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ABSTRACT 
Background:  Automatic identification of gene and protein 
names from biomedical publications can help curators and re-
searchers to keep up with the findings published in the scientific 
literature. As of today, this is a challenging task related to infor-
mation retrieval, and in the realm of Big Data Analytics.  
Objectives: To investigate the feasibility of using word embed-
dings (i.e. distributed word representations) from Deep Learning 
algorithms together with terms from the Cardiovascular Disease 
Ontology (CVDO) as a step to identifying omics information en-
coded in the biomedical literature. 
Methods: Word embeddings were generated using the neural 
language models CBOW and Skip-gram with an input of more 
than 14 million PubMed citations (titles and abstracts) corre-
sponding to articles published between 2000 and 2016. Then 
the abstracts of selected papers from the sysVASC systematic 
review were manually annotated with gene/protein names. We 
set up two experiments that used the word embeddings to pro-
duce term variants for gene/protein names: the first experiment 
used the terms manually annotated from the papers; the second 
experiment enriched/expanded the annotated terms using terms 
from the human-readable labels of key classes (gene/proteins) 
from the CVDO ontology. CVDO is formalised in the W3C Web 
Ontology Language (OWL) and contains 172,121 UniProt 
Knowledgebase protein classes related to human and 86,792 
UniProtKB protein classes related to mouse. The hypothesis is 
that by enriching the original annotated terms, a better context is 
provided, and therefore, it is easier to obtain suitable (full and/or 
partial) term variants for gene/protein names from word embed-
dings. 
Results: From the papers manually annotated, a list of 107 
terms (gene/protein names) was acquired. As part of the word 
embeddings generated from CBOW and Skip-gram, a lexicon 
with more than 9 million terms was created. Using the cosine 
similarity metric, a list of the 12 top-ranked terms was generated 
from word embeddings for query terms present in the generated 
lexicon. Domain experts evaluated a total of 1968 pairs of terms 
and classified the retrieved terms as: TV (term variant); PTV 
(partial term variant); and NTV (non term variant, meaning none 
of the previous two categories). In experiment I, Skip-gram finds 
the double amount of (full and/or partial) term variants for 
gene/protein names as compared with CBOW. Using Skip-gram, 
the weighted Cohen’s Kappa inter-annotator agreement for two 

domain experts was 0.80 for the first experiment and 0.74 for the 
second experiment. In the first experiment, suitable (full and/or 
partial) term variants were found for 65 of the 107 terms. In the 
second experiment, the number increased to 100. 
Conclusion: This study demonstrates the benefits of using 
terms from the CVDO ontology classes to obtain more pertinent 
term variants for gene/protein names from word embeddings 
generated from an unannotated corpus with more than 14 million 
PubMed citations. As the terms variants are induced from the 
biomedical literature, they can facilitate data tagging and seman-
tic indexing tasks. Overall, our study explores the feasibility of 
obtaining methods that scale when dealing with big data, and 
which enable automation of deep semantic analysis and markup 
of textual information from unannotated biomedical literature. 
* Contact:  robert.stevens@manchester.ac.uk 

1 INTRODUCTION 
According to the World Health Organisation cardiovascular dis-
eases (CVDs) are the number one cause of death globally [1]. The 
SysVASC project [2] seeks to provide a comprehensive systems 
medicine approach to elucidate pathological mechanisms for CVD, 
which will yield molecular targets for therapeutic intervention. To 
achieve this aim it is necessary to gather and integrate data from 
omics (e.g. genomics, transcriptomics, proteomics and metabolom-
ics) experiments. 

The CVD ontology (CVDO) is developed as part of the sys-
VASC project to provide the infrastructure to integrate omics data 
that encapsulate findings published in the scientific literature. The 
CVDO ontology has 172,121 UniProtKB protein classes related to 
human, and 86,792 UniProtKB protein classes related to mouse. Of 
these, so far a total of only 8,196 UniProtKB protein classes (i.e. 
reviewed Swiss-Prot; unreviewed TrEMB; along with Isoform 
sequences) from mouse and human have been identified as of po-
tential interest to the sysVASC project. An important part of the 
manually curated effort is to tie experimental findings to the bio-
medical scientific literature. However, even a project like sys-
VASC cannot afford to have a team of researchers or curators who 
can survey the literature regularly and deal with the fundamental 
task of identifying gene and protein names as a preliminary step to 
identify the omics information encoded in the biomedical text. 

PubMed queries were the starting point of a systematic literature 
review performed for sysVASC to obtain the omics studies that 
underpins CVDO and the CVD Knowledge Base (CVDKB). Pub-
Med is a database from the U.S. National Library of Medicine 
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(NLM) with millions of citations from MEDLINE, life science 
journals, and online books. In June 2016, PubMed contained 26 
million citations with an average of 1.5 papers added per minute 
[3]. Keeping CVDKB up-to-date is a challenge shared with sys-
tematic reviews that aim to keep updated with the best evidence 
reported in the literature. As of today, searching through biomedi-
cal literature and appraising information from relevant documents 
is extremely time consuming [4,5,6]. Furthermore, omics is a de-
manding area, where the irregularities and ambiguities in gene and 
protein nomenclature remain a challenge [7,8]. Krauthammera and 
Nenadic [9] highlight: “successful term identification is key to 
getting access to the stored literature information, as it is the terms 
(and their relationships) that convey knowledge across scientific 
articles”. The identification of biological entities in the field of 
systems biology has proven difficult due to term variation and term 
ambiguity [10], because a concept can be expressed by various 
realisations (a.k.a. term variants). A large-scale database such as 
MEDLINE/PubMed contains longer words and phrases (e.g. “se-
rum amyloid A-1 protein”) as well as shorter forms like abbrevia-
tions or acronyms (e.g. “SAA”). Finding all the term variants in 
text is important for improving the results of information retrieval 
(IR) systems like the PubMed search engine, which traditionally 
rely on keyword-based approaches. Therefore, the number of doc-
uments retrieved is prone to change when using acronyms instead 
of and/or in combination with full terms [11,12].  

This paper investigates the feasibility of using Deep Learning, 
an emerging area of artificial neural networks, for identifying gene 
and protein names of interest for sysVASC in biomedical text. 
More specifically, we propose to use the two neural language mod-
els Skip-gram and CBOW (Continuous Bag-of-Words) of Mikolov 
et al. [13,14] to produce word embeddings, which are distributed 
word representations typically induced using neural language mod-
els. These word embeddings can be traced back to PubMed cita-
tions, and can be also linked to the CVDO classes formalised in the 
CVD Ontology represented in the W3C Web Ontology Language 
(OWL) [15]. 

2 APPROACH 
In terms of information/knowledge extraction from texts, over the 
years, the knowledge engineering (KE) [16] paradigm has lost 
popularity in favour of the machine learning (ML) paradigm. ML 
algorithms learn input-output relations from examples with the 
goal of interpreting new inputs; therefore, the performance of ML 
methods is heavily dependent on the choice of data representation 
(or features) to which they are applied [17]. Representing words as 
continuous vectors has a long history where different types of 
models have been proposed to estimate continuous representation 
of words and create distributional semantic models (DSMs). DSMs 
derive representations for words in such a way that words occur-
ring in similar contexts will have similar representations, and 
therefore, the context needs to be defined. Some examples of con-
text in DSMs include: Latent Semantic Analysis (LSA) [18] which 
generally uses an entire document as a context (i.e. word-document 
models), and Hyperspace Analog to Language (HAL) [19] which 
uses a sliding word window as a context (i.e. sliding window mod-
els). More recently, Random Indexing [20] has emerged as a prom-
ising alternative to LSA. LSA, HAL, and Random Indexing are 
spatially motivated DSMs. Examples of probabilistic DSMs are 
Probabilistic LSA (PLSA) [21] and Latent Dirichlet Allocation 

(LDA) [22]. While spatial DSMs compare terms using distance 
metrics in high-dimensional space [23], probabilistic DSMs meas-
ure similarity between terms according to the degree to which they 
share the same topic distributions [23]. Most DSMs have high 
computational and storage cost associated with building the model 
or modifying it due to the huge number of dimensions involved 
when a large corpus is modelled [29]. Although neural models are 
not new in DSMs, recent advances in artificial neural networks 
(ANNs) make feasible the derivation of words from corpora of 
billions of words: hence the growing interest in Deep Learning and 
the neural language models CBOW and Skip-gram of Mikolov et 
al. [13,14]. 

In a relatively short time, CBOW and Skip-gram have gained 
popularity to the point of being used for benchmarking word em-
beddings [25] or as baseline models for performance comparisons 
[26]. We propose applying Mikolov et al. [13,14] neural language 
models, which can be trained to produce high-quality word em-
beddings on English Wikipedia [25], to automatically extract terms 
(gene and protein nomenclature) from 14,056,761 free-text unan-
notated MEDLINE/PubMed citations (title and abstract). Our hy-
pothesis is that word embeddings of high quality should generate 
useful lists of term variants. As of today, the application of 
Mikolov et al. [13,14] CBOW and Skip-gram to the biomedical 
literature remains largely unexplored with only some pioneering 
work [27,28]. 

3 METHODS 

3.1 The CVD Ontology and its Knowledge Base  
The CVD ontology (CVDO) provides the infrastructure to inte-
grate the omics data from multiple biological resources, such as the 
UniProt Knowledgebase (UniProtKB) [29], the miRBase [30] from 
EMBL-EBI, and the Human Metabolome Database (HMDB) [31]. 
At the core of CVDO is the Ontology for Biomedical Investiga-
tions (OBI) [32] along with other reference ontologies produced by 
the OBO Consortium, such as the Protein Ontology (PRO) [33], 
the Sequence Ontology (SO) [34], the three Gene Ontology (GO) 
sub-ontologies [35], Chemical Entities of Biological Interest On-
tology (ChEBI) [36], NCBI Taxonomy Ontology [37], the Cell 
Ontology (CL) [38], the Uber Anatomy Ontology (UBERON) 
[39], Phenotypic Quality Ontology (PATO) [40], and Relationship 
Ontology (RO) [41]. 

In terms of knowledge modelling, CVDO shares the pro-
tein/gene representation used in the Proteasix Ontology (PxO) [42]. 

3.2 PubMed: from XML to RDF datasets 
Through the ftp server from the U.S. NLM we downloaded the 
MEDLINE/PubMed baseline files for 2015 and also the update 
files up to 8th June 2016.  We created a processing pipeline written 
in Python that allows the conversion of the downloaded PubMed 
XML files into W3C Resource Description Framework (RDF) [43] 
datasets. This pipeline can also be reused to process the results of 
PubMed searches. 

We performed a mapping between the PubMed XML elements 
[44] and terms from the Dublin Core Metadata Initiative (DCMI), 
which has been taken up globally and has a publicly available RDF 
Schema [45]. 

When pre-processing the textual input for Mikolov et al. [13,14] 
CBOW and Skip-gram, it is common practice systematically to 
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lower-case the text and to remove all numbers. However, this is 
unsuitable when dealing with protein/gene names, because critical 
information will be lost. To further illustrate this: for human, non-
human primates, chickens, and domestic species, gene symbols 
contain three to six alphanumeric characters that are all in upper-
case (e.g. OLR1), while for mice and rats the first letter alone is in 
uppercase (e.g. Olr1). Therefore, we have introduced some ad hoc 
rules as part of the pre-processing to guarantee that protein/gene 
names are preserved. 

3.3 Deep Learning: word embeddings using word2vec 
This study looks at neural language models, i.e. distributed repre-
sentation of words learnt by artificial neural networks (ANNs). We 
adopted the new log-linear models that try to minimise computa-
tional complexity. The CBOW and Skip-gram model architecture 
[13,14] is similar to the probabilistic feedforward neural network 
language model (NNLM). The feedforward NNLM proposed by 
Bengio et al. [46] consists of input, projection, hidden, and output 
layers. In the CBOW and Skip-gram model architecture, the non-
linear hidden layer is removed and the projection layer is shared 
for all the words, so all words are projected into the same position 
(their vectors are averaged) [14]. The Skip-gram model uses the 
current word to predict surrounding words, while the CBOW mod-
el predicts the current word based on the context. 

The basic Skip-gram formulation uses the softmax function [14]. 
The hierarchical softmax is a computationally efficient approxima-
tion of the full softmax. If W is the number of words in the lexicon, 
hierarchical softmax only needs to evaluate about log2(W) output 
nodes to obtain the probability distribution, instead of needing to 
evaluate W output nodes.  

word2vec [47] is the software package used in this study. It was 
initially released as open software and is faster than its Python 
counterpart implementation from Gensim [48]. Using word2vec 
and out of CBOW and Skip-gram with hierarchical softmax we 
obtain: 1) a lexicon (i.e. a list of terms, typically multi-words) in 
textual format that is constructed from the input data; and 2) the 
resulting vectors of the neural DSM in binary mode. In distribu-
tional semantics a well-known similarity measure is cosine similar-
ity, i.e. the cosine of the angle between two vectors of n dimen-
sions. If the cosine is close to zero, the two vectors are considered 
dissimilar, while if it is close to one, this indicates a high similarity 
between the two vectors.  

3.4 Integrating CVDO and word embeddings 
The terms from the word embeddings lexicon can be traced back to 
PubMed citations. Among these terms, there are suitable (full 
and/or partial) term variants for gene/protein names that can also 
be linked to the CVDO classes in the CVD ontology. To perform 
the linkage between word embedding terms and CVDO classes, we 
looked at the Simple Knowledge Organization System (SKOS) 
[49], which is a W3C standard aimed at leveraging the power of 
linked data. In SKOS there are three properties to attach lexical 
labels to conceptual resources [49]: 1) the preferred lexical label 
(i.e. skos:prefLabel); 2) the alternative lexical label (i.e. 
skos:altLabel) for synonyms and acronyms; and 3) the hidden lexi-
cal label (i.e. skos:hiddenLabel) for including misspelled variants 
of other lexical variants or a string for text-based indexing. All of 
these can be considered annotation properties (i.e. owl:Annotation 
Property), and allow limited linguistic information only. In this 

study, we propose using skos:hiddenLabel to store plausible term 
variants derived from word embeddings for gene and protein clas-
ses from the CVD ontology. 

3.5 Experimental setup 
A gold standard was created using 25 papers that meet the inclu-
sion and exclusion criteria of the sysVASC systematic review per-
formed. The original PubMed query was: “coronary heart disease 
AND (proteomics OR proteome OR transcriptomics OR transcrip-
tome OR metabolomics OR metabolome OR omics)”. Out of all the 
paper abstracts, a total of 107 terms were manually annotated as 
protein/gene names. Each term was mapped to a CVD ontology 
class to uniquely identify the conceptual entity (gene/protein) to 
which the annotated term refers. This can be seen as term standard-
isation process. Table 1 illustrates the mapping performed. 

Table 1. Example of terms from PubMed abstract/title (left column) 
mapped to labels for protein/gene from the CVD ontology (right column). 

        Term UniProt AC ((UniProt AC) protein name [gene symbol]  

alpha-1-antitrypsin (P01009) Alpha-1-antitrypsin [SERPINA1]  
α(1)-antitrypsin 
 
annexin 4 

 
 

(P09525) Annexin A4 [ANXA4] 
 

 

superoxide dismutase 3 (P08294) Extracellular superoxide dismutase         
-Cu-Zn- [SOD3] 

 

The few examples from Table 1 show the lack of standardisation of 
the field, and illustrate some of the alternative terms from the liter-
ature that refer to the conceptual entities (gene/protein) of interest.  

In this study we conducted two experiments: 
• Experiment I – we use the annotated terms from selected 

papers of the sysVASC systematic review alone (as they 
appear in the paper abstracts/titles) to obtain the list of 12 
top-ranked terms (highest cosine value) from the CBOW 
and Skip-gram word embeddings. These are candidate term 
variants.  

• Experiment II – we enriched/expanded the original annotat-
ed terms with terms that appear in the CVDO classes and 
again produced a list of 12 top-ranked candidate term vari-
ants from CBOW and Skip-gram word embeddings.  

3.6 Human assessment 
Domain experts assessed all the lists of 12 top-ranked candidate 
term variants obtained for experiment I and II using CBOW and 
Skip-gram. 
 
3.6.1 Evaluation guidelines We established a strict criterion to 
mark the list of candidate terms produced by the word2vec word 
embeddings. Following Nenadic et al. [50] a candidate term was 
marked as term variant (TV for short) only when the term fell 
within the following types of term variation: a) orthographic; b) 
morphological; c) lexical; d) structural; or e) acronyms and abbre-
viations. Considering the biomedical value of phraseological ex-
pressions (e.g. “ankyrin-B_gene” or “CBS_deficiency”) we 
marked them as partial term variant (PTV for short); however, 
they had to refer to the same biomedical concept, i.e. protein or 
gene name. 
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3.6.2 Inter-annotator agreement Two domain experts follow-
ing the above-mentioned evaluation guidelines assigned a simple 
key code for each candidate term variant: TV, PTV, and NTV (non 
term variant, meaning none of the previous two categories). The 
inter-annotator agreement is based on the Kappa measure [51], 
widely used for inter-annotator agreement on classification tasks; 
Kappa K is defined as K = (Pr(a) – Pr(e))/(1 – Pr(e)), where Pr(a) 
is the relative observed agreement between annotators, and Pr(e) is 
the chance agreement. 

4 RESULTS 
Using a VM with 100 GB RAM and 32 CPU(s) at 4.0 GHz, we 
obtained the word embeddings from the unannotated PubMed cor-
pus of 14,056,761 free-text MEDLINE/PubMed citations (title and 
abstract) for Skip-gram (much slower than CBOW) after 17 hours 
of processing. Due to the lack of space, we show here only some of 
the results obtained. 

Both CBOW and Skip-gram used the same input and generate 
the same lexicon, however, the resulting vectors of the neural DSM 
in binary mode were different. Hence, the 12 top-ranked terms for 
an input query term are likely to differ. For experiment I, only 77 
of the 107 terms belong to the lexicon generated. For experiment 
II, as the CVD ontology is used to provide more context for each 
term, only 3 terms out of the 107 remained without a valid entry in 
the lexicon. For experiment I, two domain experts (rater A and B) 
assessed the 924 pairs of terms corresponding to 77 query terms. 
For experiment II, there was 87 query terms that include terms 
from the human-readable labels of key classes (gene/proteins) from 
the CVDO ontology and considering multiple alternatives, and 
thus, the same two domain experts assessed 1044 pairs of terms.  

Table 2. Experiment I: number of terms classified as TV (Term Variants); 
PTV (Partial TV); and NTV (non TV) by rater A. 

Model Term Variant Partial TV Non Term Variant 

CBOW         77 93 754 
Skip-gram       151 194 579 

Table 3. Experiment II using Skip-gram: number of terms classified as TV 
(Term Variant); PTV (Partial TV); and NTV (non TV) by rater A and B. 

Domain Expert Term Variant Partial TV Non Term Variant 

Rater A         194       240         610 
Rater B         161       238         645 

 
Table 2 summarises the number of terms classified as TV, PTV, 

and NTV for rater A in experiment I using CBOW and Skip-gram. 
It is easy to derive from Table 2 that Skip-gram is better suited for 
the task of finding suitable (full and/or partial) term variants for 
gene/protein names. The observed agreement  (i.e. the portion of 
terms classified as TV, PTV, or NTV on which the two domain 
experts agree) for experiment I with Skip-gram was 0.80 using 
weighted Cohen’s Kappa measure [51]. Tables 3 summarised the 
number of terms classified as TV, PTV and NTV for rater A and B 
for experiment II using Skip-gram. The inter-annotator agreement 
was 0.74 using the weighted Cohen’s Kappa measure [51]. 

To illustrate qualitatively the results obtained; Table 4 (right 
column) shows the term annotated (TV, PTV, and NTV) by rater B 
in experiment II using Skip-gram for ORL1, which is a gene sym-
bol. From experiment I using also Skip-gram, no suitable term 
variants were found. It should be noted that some of the candidate 
terms listed in Table 4 are well-known aliases of the gene symbol, 
such as LOX-1. 

Table 4. Experiment II using Skip-gram: 12 top-ranked nearest neighbours 
by cosine similarity marked by rater B (TV, PTV, and NTV) for the query 
terms “oxidized_low-density_lipoprotein receptor_1” “OLR1”. 

        Term   Cosine similarity  

lectin-like_oxidized_low-density_lipoprotein   0.688603 - TV  
(LOX-1)_is 
atherosclerosis_we_investigated 

  0.672042 - PTV 
0.669050 - NTV 

 

receptor-1   0.664891 - NTV  
lectin-like_oxidized_LDL_receptor-1   0.663988 - TV  
lOX-1_is 
human_atherosclerotic_lesions 
oxidized_low-density_lipoprotein_(ox-LDL)  
oxidized_low-density_lipoprotein_(oxLDL) 
(LOX-1)  

  0.660110 - NTV 
0.657075 - NTV 
0.655515 - NTV 
0.654965 - PTV 
0.652099 - TV 

 

    proatherosclerotic  
    receptor-1_(LOX-1)_is 

  0.651571 - NTV 
    0.649000 - PTV 

 

 
We observed that some of the protein names annotated from 

sysVASC systematic review papers, like “annexin 4”, can not pro-
duce a suitable term variant as they do not appear as such in the 
generated lexicon generated by CBOW and Skip-gram. However, 
by enriching them with terms from the CVDO ontology, it is feasi-
ble to obtain suitable term variants. For example, “annexin 4” can 
be mapped to the full protein name “Annexin A4”, which has Uni-
Prot Accession number P09525 and gene symbol ANXA4. Indeed, 
within the level of observed agreement among the two domain 
experts, we can safely say that in the first experiment, suitable (full 
and/or partial) term variants were found for 65 of the 107 terms. In 
the second experiment, the number increased to 100. Hence, only 7 
out of the total 107 remain without suitable (full and/or partial) 
term variants.  

We also observed that the median of the rank (i.e. position in the 
list of 12 top-ranked terms) for a TV agreed by rater A and B is 3 
in both experiment I and II using Skip-gram. In other words, within 
the level of observed agreement a TV is likely to appear in the first 
three positions of the 12 top-ranked terms. 

5 DISCUSSION 
CBOW and Skip-gram have become the state-of-the-art for gener-
ating word embeddings. From a quantitative point of view, this 
study shows that using Skip-gram the number of term variants (TV 
and/or PTV) for proteins/genes is substantially increased in com-
parison with CBOW. For experiment II, i.e. when the terms anno-
tated from the sysVASC systematic review papers are en-
riched/expanded with terms from the CVD ontology, the number 
of suitable (full and/or partial) term variants for gene/protein in-
creases. The explanation seems quite straightforward as the Skip-
gram model takes the word window as a context and predicts sur-
rounding words given the current word [14]. With the aid of the 
CVD ontology, we can get terms that provide a more pertinent 
context by: a) enriching a gene symbol with parts of the protein 
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name; or b) including more than one term related to a protein 
name. Hence the better results, which in our case means more term 
variants. 

Detecting term variants can be useful for a variety of curation 
and annotation tasks. As for both experiment I and II, the observed 
agreed TV are likely to appear in the first three positions of the 12 
top-ranked terms; this finding can be the basis of a systematic ap-
proach to obtain plausible term variants for the 258,913 Uni-
ProtKB protein classes from the CVD ontology. As we proposed in 
section 3.4, plausible term variants from word embeddings can be 
easily stored in the CVD ontology by means of the annotation 
property skos:hiddenLabel. Therefore, when querying the CVD 
ontology using the query language SPARQL 1.1 [52] for a protein 
that may appear in the biomedical literature, it possible to use both 
rdf:label and skos:hiddenLabel. However, the terms stored in the 
skos:hiddenLabel are more likely to give pertinent results because 
they are derived from the word embeddings obtained from the 14 
million PubMed citations (titles and abstracts), i.e. from the bio-
medical literature itself. Furthermore, by having transformed Pub-
Med citations into RDF datasets, it is feasible to annotate a Pub-
Med citation not only with MeSH headings/descriptors, or key-
words from authors, but also with the terms for the lexicon gener-
ated by CBOW and Skip-gram. Thus, it is possible to envision 
more sophisticated SPARQL 1.1 SELECT queries that are able to 
retrieve the PubMed citations themselves. Furthermore, from a 
computational point of view the process described here is afforda-
ble and sustainable: new PubMed citations can be converted into 
RDF on a daily basis; Skip-gram can re-generate the lexicon and 
the vectors in less than a day for 14 million PubMed citations (ti-
tles and abstracts); terms from the human-readable labels of key 
classes (gene/proteins) from the CVDO ontology can be used as 
query terms to retrieved the top-ranked terms from the word em-
beddings re-generated, where the three top-ranked terms (plausible 
term variants) can be stored as literal values of skos:hiddenLabel. 
Hence, periodical updates are feasible.  

Although text mining technology has made great strides in ex-
tracting biomedical terminology from unstructured text sources, 
the task of normalising (grounding) the extracted terms to com-
monly used identifiers in ontologies or taxonomies is still quite 
demanding. Identifying equivalent text realisations for the same 
biomedical concept can be useful for (i) improving the quality of 
information in curated resources such as UniProt or the Gene On-
tology, and (ii) for linking the information in these resources back 
to the original text sources; this is helpful when a greater context 
needs to be explored or for keeping up-to-date with the published 
literature. 

Another potential application is in the area of query expansion 
for Information Retrieval (IR). Although query enhancement using 
synonyms is commonly deployed by many of today’s IR systems, 
it is often more difficult to deal with cases of orthographic varia-
tions or when new acronyms/abbreviations are introduced for new 
terms. Identifying term variants can be a way of ameliorating the 
effect of the classical problem of IR returning either too much or 
too little for a user query. 

Lastly, text mining developers, especially those dealing with 
rule-based systems, can benefit from unsupervised automated 
techniques such as the one described in this paper, for building 
terminological resources from large untagged corpora. Such re-
sources include both terminology lexica and grammars, either 
manually developed or compiled via grammar induction tech-

niques. The usefulness of this approach for specific annotation 
tasks will be the subject of future work. 

From a research perspective, data integration is not a new chal-
lenge in the life sciences. Gomez-Cabrero et al. [53] state: “there is 
a need for improved (and novel) annotation standards and re-
quirements in data repositories to enable better integration and 
reuse of publically available data”. To the best of our knowledge, 
this is the first time that word embeddings from Deep Learning and 
an ontology in OWL have been put together with the aim of link-
ing ontology classes to terms derived from a large corpus of bio-
medical literature in an unsupervised way and without the need of 
having the corpus annotated. 

6 CONCLUSION 
This study demonstrates the benefits of using terms from the 
CVDO ontology classes to obtain more pertinent term variants for 
gene/protein names from word embeddings generated from an 
unannotated corpus with more than 14 million PubMed citations. 
As the terms variants are induced from the biomedical literature, 
they can facilitate data tagging and semantic indexing tasks. Over-
all, our study explores the feasibility of obtaining methods that 
scale when dealing with big data, and which enable automation of 
deep semantic analysis and markup of textual information from 
unannotated biomedical literature. 
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