et al. [21] reported that
early users struggled with understanding what the Nest ther-
mostat learned and that these users found it hard to override
its learned behavior.

Home organization is a good example of a task that both
exhibits strong user preferences and is highly desirable to
automate. Several researchers found that cleaning and or-
ganization are the top two tasks users most want robots to
do [20, 4]. Pantofaru et al. [13] argue that, unlike clean-
ing tasks, organization is “nuanced and emotional.” They
also found that, even if they could afford the help, many
people will not hire human assistants to organize their be-
longings because it is too personal of a problem. Therefore, a
robot learning this task must tread carefully by weighing the
cost of requiring too many user interactions and misplacing
items.

Several researchers in the robotics community have begun
to look at placing and organizing items. Cha et al. [5] ex-
amined methods for predicting locations of items in a user’s
kitchen from other items in the kitchen. Using item-related
features like item-type and use, they found that a Support
Vector Machine classifier (SVM) performed the best in their
domain.

However, in collaborative filtering, SVM methods are of-
ten disregarded due to their poor performance on sparse
datasets. We present as a baseline a Support Vector Re-
gression method that struggles on the full data set when
considering individual locations, but performs better only
over item and location features. However, our proposed so-
lutions still outperform this SVR method.

Fisher et al. [6] presented a probabilistic model that can
generate plausible scenes of items from user-provided ex-
amples. Leveraging a larger scene database, they can create
arrangements of novel items suitable for the user. Collabora-
tive filtering methods extend beyond this type of generative
model by incorporating preferences of other users to predict
given user’s preferences. Jiang et al. [7] discuss a method for
placing items optimizing for stable and semantically relevant
locations, but do not capture a user’s preferences for loca-
tions among semantically identical locations. Schuster et al.
[19] learn organizational principles to place items into mean-
ingful locations, but do not make use of user preferences to

select locations. However, a robot utilizing our algorithms
could also easily incorporate these capabilities of identify-
ing free space and stable placement poses within the specific
location chosen by our prediction system.

The work by Abdo et al. [2] most closely mirrors the
contributions of our paper. They use collaborative filter-
ing techniques on item–item pair ratings and then approx-
imately solve a minimum k-cut problem to best group the
items from their predicted ratings. Using these groupings,
they then place the items into semantically identical bins or
shelves. We build on this work to solve the problem of pre-
dicting specific locations for items in a kitchen, as opposed
to just their general groupings. We present several methods
to solve this more general problem, including a method to
adapt their technique over collocation data to predict suit-
able locations. We further present a context-aware collab-
orative filtering technique that leverages item–item colloca-
tion information without its explicit representation in the
training data.

3. METHOD
Our proposed solutions predict a user’s preferred loca-

tions for items they want organized. It consists of two com-
ponents, a rating prediction collaborative filter and an al-
gorithm for producing the optimal location given a set of
location ratings produced from the collaborative filter.

There are two solutions we present here. The first builds
on previous work by using a collaborative filter to predict a
user’s item–item ratings – whether the two items should be
placed together or not. Predicting the correct location is a
matter of choosing the location which contains the item with
lowest distance rating to the item being placed for the eval-
uated user. The second uses a context-aware collaborative
filter to directly predict a user’s item–location ratings. The
predicted location is just the location with the minimum
item–location rating for the user.

We envision this work as a component in a robot’s back
and forth interactions with their users. To minimize the
number of interactions required at the risk of misplacing
objects, we also present a method for tuning the predictive
success of the location-prediction system by allowing the sys-
tem to choose to place based on its predicted value or ask
the user for the actual location.

4. RECOMMENDER SYSTEMS
Recommender systems are concerned with the problem of

predicting user–item ratings. That is, given user u, what
rating r ∈ R would they assign to the item i? For the
problem of household organization, we modify the problem
so that the system makes predictions on item–item ratings or
item–location ratings. This modification makes our problem
a variant of the classical recommender problem in that users
provide ratings on either item–item pairs or item–location
pairs.

Collaborative filtering is a category of methods for recom-
mender systems that seek to predict ratings for items novel
to a user from ratings of the items from similar users. The
typical input is a rating matrix R ∈ RM×N , where rows are
associated with the items, and the columns are associated
with users. Factorization methods attempt to generate a
lower dimensional representation to improve generalization.



As shown in Abdo et al. [2], we decompose this matrix into:

R = B + R̄ (1)

where B is a bias matrix that encodes the global bias, item
bias and user bias, and R̄ is the residuals matrix that the
collaborative filtering algorithm attempts to learn. We use
the L-BFGS minimization algorithm [9] to find the factoriza-
tion of the residual matrix and bias matrix that minimizes
the regularized squared error.

4.1 Context-aware recommender systems
Compared to classical recommender systems, context-aware

recommender systems assume that some additional informa-
tion exists that relates to the user’s choices of ratings. For
example, a user may choose a location based on the other
items already placed there or based on the location’s salient
features. We include information about the locations into
the context-based recommender, but our chosen context-
aware recommender also learns automatically information
related to item–item collocation to inform its predictions.

4.2 Factorization Machines
Rendle et al. [15] developed factorization machines to

make predictions in a model with all multi-degree interac-
tions among the context variables with sparse data in linear
time. For a system that models only interactions between
two variables at a time, the model equation is:

ŷ(x) := w0 +

n∑
i=1

wixi +

n∑
i=1

n∑
j=i+1

(vi · vj)xixj , (2)

where x is the input variable vector, w0 is the global bias,
w is the weights over x. (vi · vj) is the dot product of
vi and vj and models the interaction of the i-th and j-th
variable, where vi/j ∈ V is a factorized representation of
the weighting of xi/j .

Instead of estimating an individual weight parameter (wi,j ∈
R) for higher-order interactions (d ≥ 2), the factorization of
v enables modeling even under sparsity. Here, w0, w and
V ∈ Rn×k are the parameters to be estimated.

Context does not need to be explicitly represented because
it can be learned through the factorization of vi . Though
we show that the item–item collocation has very powerful
explanatory power, we do not need to represent that infor-
mation in the context variables. Instead, we include users,
items, locations and features, and the optimization of the
model will seek to explain these ratings appropriately.

Though the model presented in equation 2 suggests a so-
lution would require a run time of O(kn2) where k is the
number of dimensions and n is the number of context vari-
ables, they show this equation can be reformulated into a
linear solution with runtime complexity O(kn). Indeed, for
models with higher degrees of interactions, it can still be
refactored into a linear time solution.

5. LOCATION SELECTION
One difficulty of choosing a correct location for an item

is that many locations in a kitchen are interchangeable and
are justifiable placement locations ignoring the current orga-
nization. A user’s preferred organization therefore requires
the robot to identify the most likely location from existing

item placements and physical suitability of the location for
the item.

For our work, we chose to code ratings as 0.0 being a pos-
itive example and 1.0 as a negative example, though the re-
verse – 0.0 for negative and 1.0 for positive – is equally valid.
For item–location pairs, a rating, r(i, l) = 0.0 indicated the
item is in the preferred location and 1.0 indicated it is not.
For item–item pairs, a rating, r(i, i′) = 0.0, indicated the
items should be located together. Rating predictions pro-
duced by the collaborative filtering methods are real valued
approximately in the range of [0, 1].

5.1 Choosing a Location from Item–Item Pairs
In our first approach, item–item ratings r(i, i′) are learned

from training input via a context-unaware collaborative fil-
tering technique [2]. Finding a suitable location for an item
in the kitchen then requires finding the location that results
in the best match to the item–item ratings. If a location is
empty, the method takes the mean pair rating as its default.

Formally, for items i, i′, j, j′ ∈ I = {i1, i2, · · · , im}, and
location l ∈ L = {l1, l2, · · · , ln} where i 6= i′ and j 6= j′, n is
the number of locations and m is the number of items, we
want to find the item–location rating Ritem–item summa-
rized from item–item ratings r(i, i′).

Ritem–item(i, l) =

{
mini′∈l r(i, i′) if ∃i′ ∈ l,
1

m2

∑
j∈I
∑

j′∈I r(j, j′) otherwise.

(3)
We then select the location with the lowest distance rat-

ing. We denote the event of item i being placed in location
l as i ∈ l and write the selected location as

l̂ = argmin
l

Ritem–item(i, l). (4)

5.2 Predicting Location Ratings through FMs
We use the factorization machine’s model to predict item–

location ratings. Each row in the input matrix includes con-
text variables for the user, item, location, and a location
category. For each provided example of an item–location
pairing in the input data, we assign a distance rating of 0.
We produce n−1 other ratings of value 1 for this same item
in all the other locations in the kitchen. Each location vari-
able is encoded uniquely for the user, even if in experiments
different users annotated the same kitchens.

In Equation 5, we show the context variable vector we
used in our dataset. Each context variable is assigned a
value of 1 when active and 0 otherwise. In our notation, u is
a user, ii is an item, lj is location, and Φ(l) are the feature
values over the active location variable l:

x = {u1, · · · , uU , i1, · · · , im, l1, · · · , ln,Φ(l)}. (5)

Because the model directly learns item–location ratings
Ritem–location(i, l) = r(i, l), we can find the location with
the lowest distance rating:

l̂ = argmin
l

Ritem–location(i, l). (6)



Figure 1: A hierarchical clustering of 111 kitchen items and their mean pair ratings. Groups were colored
for distances less than or equal to 4

5.3 Combination Method
Both techniques, predicting via item–item pairs and item–

location pairs, provide ratings for an item in a location. We
can combine the two values in a number of ways. We chose
harmonic mean to capture information provided by both
ratings without being unduly influenced by the relative offset
biases between the two types of ratings.

l̂ = argmin
l

(
2.0Ritem–location(i, l) ∗Ritem–item(i, l)

Ritem–location(i, l) + Ritem–item(i, l)

)
.

(7)

6. DATA COLLECTION
To create a data set with maximum opportunities for gen-

eralizing between users, we were interested in finding a col-
lection of items that many people would be familiar with
and would have in their households.

6.1 Finding common kitchen items
To create our item set, we began by pulling a list of rec-

ommended cooking items from ‘How to Cook Everything’ by
Bittman [3]. Their recommended items consisted of cooking
tools and basic foods useful for cooking a variety of recipes.
We also examined the list of items identified by Cha et al. [5]
in their CMU kitchen dataset. They surveyed several house-
holds and annotated all the items found in their participants’
kitchens. We merged the items across these sources and re-
moved duplicates—items that we judged to be the same as
an item already in the list—and were left with 398 items.
We replaced items commonly found in a container, like sea-
sonings, oils or other liquids, with the appropriate container
of that item (‘olive oil’ became ‘a bottle of olive oil’).

We randomly split the selected items into surveys of 10
items, and one survey of 8 item and asked participants on
Amazon Mechanical Turk if they had any of the items in
their household kitchen. For each survey, we collected 20
responses. Participants were allowed to answer as many
different surveys as they chose (min: 1, max: 30, mean:
10.5). No one participant completed all the surveys.

From the full set, we selected the items at least 85% of
respondents indicated were in their households, producing a

Figure 3: Diagram of a kitchen with numeric labels.

list of 111 items to be used for location annotations.

6.2 Kitchen annotations
We were provided four kitchen layouts from the authors

of the CMU Kitchen Dataset. We labeled each drawer, cab-
inet, refrigerator, freezer and counter with a unique numer-
ical identifier. Figure 6.2 shows one of the labeled kitchen
images we provided for a survey. We created four different
surveys, each with a different labeled kitchen. We asked par-
ticipants to assign locations in their labeled kitchen for all
111 items. Participants were asked not to respond to more
than one survey. For the participants who took multiple sur-
veys, we only kept responses to their first. We received 25
responses to each survey. We removed three responses from
two groups due to duplication of users. Ten participants
from the previous task also completed this one.

To summarize patterns in how objects were placed closely
to one another, we built the hierarchical clustering of item–
item pair distances shown in Figure 1. Over all users, and
for each item–item pair, we computed the fraction of times
the items were not placed together. Groups of items with
distances less than or equal to 4 are given unique colors
in the diagram. The figure illustrates that items fall into
clear categories in their placement around the kitchen. For
example, ‘a glass cup’, ‘a large glass’, ‘a cup’, ‘a mug’, and
‘a large coffee mug’ were commonly placed together.



Figure 2: Prediction accuracy versus the number of probes for several different learning methods.

7. EXPERIMENTS
From the data presented in Section 6.2, we created four

sets of training and testing data by assigning data collected
for three kitchens to training and the fourth to testing. Even
though many people annotated the same kitchen, we used
a variable for a location unique to each user. For each item
and location in a kitchen, we created a collocation data set
by indicating for each item–location pair in the original data
set whether it was found with one of the other 111 items.
That is, we changed the data lines from rating–item–location
to rating–item–item–location. We set the associated rating
to 0.0 if the two items were found together in the location
and 1.0 otherwise.

For the item–location dataset, probes were drawn from the
testing data. For each user in the testing data, we selected
a random set of items and moved the ratings of that user
for those items to the training dataset. We used the same
sets of items for the collocation dataset and created a set of
probes for all item pairings in this set of items.

7.1 Model configuration
We trained the factorization-machine model (FM) using

libFM [16] on the training data to produce predictions for
each user–item–location in the testing dataset. We used
adaptive stochastic gradient descent with a learning rate of
0.03, a sampling standard deviation of 0.1 and 30 for the
number of dimensions of the model. The item–location tuple
with the lowest predicted rating was chosen as the predicted
location of the item.

For the data-driven factorization method (DD), we trained
the collaborative filter on the collocation training dataset
without the additional probes. The probes were then used
to update the model through the new-user update method
presented by Abdo et al. [2]. As done in their work, we
also built our model with three dimensions for the factor-
ization. The limited memory BFGS minimization algorithm
from SciPy [8] was used to find the optimal variables, with
a stopping criteria ‘factr’ set to 10.

We included a support vector regression (SVR) model
to predict ratings from the dataset. The SVR model was
trained on the item–location data set. We used the imple-
mentation provided in scikit-learn [14]. The user columns
of the item–location dataset were removed to reduce sparse-
ness. We used a radial basis function kernel, with the default
gamma of 1

N
where N is the number of features. The stop-

ping tolerance was set to 0.0001, and no shrinkage was used.
We trained both SVR models and one FM model with

features. For both, we included features about the locations
describing the location type: drawer, low cabinet, high cabi-
net, counter, refrigerator, freezer. Additionally, for the SVR
models, we also included item features related to the use of
the item: edible, drinkable, food storage, etc.

For the combined model, we used the FM model trained
with features and the DD method discussed above.

7.2 Results
Figure 2 presents the predictive success of the non-probe

items in the testing dataset for two FM models, a data-
driven factorization model over item collocation data (DD),
a model combining the FM model and DD model (DD FM
Combined), and two SVR models. We measured predictive
success as the fraction of times the model predicted the cor-
rect location a user chose to place an item.

For the two FM models, we present a model trained as
we described in previous sections (FM), and also a model
trained on these variables but without location features (FM,
no features). For the two SVR methods, we show the results
of one model trained using location variables (SVR) and one
without (SVR, no location). We show results for different
fractions of items used as probes, specifically 0, 1

4
, 1

2
and

3
4
, corresponding to 0, 28, 56, and 83 probes out of the 111

total items.
As seen in this graph, the proposed methods perform quite

strongly for this difficult task. Even with no information
about a current user (0 probes), the FM and DD FM com-
bined model can correctly predict a significant fraction of
locations for that user. The FM, no features and the DD
methods perform strongly when probes are available, but
reduce to random guessing when 0 probes are used. This is
due to the limitations of collaborative filtering without ad-
ditional contextual information. Without any information
from the user, the base performance is generally quite poor.

The FM models both performed strongly over a wide range
of probes. Both of the FM models were trained without ex-
plicit collocation data, yet both performed as well as the
data-driven model, implying that the FM model is correctly
learning the importance of item–item pairings for prediction.
Indeed, the success of the DD method to predict locations
when probes were available illustrates the importance of the
inherent item–item affinities presented earlier.



Figure 4: Predictive success versus the fraction of
testing that did not meet the minimum required
threshold for placement. Lower fractions imply
more locations were chosen, with less placement con-
fidence.

The DD FM Combined model outperformed the FM mod-
els and the DD model by themselves when probes are pro-
vided. It combined the learning of the FM model on loca-
tion features with the high accuracy of item–item ratings
provided by the DD model.

Both SVR methods performed worse than the proposed
solutions regardless of the number of probes presented. The
SVR method trained with locations performed especially
poorly. The locations were uniquely encoded for each indi-
vidual user, which created a highly sparse input that posed
difficulty to this method. By excluding locations, the SVR
no locations method performed better because this input is
significantly less sparse. Regardless, the collaborative filter-
ing methods strongly outperformed the SVR methods.

7.3 Placement-versus-asking trade-off
An important design consideration for an interactive sys-

tem is the trade-off between placing an item incorrectly and
asking the user for the correct placement. We observed that
each algorithm places higher confident answers closer to the
ranges of their output. Therefore, we can enable systems to
ask questions for uncertain items by requiring a threshold
for ratings.

Figure 4 plots the success of each algorithm against the
fraction of items in the testing dataset that do not meet the
threshold for placement with 50% of probes already placed.
We normalized the predictions of each algorithm between 0
and 1 to simplify the comparison.

Data points at a fraction of 0 correspond to data pre-
sented in Figure 2 for 50% probes. The DD FM Combined
method remains among the strongest overall. Data for frac-
tions above 0.85 were not included because there are too few
data points for accurate predictive success.

8. CONCLUSIONS
In this work, we presented several methods for reducing

the burden of personalization that comes from users supply-
ing a learning system household organization preferences.
We collected data about the existence, pairing and location
of items in participants’ kitchens. We found that people
have a lot of items in common but also many unique items

not found in other kitchens. A system that recognizes a lo-
cation suitable for an item could easily still fail to match the
user’s preference for its location. In response, we presented
a solution that incorporates a user’s preferences but enables
an autonomous system to make use of perceivable features
of these locations when learning.

We showed that a context-based collaborative filtering
model called factorization machines is well suited to predict
item–location ratings. Choosing the appropriate location is
a simple task of finding the location with the best rating.
For interactive systems, we show the value in trading off
asking for a location versus placing it incorrectly.

Though household robotics entails a sizable burden of
personalization, this issue also plagues many other mod-
ern smart-household devices like thermostats and lighting.
Machine-learning methods that use data from other house-
holds in learning a user’s preferences will require smart re-
contextualizations that can map the preferences drawn from
a collection of different users onto the user’s own household
space. We envision these topics as bright areas of future
research.
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