
Towards Framing the Continuous Information Systems

Engineering

Marite Kirikova

Department of Artificial Intelligence and Systems Engineering, Riga Technical University,

Latvia
marite.kirikova@rtu.lv

Abstract. Necessity of continuous information systems engineering has been

understood already decades ago. However, up to know there are no clear guidelines

on the main constituents that must be present in frameworks that are used in

continuous information systems engineering settings. The FREEDOM framework

that roots in ideas of Viable Systems Model is one of the candidate frameworks for

continuous information systems engineering. By comparing the FREEDOM

framework to two other candidate approaches, some essential features for

frameworks that can address the continuous information systems engineering

peculiarities can be derived.

Keywords: Continuous information systems engineering, solution engineering,

design, continuous software engineering, System of Systems, V-model.

1 Introduction

In 1999, Herbert Weber in his extended abstract "Continuous Engineering of

Information and Communication Infrastructures" outlined several continuous

engineering problems that shall be solved [1]:

 The analysis of existing (legacy) software and documentation of its results

 The (re)integration of existing (legacy) systems into information and

communication infrastructures

 The conversion and transformation of existing (legacy) systems into renewed

information and communication infrastructure

During the last two decades all of these problems have been extensively addressed.

For instance, different approaches of legacy software analysis have been applied in

information systems reengineering [2,3], continuous integration has become one of

the well known terms of researchers and practitioners [4], and many conversion and

transformation approaches have been thought out [5]. However, the continuous

engineering challenge still remains. One of the reasons of complexity of the task are

dependencies between different objects of interest in the continuous systems change

process, which in [1] are described as structures around four categories of invariants

of different life times: Category 1 (indefinite life time) that encompasses standards for

formats of architectures and components); Category 2 (reduced life time)

encompasses standard platforms, interfaces and protocols; Category 3 (further

reduced life span) that encompasses data and information structures maintained by

information and communication infrastructure, as well as execution structures across

components of an information and communication infrastructures; and Category 4

(further reduced life time) that encompasses data and operations themselves. The

above-mentioned categories point to the high complexity of a continuous engineering

task. To handle this complexity, appropriate frameworks are needed to structure, to

simplify (but do not oversimplify), and give means for controlling the systems and

their development process still allowing for the decent degree of autonomy in both the

target systems performance and the systems development processes.

In the context of continuous requirements engineering the FREEDOM framework

was proposed [6]. In this paper the application of the FREEDOM framework for full

continuous information systems engineering process is discussed, and the FREEDOM

framework is compared to two other candidate approaches for continuous

engineering. Thus, the purpose of this position paper is to promote the discussion on

essential features of frameworks and reference models that are suitable for handling

complexity of continuous information systems engineering. As mentioned already in

[1], in continuous information system engineering it is important to follow

continuously changing needs of business and also have built-in provision for later

changes of information systems (having proper knowledge, information, and data)

about different artifacts created during systems development).

As will be discussed further in Section 2, the FREEDOM framework theoretically

can help to manage several of above-mentioned challenges. Therefore, in Section 3, it

will be taken as the base for comparison with two other approaches that are used in

the context of continuous engineering. Essential features of frameworks for

continuous information systems engineering are summarized in this section, too. Brief

conclusions are presented in Section 4.

2 The FREEDOM Framework for Continuous Information

Systems Engineering

The FREEDOM framework was proposed for the purpose of continuous requirements

engineering [6]. It has the following main constituents (see Figure 1): F – Future

representation, R – Reality representation, E1 – requirements Engineering, E2 –

fulfillment Engineering, D – Design and implementation, O – Operations, and M –

Management. For the framework to be used in the whole information systems

engineering context, more relationships should be considered. This issue will be

described in more detail at the end of this section.

The constituents of the FREEDOM framework should be viewed as functions with

changeable granularity, e.g., E2 – fulfillment Engineering can be fully "moved into

(inside of)" E1 – requirements Engineering, and form function EE – requirements

Engineering and fulfillment Engineering (see the first row in Table 1); or D – Design

and implementation can be fully "moved into" E – fulfillment Engineering and form

function ED – fulfillment Engineering, Design and implementation; and so forth.

F – Future representation is the constituent of the framework that is responsible

for representation of the To-Be situation, i.e., the representation of a vision of the

target system in its context. Artifacts that are developed by this function are mainly

different enterprise models [7,8], enterprise architecture development artifacts [9],

project plans, design documents, and even results of predictive analytics [10] that

represent and characterize an envisioned future situation. These artifacts may be

developed by F itself and also can be contributed by other constituents of the

FREEDOM framework (see the light green arrow in Figure 1). Therefore, all blue

colored functions are related to the F. It is not shown in Figure 1, however, can be

seen in Table 1 and in [11].

Fig. 1. FREEDOM framework for continuous requirements engineering, proposed in [6]

R – Reality representation is responsible for all artifacts that represent the present

(As-Is) situation. The types of these artifacts are similar to those of F, with just the

difference that here the information is about the current situation. Like in F, the

contents may be developed by R itself or by other constituents of the FREEDOM

framework. Therefore, all blue colored functions are related to the R. It is not shown

in Figure 1, however, can be seen in Table 1 and in [11]. Information available in

databases, warehouses, and other IT systems also may belong to R. The mapping and

traceability between F and R is to be established and maintained.

E1 – requirements Engineering is the function dedicated to the model and tool

based acquisition and management of high quality requirements that can be used by

functions on the right from E1. E1 to a large extent can help to meet the challenge

mentioned in the previous paragraph. It also can richly contribute to F and R.

E2 – fulfillment Engineering is the function that takes care of handling project

portfolios that would lead to the fulfillment of stated requirements. This is the

function that introduces branching in the model. Details of the branching are outside

the scope of this paper. Despite it is common to put the design next to the

requirements engineering [12], to take into consideration that the requirements

engineering, design, and implementation often are distributed and overlapping, and

include cross-cutting concerns, e.g., security [13,14]; the engineered process(es) are

needed to ensure their continuous alignment, flexibility, and quality.

Table 1. Some variations of framework granularity

 E1 and E2

merged in one

process

 E1, E2, and D

merged in one

process

 D and O merged

in one process

(rarely possible)

 E2 and D merged

in one process

 E1, E2, D, and O

merged in one

process (rarely

possible)

In simpler cases E2 can be included in (merged with) E1 or it can include (be

merged with) D (see Table 1).

D – Design and implementation is the function that produces the design and

handles implementation of the target system. The border between the design and

implementation may be more or less strict depending on the fulfillment strategies,

methods, chosen lifecycles, and guidelines established in E2.

O – Operations regard the actual operation of the implemented system, including

its maintenance.

M – Management refers to all levels of management under which the target system

operates. The management can influence both the reality and its representation

function R (see brown arrow in Figure 1) and the future vision and its representation

function F (see light green arrow in Figure 1).

It is assumed that knowledge continuously propagates from E1 towards O in a

managed and transparent way. It is also assumed that each function can acquire

information from other functions and can provide feedback to other functions. The

management function can provide direct requests for actions to all other functions

(Figure 1 shows it only for E1). All functions can have the capability to acquire

information from the wider external environment beyond the reach of F and R (shown

only for E1 in Figure 1). In the remainder of this section we will look more closely at

how E1 deals with information, however, the same considerations apply to E2, D,

and O.

We use term "information relationships" when referring to linkages between

different functions of the FREEDOM framework. For requirements Engineering (E1),

the "information relationships" are represented in Figure 1. Here the information and

knowledge flows between F and other elements of the framework, R and other

elements of the framework, and some other "information relationships" (see Table 1)

are not shown for the sake of clarity of representation.

In the framework concerning E1 the following information relationships must exist

to ensure continuous information systems engineering:

 Knowledge forward propagation from requirements Engineering to other

constituents of the model: E1→E2, E1→D, E1→O, E1→M (these relationships are

not shown in Figure 1), E1→R and E1→F (shown in Figure 2). In other words, the

direct knowledge flow from E1 to other FREEDOM constituents must be ensured.

 Knowledge supply from F and R: both future representations and reality

representations should be available for E1 (see Figure 1).

 Feedback information from all constituents of the framework: F→E1, R→E1,
E2→E1, D→E1, O→E1, M→E1. By feedback information we understand here

evaluative information about activities or artifacts of E1.

 Information to be acquired by monitoring, applying analytics (maa) to, and

auditing other constituents of the framework, namely, F, R, E2, D, and O, as well

as by monitoring and applying analytics (ma) to the wider external environment

(as requirements engineering should be aware of scientific discoveries, new

available technologies, competitive solutions, etc.).

 Requests from management (M), which can directly provide information about

necessary deliverables of E1 (dark green arrow in Figure 1).

The same scope of information relationships applies to other functions of the

FREEDOM framework. The above list of these relationships shows the spectrum of

information handling variability in continuous information systems engineering.

Taking into consideration this spectrum, it is clear that, first, continuous information

systems engineering has to deal with complex information handling tasks; second,

handling of these tasks requires appropriate IT tool support; and, third, the handling of

the information will require manual, semi-automatic, and fully automatic functions.

Further discussion on these issues is beyond the scope of this paper.

Another issue to be taken into consideration is the fact that the structure

(granularity of constituents – see Table 1) of the FREEDOM framework can change

according to particular enterprise and project situations. This may require a different

number of constituents with which the "information relationships" are established, but

it should not exclude any of the relationships mentioned in the list presented above.

3 A Comparison of Candidate Approaches

In this section we will compare two approaches, which could be considered as

candidate ones for continuous information systems engineering, to the FREEDOM

framework and try to derive essential features or elements of the continuing

information systems engineering by analyzing commonalities and differences

between these approaches and the FREEDOM framework. One approach

(Section 3.1) is chosen by focusing on “engineering”, another one (Section 3.2) – on

focusing on “continuous” as the base concepts of interest.

3.1 The FREEDOM Framework vs. SoS V-Model

The V-model is one of the most known approaches in systems engineering [15].

Taking into consideration that in continuous information systems engineering it is

necessary to deal with changes in multiple related systems (subsystems) with different

frequency [1], the application of V-model to system of systems (SoS V-Model) is

considered [15]. In [15] SoS breakdown structure is represented as the generic triple

Product, Processes, and People that is fractally nested for all subsystems of the

product, i.e., each product again is represented by Product, Processes and People of a

smaller scale. SoS V-Model is an application of V-Model at each level of systems

breakdown structure. To compare the FREEDOM framework and SoS V-Model we

will use three artifacts from [15], namely, the original V-Model with additions, SoS

V-Model, and the representation of technical baselines, documents, reviews, and

audits for SoS.

Table 2 in the first column represents constituents of (SoS) V-Model, in the second

column it shows corresponding elements of the FREEDOM framework The

constituents of the V-Model are artifacts and/or functions: the FREEDOM framework

represents just functions. Thus, in case of SoS V-Model artifacts, the functions, in

which the FREEDOM framework generates a particular artifact, are represented in the

second column. The sequence of V-Model elements is from left-down to up-right with

the "Fabricate, Assemble, Code" as the bottom element. In Table 2 only the elements

of V-Model are shown. The relationships between elements are considered separately

in Table 3. From Table 2 we can see that the FREEDOM framework has

corresponding elements to all constituents of SoS V-Model. However, the level of

detail is different. Thus, for the integration and verification branch that consists of

four elements in V-Model, the FREEDOM framework has just two functions D and

R. This may be viewed as non-sufficient distinction between Design and

Implementation in the FREEDOM framework. Still this may be compensated by

recursive application of the FREEDOM framework for function D (Design and

implementation).

Table 2. SoS V-Model and FREEDOM (components)

SoS V-Model constituents FREEDOM constituents

V-Model (Decomposition and

definition): User Requirements, System

Concept, Validation Plan)

E1 (requirements Engineering), F (Future

representation)

V-Model (Decomposition and

definition): System Specification and

Verification Plan

E1 and/or E2 (fulfillment Engineering) and/or D

(Design and implementation) depending on the

organizational procedures and systems

development methodologies (approaches in use)

V-Model (Decomposition and

definition): Configuration item (CI)

"Design-To" specifications and

Verification Plan

E1 and/or E2 and/or D depending on the

organizational procedures and systems

development methodologies (approaches in use)

V-Model (Decomposition and

definition): "Build-To" Specifications

and Verification Procedures

E1 and/or E2 and/or D depending on the

organizational procedures and systems

development methodologies (approaches in use)

V-Model: Fabricate, Assemble, Code D (Design and implementation), to some extent R

(Reality representation)

V-Model (Integration and verification):

Inspect to "Build-To" Specifications
D (Design and implementation), to some extent R

(Reality representation)

V-Model (Integration and verification):

Assemble CIs and Verify to

Specifications

D (Design and implementation), to some extent R

(Reality representation)

V-Model (Integration and verification):

Integrate System and Verify to

Specifications

D (Design and implementation), to some extent R

(Reality representation)

V-Model (Integration and verification):

Validate System to User Requirements

D (Design and implementation), to some extent R

(Reality representation)

SoS V-Model breakdown structure:

(System V-Model (Subsystem 1 V-

Model (Sub-subsystem 1.1. V-Model

(...)...)...)

In SoS V-Model, the V-Model is

applied to each level in the system

(product) breakdown structure.

FREEDOM breakdown structure:

F(F(F(...)RE1E2DOM)R (FRE1E2DOM

...)E1...E2...D...O...M...)

In the FREEDOM framework, the framework can

be applied to any product produced by any

functions of the framework at any decomposition

level of functions or products produced by them.

 Elements of the FREEDOM framework not

addressed by SoS V-Model:

O (Operations), M (Management), R (Reality

representation) only partly supported

Table 3. SoS V-Model and FREEDOM (linkages)

SoS V-Model linkages FREEDOM linkages

Information propagation from User

Requirements, System Concept, Validation

Plan to System Specification and

Verification Plan to Decomposition and

definition to Configuration item (CI)

"Design-To" specifications and Verification

Plan to "Build-To" Specifications and

Verification Procedures to Fabricate,

Assemble, Code

Knowledge forward propagation from

requirements Engineering to other

constituents of the model: e.g., E1→E2,

E2→D, E1→O, E1→M E1→F (shown in

Figure 2). In other words, the direct

knowledge flow from E1 through other

consequential FREEDOM constituents

Knowledge supply from F and R also can be

considered.

Information propagation from Fabricate,

Assemble, Code to Inspect to "Build-To"

Specifications to Assemble CIs and Verify

to Specifications to Integrate System and

Verify to Specifications to Validate System

to User Requirements

No corresponding linkages exist in

FREEDOM Framework because of larger

granularity of the corresponding

functionality (see also Table 2). However, if

FREEDOM framework is considered as one

only branch model (no fulfillment

breakdown) the feedback links of

FREEDOM framework can be considered

here.

Verification links between "Build-To"

Specifications and Verification Procedures

and Inspect to "Build-To" Specifications;

verification links between Configuration

item (CI) "Design-To" specifications and

Verification Plan and Assemble CIs and

Verify to Specifications; verification links

between System Specification and

Verification Plan and Integrate System and

Verify to Specifications; validation links

between User Requirements, System

Concept, Validation Plan and Validate

System to User Requirements

No corresponding linkages exist in

FREEDOM Framework because of larger

granularity of the corresponding

functionality (see also Table 2). However, if

FREEDOM framework is considered as one

only branch model (no fulfillment

breakdown) the feedback links of

FREEDOM framework can be considered

here.

Audit (SoS breakdown) Audit (from left to right all linkages between

FREEDOM constituents and fractal

branching of FREEDOM framework)

Requirements, Functions and Preliminary

Design flow Down (SoS breakdown

structure)

Requirements flow forward via fulfillment

Engineering (E2)

Detailed design, Verification and

Validation Roll Up (SoS breakdown

structure)

Feedback links may be regarded in the flat

model, otherwise, no corresponding linkages

exist

 Links of the FREEDOM framework not

addressed by SoS V-Model:

Direct information flows between non-

sequential elements, e.g., E1→D, links to and

from O (Operations) and M (Management)

Monitoring links, analytics links

On the other hand, two constituents (O and M) of FREEDOM framework are not

considered by SoS V-Model, and R is only partly supported. That shows that the

FREEDOM framework is more related with the business domain than is SoS V-

Model.

The main question that arises from Table 2 is the following one “Is it necessary

always in continuous information systems engineering to explicitly show the

relationship between the developing requirements, developing design, and

implementation”? Similar concerns can be derived also from Table 3. Both SoS V-

Model and the FREEDOM framework are similar because they can be applied as

fractal structures recursively. The main difference is in granularity of some elements.

Only the FREEDOM framework is explicitly linked to the operations and

management and has means for environment and related functions monitoring and

analytics. Also it can be mentioned that the FREEDOM framework is more flexible

than SoS V-Model (see Table 1).

3.2 The FREEDOM Framework and Continuous Software Engineering

Roadmap and Agenda

In this subsection the FREEDOM framework is compared to the continuous software

engineering roadmap and agenda presented in [16] – further named “Continuous*”.

The comparison is reflected in Table 4.

Table 4. Continuous* and FREEDOM

Continuous* FREEDOM functions and linkages

Business strategy and planning:

Continuous planning

O (Operations) and M (Management)

Business strategy and planning:

Continuous budgeting

Not directly addressed, but budgeting can be

included as sub-function in O, M or other functions.

Development: Continuous integration D (Design and implementation)

Development: Continuous delivery D (Design and implementation)

Development: Continuous deployment D (Design and implementation)

Development: Continuous verification D (Design and implementation) with supplementary

information from E1 and E2

Development: Continuous compliance D (Design and implementation) with supplementary

information from E1 and E2, O, and M

Development: Continuous security E2, can be also included as a sub-function in all other

functions of the framework

Development: Continuous evolution E1 and E2

Operations: Continuous use O (Operations) and M (Management)

Operations: Continuous trust Not addressed in FREEDOM framework

Operations: Continuous run-time

monitoring

Monitoring relationships in FREEDOM framework

Improvement and innovation:

Continuous improvement

Links between O and E1 and M and E1

Improvement and innovation:

Continuous experimentation

Not directly addressed, but experimentation can be

included as a sub-function of the functions

Linkage between business strategy and

development

Forward and backward links between different

functions and M (Management)

Linkage between development and

operations

Forward and backward links between D and O

According to [16], the "*" in word Continuous* implies that different "continuous

activities" can emerge over time. All these activities can be positioned within a

holistic view as described in the first column of Table 4. Emerging over time reminds

of the categories of invariants of different life times discussed in [1]. Actually, none

of approaches explored in this paper provide clear tools for identifying and

positioning, and directly handling these invariants.

Continuous* and the FREEDOM framework have several commonalities,

however, the abstraction level of Continuous* is higher than that of the FREEDOM

framework – so the correspondence, therefore, is rather symbolic than practical. Both

frameworks differ from SoS V-Model as they have the monitoring activities or

relationships. Continuous* does not directly include Audit function, however, it might

be one of the means for ensuring Continuous security. Continuous* does not directly

include Analytics, however, it might be one of the means for Continuous strategy.

Nesting of Continuous* is quite taxonomy like which is a contrast to possibly fractal

nesting of SoS V-Model and the FREEDOM framework.

The comparison of three approaches presented in this section lets to see the

following evidences:

 The FREEDOM framework has a potential to be used for framing continuous

information systems development because it has means for addressing almost all

issues (handling trust is an exception) raised by engineering oriented approach

(SoS V-Model) and continuity oriented approach Continuous*. The FREEDOM

framework while not prescribing a transparent relationship between the design and

implementation can accommodate both strict engineering like V-Model [15] and

also widely used agile [17] approaches/methods/tools at arbitrary levels of

functional breakdown of the framework. The framework also has a high flexibility

for handling different development situations as shown in Table 1.

 The frameworks for handling continuous information systems engineering have to

deal with a number of complexities with respect to systems diversity, variability of

scope, methods, and change frequencies, differences in scope and project

granularity, and other issues. Thus, the frameworks should have both the means

for variability handling (branching) and the means for nested (also fractal)

functional breakdown maintenance.

 The frameworks for continuous information systems engineering have to

incorporate monitoring, audit, and analytics sub-functionality.

 The frameworks have to have explicit means for handling continuous integration,

delivery, deployment, verification, and testing (not explicitly addressed in the

FREEDOM framework), which most probably have to go hand in hand with

continuous representation of a system in scope breakdowns and linkages (can be

handled by F and R functions of the FREEDOM framework).

 There should be a transparent linkage between the information systems

development and organizational issues in the frameworks to ensure continuity in

alignment of business and information systems development.

 None of the approaches presented in this section clearly address time issues for

categories of continuous software development relevant invariants of different life

times [1]: Category 1 (indefinite life time) that encompasses standards for formats

of architectures and components); Category 2 (reduced life time) encompasses

standard platforms, interfaces and protocols; Category 3 (further reduced life

span) that encompasses data and information structures maintained by information

and communication infrastructure, as well as execution structures across

components of an information and communication infrastructures; and Category 4

(further reduced life time) that encompasses data and operations themselves.

4 Conclusions

This paper investigated complexity of framing continuous information systems

engineering by describing functions, linkages, and flexible modifications of the

FREEDOM framework and comparing this framework with two other candidate

approaches. The candidate approaches were selected so that one of them strongly

addresses systems engineering issues while another one strongly addresses continuity

issues.

The comparison of approaches gave an opportunity to reveal several evidences that

are essential in developing frameworks for continuous systems engineering.

The study presented in this paper has the following limitations: (1) only three

frameworks were analyzed and compared, while it would be possible to considered a

larger variety of frameworks and thus, possibly, find more evidences; (2) the

differences in granularity of frameworks were not discussed in detail; (3) the systems

development lifecycle perspective was not analyzed in detail; (4) it was not

investigated whether there are specific systems engineering situations where strongly

the preference should be given to a particular continuous systems engineering

framework.

Nevertheless, the presented comparison showed that the FREEDOM framework

has a potential to handle many engineering and continuity issues. It also showed that

the framework would benefit from the representation of more detailed selectable

variations of Design and implementation function and addressing time issues of

software development relevant invariants. To see how more detailed continuous

software development can be incorporated in the FREEDOM framework, in further

research it is intended to integrate some methods engineering techniques into the

FREEDOM framework.

Acknowledgment. This work is supported by the Latvian National research program

SOPHIS under grant agreement No.10-4/VPP-4/11.

References

1. Weber, H.: Continuous Engineering of Information and Communication Infrastructures. J-

P. Finance (ed.) FASE'99, LNCS 1377, pp. 22–29 (1999)

2. Fong, J.S.P.: Information Systems Reengineering, Integration and Normalization. In:

Information Systems Reengineering, Integration and Normalization, Springer, pp 1–29

(2015)

http://link.springer.com.resursi.rtu.lv/book/10.1007/978-3-319-12295-3

3. Von Detten, M., Platenius, M.C., Becker, St.: Reengineering Component-Based Software

Systems with Archimetrix. In: Software and Systems Modeling, vol. 13, Issue 4,

pp. 1239–1268 (2014)

4. Pouclet, R.: Pro iOS Continuous Integration, Springer (2014)

5. Zimmermann, A., Jugel, D., Sandkuhl, K., Schmidt, R., Schweda, C. Möhring, M.:

Architectural Decision Management for Digital Transformation of Products and Services.

In: Complex Systems Informatics and Modeling Quarterly, CSIMQ, Issue No. 6, pp. 31–

53 (2016)

6. Kirikova, M.: Continuous Requirements Engineering in FREEDOM Framework: a

Position Paper. Joint Proceedings of REFSQ-2016 Workshops, Doctoral Symposium,

Research Method Track, and Poster Track co-located with the 22nd International

Conference on Requirements Engineering: Foundation for Software Quality

(REFSQ 2016), March 14–17, 2016, Gothenburg, Sweden, vol. 1564. CEUR-WS.org

(2016)

7. Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise Modeling Tackling

Business Challenges with the 4EM Method, Springer (2014)

8. Seigerroth, U.: The Diversity of Enterprise Modeling – a Taxonomy for Enterprise

Modeling Actions. In: Complex Systems Informatics and Modeling Quarterly, CSIMQ,

No. 4, pp. 12–31 (2015), http://dx.doi.org/10.7250/csimq.2015-4.02

9. TOGAF® 9.1: Part II: Architecture Development Method (ADM). Introduction to the

ADM, 1999–2011, http://pubs.opengroup.org/architecture/togaf9-
doc/arch/chap05.html

10. Finlay, S.: Predictive Analytics, Data Mining and Big Data: Myths, Misconceptions and

Methods, Springer (2014)

11. Virmani, M.: Understanding DevOps & Bridging the Gap from Continuous Integration to

Continuous Delivery. Proceedings of INTECH 2015, IEEE (2015)

12. Richter, M., Flückiger, M.: User-Centred Engineering, Springer (2014)

13. Kaiser, B., Weber, R., Oertel, M., Böde, E., Monajemi Nejad, B., Zander, J.: Contract-

Based Design of Embedded Systems Integrating Nominal Behavior and Safety. In:

Complex Systems Informatics and Modeling Quarterly, CSIMQ, No. 4, pp. 66–91, ISSN

2255-9922 (2015), http://dx.doi.org/10.7250/csimq.2015-4.05

14. Schmitt, C., Liggesmeyer, P.: Getting Grip on Security Requirements Elicitation by

Structuring and Reusing Security Requirements Sources. In: Complex Systems

Informatics and Modeling Quarterly, CSIMQ, No. 3, pp. 15–34, ISSN 2255-9922 (2015),
http://dx.doi.org/10.7250/csimq.2015-3.02

15. Clark, J.O.: System of Systems Engineering and Family of Systems Engineering from a

Standards, V-Model, and Dual-V Model perspective, Systems Conference, 3rd Annual

IEEE, pp. 381–387. (2009),
http://dx.doi.org/10.1109/SYSTEMS.2009.4815831

16. Fitzgerald, B., Stol, K-J.: Continuous Software Engineering: A Roadmap and Agenda. In:

The Journal of Systems and Software (2015),
http://dx.doi.org/10.2016/j.jss.2015.06.063

17. Dinsoyr, T., Lassenius, C.: Emerging Themes in Agile Software Development:

Introduction to the Special Section on Continuous Value Delivery. In: Information and

Software Technology, 77, pp. 56–60 (2016)

http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Romain+Pouclet%22
http://dx.doi.org/10.7250/csimq.2015-4.02
http://pubs.opengroup.org/architecture/togaf9-doc/arch/index.html
http://pubs.opengroup.org/architecture/togaf9-doc/arch/toc-pt2.html
http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Steven+Finlay%22
http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Michael+Richter%22
http://link.springer.com.resursi.rtu.lv/search?facet-creator=%22Markus+Fl%C3%BCckiger%22
http://dx.doi.org/10.7250/csimq.2015-4.05
http://dx.doi.org/10.7250/csimq.2015-3.02
http://ieeexplore.ieee.org.resursi.rtu.lv/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Clark%2C%20J.O..QT.&newsearch=true
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/articleDetails.jsp?arnumber=4815831&newsearch=true&queryText=.QT.v%20model.QT.
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/articleDetails.jsp?arnumber=4815831&newsearch=true&queryText=.QT.v%20model.QT.
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/mostRecentIssue.jsp?punumber=4813824
http://ieeexplore.ieee.org.resursi.rtu.lv/xpl/mostRecentIssue.jsp?punumber=4813824
http://dx.doi.org/10.1109/SYSTEMS.2009.4815831

