
Extending UML Templates Towards Flexibility

José Farinha

ISTAR, ISCTE-IUL Lisbon University Institute, Lisbon, Portugal

jose.farinha@iscte.pt

Abstract. UML templates are generic model elements that may be instantiated

as domain specific solutions by means of parameterization. Some of the ele-

ments in a template definition are marked as parameters, implying that these

must be substituted by elements of the domain model, so to get a fully function-

al instance of the template. On parameter substitutions, UML enforces that the

parametered element and its substitute must be of the same kind (both classes,

both attributes, etc.). This paper shows that this constraint confines the applica-

bility of templates and proposes an alternative that, by allowing substitutions

among elements of different kinds, broadens that applicability. Cross-kind sub-

stitutions, however, require adequate semantics for the Binding relationship.

Such semantics are proposed as model transformations that must complement

the plain substitutions preconized by UML. Examples of such transformations

are provided for activities in a template being expanded into a bound element.

Keywords: UML Templates, Genericity, Model Verification, Binding.

1 Introduction

The Template is the construct in UML that brings into modelling the principles of

Generic Programming (GP). In GP, program code is written abstractly, in terms of to-

be-defined types, in order to factor out the commonalities of concrete solutions into

general, replicable ones. Generic code can be instantiated multiply, wherever the ad-

dressed problem occurs and concrete types comply with the requirements of that code.

In UML, generic model elements – templates – may be written in terms of a multitude

of to-be-defined elements: types, properties, operations, packages, etc. These are said

parametered elements or, simply, parameters (of a template). When instantiating a

template, all of the parametered elements must be substituted by conforming elements

of the application model. UML verifies the conformance between each parameter and

its substitute imposing that they are of the same kind: a class must be substituted by a

class, a property by a property, etc. Apart from that, UML (as to the current version,

2.5) barely imposes constraints on substitutions: the verification of the substitute’s

type and of compliance to constraining classifiers (when specified) are the only rele-

vant exceptions [8]. But these fall short in fully verifying the adequacy of a substitute,

since the former only cares for types (e.g., multiplicities and visibilities are not

checked) and the latter only applies to classifier parameters (not to parameters that

expose properties or operations, for instance). Truly, most of the well-formedness

mailto:pedro.ramos%7d@iscte.pt

verification of template instances is passed on to other constructs of the language:

e.g., if a property is not an appropriate substitute for a parameter, UML relies that

somewhere in the application model, any expression, message, action, etc. will fail in

using that property and, by raising an ill-formation error, will prevent the substitution.

A similar strategy was used in C++ and it showed to lead to poor error reporting, a

fact that instilled the introduction of C++ Concepts as a way to improve the validation

of template instantiations [7]. Acknowledging that such reporting problems also occur

in UML, [6] proposes an additional set of well-formedness constraints to ensure that

template parameters are properly substituted. With such constraints, a parameter’s

substitute is validated directly by the Substitution construct and incompatibilities are

reported exclusively in terms of the substituted element, its substitute, and the binding

relationship under consideration.

The current paper shows that such a set of constraints is, actually, sufficient to

guarantee the well-formedness of template instances and that, therefore, the same-

kind constraint may be relaxed. The proposition put forth is that cross-kind substitu-

tions may occur – e.g., a property may be substituted by an operation, or vice-versa –

granted that:

 The substituted and substituting elements are compatible, according to [6];

 The semantics of the Binding relationship is enhanced with model transformations

that convert the way a substituted element is referenced to the way its substitute is

referenced. That is to say that, if cross-kind substitutions take place, the body of

the template may no longer be merely copied into the bound element. Instead, it

must undergo a transformation. E.g., if a property is substituted by an operation,

property-accessing elements must be transformed to operation-calling elements.

If such transformations could be applied in a systematic way, the same-kind constraint

could be dropped from the UML metamodel. Since that constraint limits the applica-

bility of templates, removing it provides greater versatility to templates.

Work undertaken so far suggest that the complexity of such transformations de-

pends on the substitution capabilities being targeted. Yet, for a limited set of such

capabilities, those transformations are derivable simply from the substituted and the

substituting kinds. Therefore, it has been revealed that, up to some extent, cross-kind

substitutions are viable in UML. For space reasons, the details on deriving transfor-

mations are postponed to a future paper. Current paper sets out the proposed solution

showing the criteria that replaces the same-kind constraint and providing a glimpse of

the transformation process through some intuitive examples.

The structure of the paper is as follows: §2 illustrates the problem, showing how

the same-kind constraint restrains the application of templates; §3 presents a solution,

by explaining the rationale behind it, the criteria that replace the same-kind constraint,

and the additional semantics required so the Binding relationship deals adequately

with cross-kind substitutions; §4 presents related work; §5 draws some conclusions

and outlines future developments.

In diagrams in this paper, elements participating in a template definition are white-

filled and elements of the application setting are wheat-filled.

2 A Motivating Example

To illustrate how the same-kind reduces the applicability of templates it will be used

the simple template in Fig. 1.a along with a binding to it. AlphabeticList is a class

template with two parameters: type T and Name, a property of that type. Alphabeti-

cList embodies a generic solution for keeping a list of items ordered by some of those

items’ textual property. The semantics of the Binding relationship makes Fig. 1.a

equivalent to Fig. 1.b. Using OMG’s UML terminology, the anonymous class Alpha-

beticList<Document, Title> represents the expansion of AlphabeticList into Bibliog-

raphy, the element that bounds to the template.

Bounding to AlphabeticList will pose some difficulties if the bound element has the

usual object-oriented encapsulation strategy based on getters and setters, as in Fig. 2.

The problem is that with such binding, when processing the alphabetic ordering, the

code of the resulting AlphabeticList<Document, Title> will try to access a private

member of Document. Consequently, although the substitution of attribute Name by

Title doesn’t meet any impediments from UML template’s validation rules, the vali-

dation of the resulting code will fail and the binding will not succeed.

=

(a) (b)

Fig. 1. Template AlphabeticList and a binding to it

Fig. 2. A binding to Alphabetic List with bad-formation side-effects

To have our template applied to this target model, attribute Name would have to be

substituted by operation getTitle(). However, such substitution is not allowed by

UML, because Name and getTitle() are not of the same kind. It could be argued that

this could be overcome defining an additional public attribute whose values are de-

AlphabeticList <Document, Title>

add(Document)

remove(Document)

Bibliography

RefStyle: String

Document

Title: String

Year: int...

...

0..*

0..*

rived by the expression ‘= getTitle()’. Yet, such an attribute would be redundant. And

it’s not hard to foresee that, if the same approach is used as more and more templates

are applied, domain classes would easily get overloaded with redundant features.

Another alternative could be put forth: getName() could be defined on T and ex-

posed as parameter, instead of Name. That would however lead to the same problem:

if the application domain has only an attribute Title, instead of getTitle(), the template

would not be applicable again. Only the definition of both Name and getName() in T,

along with two templates – one having Name as parameter and the other getName() –

could provide applicability to both the application scenarios.

The template could also be of use in Fig. 3, so that each invoice has a list of Order-

Items, sorted by the ordered products’ names. However, such a binding would also

cause errors in the expansion of the template’s code into Invoice, because that code

will try to access attribute Name on OrderItem objects. The definition of a derived

attribute Name in OrderItem would solve the problem but, once again, it would be

redundant. Only a third variant of the template will do: one that deals with scenarios

were the ordering attribute is one association-end away from the listed objects. It

might be becoming clear by now that, with this approach, templates tend to prolifer-

ate: another one would be required to deal with ordering by an operation one associa-

tion-end away, yet another to deal with an attribute two association-ends away, and so

on. Like in Fig. 4.

It would be good if templates could be applied to different configurations of appli-

cation models without a proliferation of features nor of template variants.

Fig. 3. A desirable but not viable instantiation of the template

Fig. 4. Proliferation of template variants

3 The solution

In order to have a single template applied both to scenarios with properties (Fig. 1)

and scenarios with operations (Fig. 2), such template would have to be defined gener-

ically in terms of a UML feature and have it exposed as a parameter. Since both prop-

erties and operations are features, both could be substitutes for that parameter. How-

ever, Feature is an abstract metaclass, so there is no way to have the afore mentioned

feature. Hence, the template must be defined in terms of a property and have that

property substituted by an operation, or vice versa. Furthermore, if cross-kind substi-

tutions were allowed, the template could also be applicable to the scenario in Fig. 3,

having the OrderItem::Name property substituted by the expression “.product.name”.

These examples suggest that relaxing the same-kind constraint is the way to go.

The same-kind constraint in UML 2.5 is imposed because of the bare semantics of

the binding relationship: the body of the template is plainly copied to the bound ele-

ment and, in the resulting copy, all references to parameters are replaced by refer-

ences to their substitutes. Since the new referencing elements are mere copies of their

originals in the template, the elements they reference (the substitutes) must be of the

same kind as the corresponding parameters. Therefore, cross-kind substitutions may

be enabled only if the referencing elements undergo a transformation during a tem-

plate expansion. Necessarily, one that replaces all dependencies on a parameter’s

metaclass by dependencies on its substitute’s metaclass. E.g., substituting a property

by an operation is possible, if all ReadStructuralFeatureActions referencing that

property are transformed into CallOperationActions (which roughly corresponds to

transforming “obj.aProperty” into “obj.anOperation()”, in textual programing). How-

ever, since not every kind of referencing elements may be converted into every other

kind without loss of semantics, relaxing the same-kind constraint shouldn’t mean

allowing arbitrary substitutions, as shown in §3.2.

3.1 Bind Conformance

In [6] a concept named “Functional Conformance” was introduced to ensure the well-

formedness of UML template instances. The concept is proposed as a set of meta-

model constraints on template parameter substitutions. In the current paper the con-

cept is extended to suit the new goals and renamed to Bind Conformance (BC)1. BC is

presented in the next sections in a brief, informal way. The interested reader may find

the corresponding formulations in [6]. In the following paragraphs, the prefix ‘’ is

used to denote “substitute of”.

Type conformance (TypCnf) is a criterion announced three-fold, considering a pa-

rametered element e and its substitute e:

(1) If a type T of e is not substituted, then e must have T as type;

(2) If a type T of e is substituted, then e must have T as type.

(3) If e has no type, then e must have no type as well.

1 The renaming is not a consequence of the new purposes, but to provide a more suitable name.

UML only enforces (1) [8]. (3) is introduced in this paper because operations are con-

sidered type-conformant and void operations must be dealt accordingly. TypCnf applies

to every element that may have a type, i.e., UML’s TypedElements and Operations.

Subtyping conformance applies to classifiers and intends to preserve every is-a

relationship from the template to the bound element. The definition is: if T is a sub-

type of Tsuper, then T must be a subtype of Tsuper or Tsuper itself.

Multiplicity conformance states that two elements conform regarding multiplicity

if they are both single-valued (multiplicities’ upper bound = 1) or both multivalued

(upper bound > 1) and, in the latter case, if they are both ordered or both not-ordered.

Members conformance (Mmbcnf) applies to namespaces – Packages, Classifiers

and Operations – and states that, in a binding, the namespace Ns is conformed by Ns

if every member of Ns being used by the template is substituted by a member of Ns.

Signature conformance (Sigcnf) ensures that a substituting operation/behavior has

a set of parameters compatible with that of the substituted.

Constancy conformance establishes that an element that is constant may only be

substituted by another that is also constant, and a non-constant by another non-

constant. Constant elements are: read-only structural features (properties), literal val-

ues, and every behavior or expression that exclusively references constant elements.

Staticity conformance states that static elements may only be substituted by an-

other that is also static, and a non-static by a non-static.

Abstraction conformance applies only to classifiers and is already supported by

UML 2.5. It states that a classifier that is not abstract may only be substituted by an-

other that is also not abstract.

Fig. 5. Metamodel for bind conformance enforcement on operations.

ParameterableElement

isBindConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

isTypeConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

isMultiplicityConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

isMembershipConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

isEtcConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

TemplateBinding

TemplateParameterSubstitutionTemplateParameter

«invariant»

{}

Operation

isBindConformedBy(substitute: ParameterableElement, context: TemplateBinding): boolean

{ return typeConformedBy (substitute, context)

 and multiplicityConformedBy (substitute, context)

 and staticityConformedBy (substitute)

 and signatureConformedBy (substitute, context) }

«invariant»

{ formal .parameteredElement .isBindConformedBy (actual, bind) }

} return false.

0..*

parameteredElement1

0..*

actual 1

0..*

formal

1

bind1

parameterSubstitution0..*

Enforcing Bind Conformance. BC must be enforced on template parameter substitu-

tions. It may be defined as an invariant that merely calls isBindConformedBy() (Fig.

5). This operation is abstract in ParameterableElement and specialized on every sub-

class so to invoke the applicable conformance criteria. Fig. 5 shows how this is spe-

cialized for operations. If a criterion applies to a parametered element but not to its

substitute, this one’s metaclass will not be redefining the corresponding

is<…>ConformedBy() operation and, therefore, this’ default definition (in Parame-

terableElement) will return false, causing a conformance failure, as desired.

3.2 Possible metaclass combinations according to Bind Conformance

As mentioned above, relaxing the same-kind constraint doesn’t mean allowing arbi-

trary substitutions. It is rather intuitive that some element kinds are incompatible from

the start, independently of the particular elements playing parts in a substitution. E.g.,

if the parametered element is a property, a package is not certainly a suitable substi-

tute. Therefore, it is necessary to have a rationale that allows eliciting what kinds are

compatible. For space reasons, such rationale is not shown in this paper. The interest-

ed reader must refer to [5], where Table 1 is deduced.

Table 1. Possible cross-kind substitutions

 Substituting

P
ac

k
ag

e

C
la

ss
if

ie
r

B
eh

av
io

r

P
ro

p
e
rt

y

O
p

er
at

io
n

V
al

u
e

S
p

ec
.

P
ar

am
et

er

V
ar

ia
b

le

S
u

b
st

it
u

te
d

Package

Classifier

Behavior

Property

Operation

Value Spec.

Parameter

Variable

3.3 Enhanced Semantics for the Binding Relationship

As mentioned before, the possibly of cross-kind substitutions relies on enhancing the

semantics of the Binding relationship. In UML (v2.5), such semantics define the fol-

lowing about substitutions: when expanding the template body into the bound element

body, every reference to a parametered element must be replaced by a reference to

that element’s substitute. For cross-kind substitutions, such plain replacements are not

enough, and must be complemented with model transformations. For every reference

to a parametered element, a transformation must convert the referencing element to

another that adequately references the substituting element, taking into account this

one’s metaclass. Such transformations must replace all dependencies on the substitut-

ed element’s metaclass by dependencies on the substituting’s metaclass.

These transformations are specific to every combination of a referencing element’s

metaclass with a substituting element’s metaclass. Consequently, there are plenty of

them. For space reasons, this paper only exemplifies such transformations for a small

set of referencing elements from the UML’s Activity formalism.

Transforming Structural Feature (SF) actions. With cross-kind substitutions ena-

bled, the intended binding of Fig. 2 succeeds if T::Name is substituted by Docu-

ment::getTitle (). If the AlphabeticList’s methods are defined as UML activities, read

accesses to T::Name are done through Read SF actions. These need to be transformed,

and not merely copied, when that template is expanded into Bibliography: Read SF

actions must be converted to Operation Call actions, as in Fig. 6.a.

The binding intended in Fig. 3 succeeds if property T::Name is substituted by ex-

pression “product.name”. Since this expression will be applied to OrderItems, “prod-

uct” will be interpreted as the association-end leading to class Product and, therefore,

the whole expression will compile successfully. Hence, actions reading T::Name in

the template must be converted to actions that process expressions in UML, Value

Specification actions (Fig. 6.b).

With the approach being proposed, elements that write to properties may not be

converted. Therefore, properties being written to by the template are not eligible for

cross-kind substitutions. This is a limitation of the current approach.

 In the template

In the bound element

(a)

 (b)

Fig. 6. Examples of template expansion with cross-kind substitutions

Transforming operation calls. Fig. 7 shows a template with three parameters: class

T and two operations of that class, value() and setValue(). This figure shows also a

binding to that template, with two cross-kind substitutions: operation value() by prop-

erty price, and operation setValue() by activity ‘price=’. The ‘price=’ activity is de-

fined inside Product (as shown by the nesting relationship) and it may be simply a

$a<T>$

«read structural feature»

T :: name

self result

v al aDocument

«call operation»

Document :: getTitle()

self result

v al

$a<T>$

«read structural feature»

T :: name

self result

v al v al

«value specification»

OrderItem :: product . name

self result

aOrderItem

transformation

transformation
substitution

substitution

wrapper for a Write SF action. For convenience, such activity could be automatically

generated from the textual declaration ‘T::setValue() -> price=’. The transformations

processing these substitutions must convert Operation Call actions to Read SF actions

and to Activity Call actions, respectively.

As a further example, operation value() could be substituted by an expression such

as ‘price * (1 –discount)’, which would require transformations to Value Spec actions.

Fig. 7. Substituting operations by properties and activities

4 Related Work

Research on UML templates is scarce. Pieces of work with approaches to ensuring

conformance in template binding similar to the one in this paper are [3], [2], and [11],

but none of them propose conformance on behalf of flexibility. To our knowledge, the

current paper is the first attempt to introduce flexibility in UML template binding.

In the GP field, Concepts are used to impose requirements on template arguments

[4]. In most of the languages (e.g., Java, C#, and Scala), Concepts are implemented

through bounded polymorphism, the same approach as UML’s constraining classifi-

ers. When imposing that a type parameter subtypes a bounded type, these languages

prevent cross-kind substitutions. [9] and [7] are proposals for introducing Concepts in

C++, and are the approaches that most resemble UML Templates with BC: a C++

Concept corresponds to an element exposed as parameter in UML, if BC is enforced.

However, none of these proposals capitalize conformance as a means to flexibility.

In the Design Pattern (DP) field, most of the approaches to DP instantiation and/or

recognition acknowledge that a DP instance may not strictly mimic the DP model,

signifying some level of flexibility. E.g., [1] considers that a relationship in a DP may

be instantiated as a relationship chain. Mapping to the current paper’s approach, that

would correspond to substituting a property by a conformant dot-expression. [10]

proposes a formalism for DPs that combines conformance with flexibility, like the

current paper, but not for UML.

5 Conclusions and Future Work

So far, the idea put forth in this paper was only experimented empirically, mostly

using a set of templates dedicated to data validation. Such templates are mostly com-

posed of generic data structures, constraints on that data, and some auxiliary opera-

tions. The observed results showed that cross-kind substitutions lead to a significant

saving in the number of templates. Mainly, the substitution of properties by expres-

sions allows that every single template becomes applicable to several settings, that

would otherwise require multiple variants of the template. However, a future study for

assessing the effect on the total complexity (of a template + bindings to it) seems

advisable, since a decrease in a template library’s complexity comes with an increase

in the bindings’ complexity (substitutions by expressions are more complex). The

effect on the maintenance of bindings is also uncertain and should also be evaluated.

References

1. Bayley, I., Zhu, H.: Formal specification of the variants and behavioural

features of design patterns. J. Syst. Softw. 83, 2, 209–221 (2010).

2. Caron, O., Carré, B.: An OCL formulation of UML2 template binding. UML’

2004 — Unified Model. Lang. Model. Lang. Appl. 3273, 27–40 (2004).

3. Cuccuru, A. et al.: Constraining Type Parameters of UML 2 Templates with

Substitutable Classifiers. Model Driven Eng. Lang. Syst. 12th Int. Conf.,

Model. 2009, Denver, CO, USA, 2009. Proc. 5795, 644–649 (2009).

4. Dehnert, J.C., Stepanov, A.A.: Fundamentals of Generic Programming.

Generic Program. Int. Semin. Generic Program. Dagstuhl Castle, Ger. 1998,

Sel. Pap. 1766, 1–11 (1998).

5. Farinha, J.: Extending UML Template Towards Flexibility (extended

version). , Lisbon, Portugal (2016).

6. Farinha, J., Ramos, P.: Computability Assurance for UML Template Binding.

In: Desfray, P. et al. (eds.) Model-Driven Engineering and Software

Development: 3rd Int. Conf., MODELSWARD 2015, Revised Selected

Papers. pp. 190–212 Springer International Publishing, Cham (2015).

7. Gregor, D. et al.: Concepts: Linguistic Support for Generic Programming in

C++. In: Procs. 21st ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, OOPSLA 2006,

October 22-26, 2006, Portland, Oregon, USA. pp. 291–310 ACM (2006).

8. OMG: OMG Unified Modeling Language, version 2.5. (2015).

9. Siek, J.G. et al.: Concepts for C++0x. Technical Report N1758=05-0018,

ISO/IEC SC22/JTC1/WG21. (2005).

10. Soundarajan, N., Hallstrom, J.O.: Precision, Flexibility, and Tool Support:

Essential Elements of Pattern Formalization. In: Taibi, T. (ed.) Design Pattern

Formalization Techniques. pp. 280–301 IGI Global (2007).

11. Vanwormhoudt, G. et al.: Aspectual templates in UML. Softw. Syst. Model.

(2015).

