
Towards Incremental Deductive Verification for ATL

Zheng Cheng and Massimo Tisi

AtlanMod Team (Inria, Mines Nantes, LINA), France
Email: {zheng.cheng, massimo.tisi}@inria.fr

Abstract. In this work, we address the performance problem in the deductive verification
of model transformations written in the ATL language w.r.t. given contracts. Our solution
is to enable incremental verification for ATL transformations through caching and reusing
of previous verification results. Specifically, we decompose the original OCL contract into
sub-goals, and cache the verification result of each of them. We show that for ATL, the
syntactic relationship between a model transformation change and a sub-goal can be used to
determine if a cached verification result needs to be re-computed. We justify the soundness
of our approach and its practical applicability through a case study.

1 Introduction

In [7], we developed the VeriATL verification system to deductively verify the correctness of ATL
transformations [10] w.r.t. given contracts. On top of that, in [8] we enabled automatic fault local-
ization for VeriATL to facilitate debugging, based on the decompositon of OCL postconditions into
verification sub-goals. To illustrate VeriATL, let us consider a typical workflow in model transforma-
tion verification. A developer develops a model transformation P, and specifies a set of contracts C
(in terms of pre/postconditions) to ensure its correctness. Next, VeriATL is automatically executed
at the back-end. It decomposes each contract into a set of sub-goals S to facilitate fault localization.
Then, the verifier reports to the developer that N contracts and M corresponding sub-goals are
not verified. The developer continues to work on the model transformation P. Each change to P
launches the back-end verifier, which verifies the new model transformation P’ against the same
set of contracts. However, P’ causes VeriATL to decompose each of the contracts into a new set of
sub-goals S’.

The practical applicability of VeriATL in such workflow strongly depends on the possibility to
compute the implications of a change in a time-efficient manner, e.g. which new sub-goals are gen-
erated? which old sub-goals disappeared? and which old sub-goals are affected by the change? Our
solution is running VeriATL incrementally, i.e. maintaining the result of contracts across changes
in the model transformation by reusing cached verification results of sub-goals. To achieve our
objective, we propose a syntactic approach, based on the syntactic relationship between a model
transformation change and a sub-goal, to determine when the cached verification result of a sub-
goal can be reused. In this paper we justify the soundness of our approach and demonstrate its
feasibility by a first evaluation.

Paper organization. We give the background of our work and a sample problem in Section 2.
Section 3 illustrates our incremental approach for model transformation verification in detail. The
evaluation is presented in Section 4. Section 5 compares our work with related research, and Section 6
draws conclusions and lines for future work.

2 Background

We have developed the VeriATL verification system that soundly verifies the correctness of ATL
model transformations via Hoare-triples [7]. We demonstrate VeriATL on the ER2REL transfor-
mation, well-known in the MDE community, that translates Entity-Relationship (ER) models into
relational (REL) models. Both the ER schema and the relational schema have commonly accepted
semantics, and thus it is easy to understand their metamodels (Fig. 1).

Fig. 1. The Entity-Relationship and Relational metamodels

The ATL transformation ER2REL (Listing 1.1) is defined via a list of ATL matched rules in
a mapping style. The first three rules map respectively each ERSchema element to a RELSchema
element (S2S), each Entity element to a Relation element (E2R), and each Relship element to
a Relation element (R2R). The remaining three rules generate a RELAttribute element for each
Relation element created in the REL model.

Then, the correctness of the ER2REL transformation is specified by using OCL contracts. As
shown in Listing 1.2, two OCL preconditions specify that within an ERSchema, names of Entities
are unique (Pre1), and names of Entities and Relships are disjoint (Pre2). One OCL postcondition
requires names of Relations to be unique within each RELSchema (Post1).

1 module ER2REL;
2 create OUT : REL from IN : ER;
3

4 rule S2S { from s: ER!ERSchema to t: REL!RELSchema (name<−s.name)}
5

6 rule E2R { from s: ER!Entity to t: REL!Relation (name<−s.name, schema<−s.schema) }
7

8 rule R2R { from s: ER!Relship to t: REL!Relation (name<−s.name, schema<−s.schema) }
9

10 rule EA2A {
11 from att: ER!ERAttribute, ent: ER!Entity (att.entity=ent)
12 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey, relation<−ent) }
13

14 rule RA2A {
15 from att: ER!ERAttribute, rs: ER!Relship (att.relship=rs)
16 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey, relation<−rs) }
17

18 rule RA2AK {
19 from att: ER!ERAttribute, rse: ER!RelshipEnd (att.entity=rse.entity and att.isKey=true)
20 to t : REL!RELAttribute (name<−att.name, isKey<−att.isKey, relation<−rse.relship)}

Listing 1.1. The ER2REL model transformation in ATL

2

1 context ER!ERSchema inv Pre1, Pre2
2

3 rule S2S { from s: ER!ERSchema to t: REL!RELSchema (name<−s.name)}
4

5 rule R2R { from s: ER!Relship to t: REL!Relation (name<−s.name, schema<−s.schema) }
6

7 context REL!RELSchema inv S4:
8 REL!RELSchema.allInstances()−>forAll(s | genBy(s, S2S) implies
9 s . relations−>forAll(r1 | genBy(r1, R2R) implies

10 s . relations−>forAll(r2 | genBy(r2, R2R) implies
11 r1<>r2 implies r1.name<>r2.name)))

Listing 1.3. The problematic transformation scenario of the ER2REL transformation w.r.t. Post1

1 context ER!ERSchema inv Pre1:
2 ER!ERSchema.allInstances()−>forAll(s | s.entities−>forAll(e1 |
3 s . entities−>forAll(e2 | e1<>e2 implies e1.name<>e2.name)))
4

5 context ER!ERSchema inv Pre2:
6 ER!ERSchema.allInstances()−>forAll(s | s.entities−>forAll(e |
7 s . relships−>forAll(r | e.name<>r.name)))
8 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
9 context REL!RELSchema inv Post1:

10 REL!RELSchema.allInstances()−>forAll(s | s.relations−>forAll(r1 |
11 s . relations−>forAll(r2 | r1<>r2 implies r1.name<>r2.name)))

Listing 1.2. The OCL contracts for ER and REL

The source and target EMF metamodels and OCL contracts combined with the developed
ATL transformation form a Hoare triple which can be used to verify the correctness of the ATL
transformation. The Hoare-triple semantically means that, assuming the semantics of the involved
EMF metamodels and OCL preconditions, by executing the developed ATL transformation, the
specified OCL postcondition has to hold.

The first version of VeriATL can successfully report that the OCL postcondition Post1 is not
verified by the ER2REL transformation, but it does not provide any information to understand
why this contract does not hold. To enable fault localization in VeriATL, we have proposed a
systematic approach to decompose OCL postconditions into sub-goals based on static analysis and
structural induction. Consequently, we can use the information (i.e. static trace information) in
the decomposed sub-goals to slice the original transformation into transformation scenarios, and
present the problematic ones to pinpoint the fault.

For example, to verify Post1, our decomposition generates 4 sub-goals, where:

1. s genBy (i.e., generated by) S2S, r1 genBy E2R, r2 genBy E2R.
2. s genBy S2S, r1 genBy E2R, r2 genBy R2R.
3. s genBy S2S, r1 genBy R2R, r2 genBy E2R.
4. s genBy S2S, r1 genBy R2R, r2 genBy R2R.

The 4 sub-goals therefore yield 4 transformation scenarios to be verified. One of the 4 transformation
scenarios is problematic (shown in Listing 1.3). VeriATL reports it to the developer to pinpoint the
fault in Post1. The scenario consists of the original preconditions (abbreviated at the top), a slice
of the transformation (in the middle) and an augmented transcription of the problematic sub-goal
(at the bottom).

Notice that the static trace information referred by the sub-goal (the genBy predicate on Line
8, 9, 10) helps the transformation developer to understand that the error may happen only when

3

the relational schema s is generated from the rule S2S, and when the relations r1 and r2 are both
generated from the rule R2R. Therefore, the only relevant rules for the fault are S2S and R2R.
By analyzing the problematic transformation scenario in Listing 1.3, the transformation developer
observes that two Relships in the source model might have the same name. This would cause their
corresponding Relations, generated by the R2R rule, to have the same name, and thus falsifying
Post1. More examples of our OCL postcondition decomposition for automatic fault localization in
VerATL can be found on our online repository [9].

Fixing transformation bugs by VeriATL is an interactive process. Each change to the ER2REL
transformation launches VeriATL to re-verify the contracts and generated sub-goals. In this work, we
aim to improve the turnaround time of re-verification by running VeriATL incrementally. Therefore,
we propose a solution for determining when the cached verification result of sub-goals can be reused.

For example, our approach aims to determine that when fixing Post1 by modifying the R2R
rule, the verification result of the sub-goal for Post1, where s genBy S2S, r1 genBy E2R, r2 genBy
E2R can be reused.

3 Incremental Verification for VeriATL

Our approach for running VeriATL incrementally is summarized by Algorithm 1.
First, we distinguish an ATL transformation (initial transformation) P from its modified version

(evolved transformation) P’. The transition from P to P’ (line 1) happens through the sequential
application of transition operators that we define in Section 3.1. As shown by lines 2 - 4, if P’ is
invalid, e.g. it contains conflicting rules, then the incremental verification is stopped (and restarted
when the user reaches a valid transformation by further modifications).

Next, we enumerate each sub-goal in P to determine whether the execution semantics of its
referred rules in the static trace information is preserved by P’ (Lines 5 - 11). The execution
semantics preservation results of each sub-goal are cached by the array isPsv. Specifically, we propose
a syntactic approach to determine the execution semantics preservation (Lines 7 - 8), which checks
the intersection between the referred rules in the static trace information of a sub-goal and the rule
that the transition operator operated on.

Finally, the sub-goal does not need to be re-verified if it is a verified sub-goal in P, and the
execution semantics of its referred rules in static trace information is preserved (Lines 14 - 15).

In what follows, we detail each of these steps, and justify the soundness of our approach.

3.1 Transition Operators

The transition operators that are permitted to transit from an initial transformation to its evolved
transformation are shown in Fig. 2. Some explanations are in order:

– The add operator adds an ATL rule named R that transforms the input pattern elements srcs
to the output pattern elements tars. Initially, the add operator sets the filter of the added rule
to false to prevent any potential rule conflict. The bindings for the specified output pattern
elements are empty. The operator has no effect if the rule with specified name already exists in
the initial transformation.

– The delete operator deletes a rule named R. It hass no effect if the rule with the specified name
does not exist in the initial transformation.

4

Algorithm 1 Incremental verification algorithm for VeriATL

1: P’ = transit(P, operator)
2: if hasConflict(P’) then
3: abort
4: end if
5: for each s ∈ sub-goals of P do
6: if trace(s) ∉ dom(isPsv) then
7: if trace(s) ∩ affectedRules(operator, P, P’) = ∅ then
8: isPsv[trace(s)] ← true
9: end if

10: end if
11: end for
12: for each s ∈ sub-goals of P ′ do
13: if s ∈ sub-goals of P then
14: if trace(s) ∈ dom(isPsv) ∧ isPsv(trace(s)) ∧ verified(s, P) then
15: continue
16: else
17: re-verify(s)
18: end if
19: end if
20: end for

– The filter operator strengthens/weakens the guard of the rule R by replacing its guard with
the OCL expression cond. It has no effect if a rule with the specified name does not exist in the
initial transformation.

– The bind operator modifies the way of binding the structural feature sf of the target element
tar in the rule R to the binding OCL expression b. It has no effect if the rule with specified
name does not exist in the initial transformation. If the sf or the tar does not exist in R, the
bind operator acts like adding a new binding.

〈operator〉 ::= add R from srcs to tars
| delete R
| filter R with cond
| bind R tar sf with b

Fig. 2. The abstract syntax of transition operators

3.2 Execution Semantics Preservation

The core idea of our proposal is that a sub-goal s does not need to be re-verified after applying a
transition operator op if op preserves the execution semantics of the referred rules in the static trace
information of s. This is because proving sub-goals is the process of proving Hoare-triples whose
correctness depends on contracts and execution semantics of the involved transformation rules: if
neither of these artefacts are changed, the correctness of such Hoare-triple will not change.

5

However, in our experience, we find that there are many cases when the execution semantics
of the referred rules in the static trace information of a sub-goal is not strictly preserved, but
the re-verification of the sub-goal is not needed. Therefore, we propose a syntactic approach to
characterize these cases, thereby determining whether the re-verification of a verified sub-goal in
the initial transformation is necessary.

Our syntactic approach checks the intersection between the referred rules in the static trace in-
formation of a sub-goal and the rule that the transition operator operated on. When the intersection
is empty, the sub-goal does not need to be re-verified.

We justify the soundness of our syntactic approach in two steps. First, we briefly demonstrate
the execution semantics of the ATL matched rule (details can be found in [7]). Then, we induct on
the type of transition operator to prove soundness.

The execution semantics of an ATL matched rule consists of matching semantics and applying
semantics. The matching semantics of a matched rule involves:

– Executability, i.e. the rule is not conflict with any other rules of the developed transformation.
– Matching outcome, i.e. all the source elements that satisfy the input pattern, their corresponding

target elements of output pattern have been created.
– Frame condition, i.e. nothing else is changed in the target model except the created target

elements.

Take the S2S rule in the ER2REL transformation for example, its matching semantics specifies:

– Before matching the S2S rule, the target element generated for the ERSchema source element
is not yet allocated (executability).

– After matching the S2S rule, for each ERSchema element, the corresponding RELSchema target
element is allocated (matching outcome).

– After matching the S2S rule, nothing else is modified except the RELSchema element created
from the ERSchema element (frame condition).

The applying semantics of a matched rule involves:

– Applying outcome, i.e. the created target elements are initialized as specified by the bindings
of the matched rule.

– Frame condition, i.e. nothing else is changed in the target model except the initializations made
on the target elements.

Take the S2S rule in the ER2REL transformation for example, its applying semantics specifies:

– After applying the S2S rule, for each ERSchema element, the name of its corresponding
RELSchema target element is equals to its name (applying outcome).

– After applying the S2S rule, nothing else is modified, except the value of the name for the
RELSchema element that created from the ERSchema element (frame condition).

Next, we induct on the type of transition operator to prove the soundness of our syntactic
approach, i.e. when the intersection between the referred rules in the static trace information of
a sub-goal and the rule that the transition operator operated on is empty, it guarantees the re-
verification of a sub-goal is unnecessary:

– add operator. The filter of the added rule is false. Thus, the added rule takes no effects to the
rest of rules in the developed transformation when applying the operator, including the rules
referred by the static trace information of a sub-goal. Consequently, our syntactic approach is
sound in this case.

6

– delete operator. Strictly speaking, deleting a rule that is not referred by the static trace infor-
mation of a sub-goal could potentially alter the applying semantics of the referred rules in the
static trace information of the sub-goal. However, the fact that the deleted rule is not referred
by the static trace information of a sub-goal implies that proving the sub-goal does not depend
on the execution semantics of the deleted rule. Thus, our syntactic approach is sound in this
case.

– filter operator. Altering the filter of a rule that is not in the referred rules of a sub-goal could
affect the executability of those referred rules, i.e. when the modified rule conflicts with any of
the referred rules. However, as shown by lines 2 - 4 of Algorithm 1, our incremental verification
approach applies only to valid transformation (i.e., free from rule conflicts), which guarantees
that the filter operator preserves the executability of the referred rules in the static trace
information of the sub-goal. When applying the filter operator to a rule that is not in the
referred rules of a sub-goal results a valid transformation, the number of source elements that
satisfy the input patterns of those referred rules would not change. As a result, the same
number of corresponding target elements of output patterns specified by those referred rules
are generated. Thus, the matching outcome and the frame condition of the referred rules of a
sub-goal are not affected. These facts conclude that altering the filter of a rule that is not in
the referred rules of a sub-goal would not affect the matching semantics of those referred rules.
Similar to the delete operator, the fact that the modified rule is not referred by the static trace
information of a sub-goal implies proving that the sub-goal does not depend on the execution
semantics of the filter-modified rule. Thus, our syntactic approach is sound in this case.

– bind operator. When the rule of modified binding is referred by the static trace information of
a sub-goal, it implies proving the sub-goal depends on the execution semantics of the binding-
modified rule (but not necessarily depends on the modified binding). In this case, we defensively
reverify the sub-goal. However, similar to the delete operator, the fact that the rule of modified
binding is not referred by the static trace information of a sub-goal implies proving the sub-goal
does not depend on the execution semantics of the binding-modified rule. Thus, our syntactic
approach is sound in this case.

4 Case Study

While we used ER2REL for illustrative purposes, we evaluate the performance of our approach
on a more complex case study, i.e. the HSM2FSM transformation that translates a hierarchical
state machine (source) to a flattened state machine (target) [3, 5]. Each of the source and target
metamodels contains 6 classifiers, 2 attributes and 5 associations. The HSM2FSM transformation
contains 7 ATL matched rules. The contracts of the HSM2FSM transformation consists of 14
preconditions and 6 postconditions. Our evaluation uses the VeriATL verification system, which is
based on the Boogie verifier (version 2.2). The artefacts used in our case study can be found on our
on-line repository: https://github.com/veriatl/OclCache.

We pick 4 transition operators and manually apply them individually to the initial HSM2FSM
transformation for our evaluation:

(T1) add CS2RS from cs:HSM!CompositeState to rs:FSM!RegularState
(T2) delete SM2SM
(T3) filter T2TA with false
(T4) bind IS2IS FSM!InitialState stateMachine with null

7

https://github.com/veriatl/OclCache

While other transition operations are possible, the first two are designed to quantify the per-
formance of our approach when the generated sub-goals in the initial transformation and evolved
transformation are different, whereas the latter two evaluate our approach when the generated
sub-goals are the same.

The impact of the 4 transition operations on the re-verification of the generated sub-goals for
the 6 postconditions are summarized in Table 1. To fully evaluate our approach, we compute and
verify the sub-goals no matter whether the original OCL postcondition is verified or not.

Table 1. Performance metrics on the evaluation scenario

Post1 Post2 Post3 Post4 Post5 Post6 Avg. Cache Reused

Initial 8(0) 8(0) 16(1) 16(0) 4(0) 16(0) N/A

T1 6/10 8/8 12/20 12/20 4/4 9/25 69 %

T2 0/4 0/4 15/16 16/16 0/1 16/16 49 %

T3 8/8 4/8 7/16 8/16 4/4 16/16 74 %

T4 4/8 8/8 8/16 8/16 4/4 4/16 63 %

The cells in the first row represents how many sub-goals are generated for the initial transfor-
mation, and the number of unverified sub-goals are shown in parenthesis. The cells in the next 4
rows represent the ratio reused sub-goals/generated sub-goals for each of the 6 postconditions after
applying the designed transition operators.

As shown in the last column of Table 1, when applying our approach, at least 49% of the
previous verification results can be reused. However, as our case study is small, more case studies
are required to claim the generalization for the performance of our approach.

In addition, we can see in some of the cells that for some post-conditions none of the cached
results are reused. By manual examination we confirm that in these cases the newly generated
sub-goals and the effects of the transition operation are highly coupled.

5 Related Work

Incremental verification for general programming languages have drawn the attention of researchers
in recent years to improve user experience of program verification. Bobot et al. design a proof caching
system for the Why3 program verifier [4]. In Why3, a proof is organized into a set of sub-proofs
whose correctness implies the correctness of the original proof. Bobot et al. encrypt the sub-proofs
into strings. When the program updates, the new sub-proofs are also encrypted and looking for the
best matches in the old sub-proofs. Then, a new sub-proof is heuristically applied with the best
matched old sub-proof’s proof effort to make the verification more efficient.

Leino and Wüstholz design a two level caching for the proofs in the Dafny program verifier [11].
First, a coarse-grained caching that depends on the call graph of the program under development,
i.e. a caller program does not need to be re-verified if its callee programs remain unchanged. Second,
a fine-grained caching that depends calculating the checksum of each contract. The checksum of
each contract is calculated by all statements that the contract depends on. Thus, if all statements
that a contract depends on do not change, the re-verification is not needed. Moreover, the authors
also use explicit assumptions and partial verified checks to generate extra contracts. If they are
proved, the re-verification is not needed.

8

Logozzo et al. design the Clousot verifier [12]. Clousot captures the semantics of a base program
by execution traces (a.k.a semantic conditions). Then, these conditions are inserted into the new
version of the program as assumptions. This technique is used to incrementally prove the relative
correctness between base and new version of programs.

Proofcert project aims at sharing proofs across several independent tools by providing a common
proof format [13].

According to surveys [1,2,6], incremental verification has not been adapted in the model trans-
formation verification. We hope that our approach would be useful in this context.

6 Conclusion and Future Work

In summary, in this work we confront the performance problem for deductive verification of the ATL
language. Our solution is to evolve the VeriATL deductive verification system with the incremental
verification capability through caching and reusing of previous verification results. Specifically, our
incremental verification approach is based on decomposing the original OCL postconditions into
sub-goals, and caching their verification results. We propose a syntactic approach, based on the
syntactic relationship between a model transformation change and a sub-goal, to determine when
the cached verification result of the sub-goal can be reused.

Our current work focuses on the performance aspect. We plan to extend our experimental
evaluation with further case studies and investigate how to cache the verification results of sub-
goals more efficiently. In reality, fixing a bug can be seen as a sequential application of our transition
operators. We want to investigate how to optimize the full chain, e.g. caching the verification results
of disappeared sub-goals that could reappear in future versions of the model transformation.

Our future work will focus on making the implications of a model transformation change visible
to the developers to guide their next move. When a developer edits source code, the sooner the
developer learns the changes’ effects on program analyses, the more helpful those analyses are [14].
A delay can lead to wasted effort. In fact, the implications of a model transformation change is
already computed by our syntactic approach. We will focus on how to present this information to
the developers in order to provide an intuitive understanding.

References

1. Ab.Rahim, L., Whittle, J.: A survey of approaches for verifying model transformations. Software &
Systems Modeling 14(2), 1003–1028 (2015)

2. Amrani, M., Lucio, L., Selim, G., Combemale, B., Dingel, J., Vangheluwe, H., Le Traon, Y., Cordy,
J.R.: A tridimensional approach for studying the formal verification of model transformations. In: 5th
International Conference on Software Testing, Verification and Validation. pp. 921–928. IEEE Computer
Society, Washington, DC, USA (2012)

3. Baudry, B., Ghosh, S., Fleurey, F., France, R., Le Traon, Y., Mottu, J.M.: Barriers to systematic model
transformation testing. Communications of the ACM 53(6), 139–143 (2010)

4. Bobot, F., Filliâtre, J.C., Marché, C., Melquiond, G., Paskevich, A.: Preserving user proofs across spec-
ification changes. In: 5th International Conference on Verified Software: Theories, Tools, Experiments.
pp. 191–201. Springer, Menlo Park, CA, USA (2014)

5. Büttner, F., Egea, M., Cabot, J.: On verifying ATL transformations using ‘off-the-shelf’ SMT solvers.
In: 15th International Conference on Model Driven Engineering Languages and Systems. pp. 198–213.
Springer, Innsbruck, Austria (2012)

9

6. Calegari, D., Szasz, N.: Verification of model transformations: A survey of the state-of-the-art. Electronic
Notes in Theoretical Computer Science 292(0), 5–25 (2013)

7. Cheng, Z., Monahan, R., Power, J.F.: A sound execution semantics for ATL via translation validation.
In: 8th International Conference on Model Transformation. pp. 133–148. Springer, L’Aquila, Italy (2015)

8. Cheng, Z., Tisi, M.: Automatic fault localization for relational model transformation using deductive
verification. In: 27th International Symposium on Software Reliability Engineering. p. (Under review).
Ottawa, Canada (2016)

9. Cheng, Z., Tisi, M.: Automatic fault localization for relational model transformation using deductive
verification [online]. available: https://github.com/veriatl/OclDecompose (2016)

10. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of Computer
Programming 72(1-2), 31–39 (2008)

11. Leino, K.R.M., Wüstholz, V.: Fine-grained caching of verification results. In: 27th International Con-
ference on Computer Aided Verification. pp. 380–397. Springer, San Francisco, CA, USA (2015)

12. Logozzo, F., Lahiri, S.K., Fähndrich, M., Blackshear, S.: Verification modulo versions: Towards usable
verification. In: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design
and Implementation. pp. 294–304. ACM, New York, NY, USA (2014)

13. Miller, D., Pimentel, E.: A formal framework for specifying sequent calculus proof systems. Theoretical
Computer Science 474, 98–116 (2013)

14. Muşlu, K., Brun, Y., Ernst, M.D., Notkin, D.: Reducing feedback delay of software development tools
via continuous analysis. IEEE Transactions on Software Engineering 41(8), 745–763 (2015)

10

https://github.com/veriatl/OclDecompose

	Towards Incremental Deductive Verification for ATL

