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ABSTRACT
Bitcoin is a rising digital currency and exemplifies the grow-
ing need for systematically gathering and analyzing pub-
lic transaction data sets such as the blockchain. However,
the blockchain in its raw form is just a large ledger listing
transfers of currency units between alphanumeric character
strings, without revealing contextually relevant real-world
information. In this demo, we present GraphSense, which is
a solution that applies a graph-centric perspective on digi-
tal currency transactions. It allows users to explore trans-
actions and follow the money flow, facilitates analytics by
semantically enriching the transaction graph, supports path
and graph pattern search, and guides analysts to anomalous
data points. To deal with the growing volume and veloc-
ity of transaction data, we implemented our solution on a
horizontally scalable data processing and analytics infras-
tructure. Given the ongoing digital transformation in finan-
cial services and technologies, we believe that our approach
contributes to development of analytics solutions for digi-
tal currency ecosystems, which is relevant in fields such as
financial analytics, law enforcement, or scientific research.
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•Information systems → Data analytics;
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1. INTRODUCTION
The rise of digital currencies such as Bitcoin [7] is an indi-

cator for the ongoing digital transformation in financial tech-
nologies. In contrast to existing fiat currencies (e.g., EUR,
USD), digital currency units are generated without central
control (e.g., national banks) by a decentralized network of
so called miners. Anyone can transfer money to anyone else
in the world under minimal transaction costs, without dis-
closing real-world identity information, and without relying
on traditional payment processors (e.g., banks). All ever
executed transactions are accessible in the publicly visible
blockchain and can systematically be gathered and analyzed
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for purposes such as financial analytics, scientific investiga-
tions, or law enforcement.

However, raw Bitcoin transactions only represent flows
of currency units between alphanumeric character strings,
without revealing contextually relevant real-world informa-
tion. Therefore, within the GraphSense project, we aim
at developing algorithmic solutions for real-time analytics
of large-scale transaction graphs generated from transaction
ledgers such as the Bitcoin blockchain. The expected result
is a system that allows analysts to (i) explore transactions
and trace the flow of digital currency units, (ii) make use of
automated (address clustering) and manual semantic enrich-
ment (tagging) techniques, (iii) search for paths and graph
patterns within various graph perspectives, and (iv) filter
data points and patterns deviating from typical structures
by applying anomaly detection techniques. The combina-
tion of these features could, for instance, help analysts to
identify illegitimate business transactions or trace fraudu-
lent activities. The intended solution should be applicable
for Bitcoin and any other form of digital currency transac-
tions (e.g., Ethereum1).

Existing work in the field of cryptocurrency research al-
ready shows the potential of graph-based approaches for
analyzing the structure and dynamics of digital currency
ecosystems: using a variety of heuristics [7, 10, 8, 3] it is pos-
sible to aggregate Bitcoin addresses into clusters, which indi-
cate common ownership of addresses; using so-called ego-net
features in combination with unsupervised k-means cluster-
ing, it is possible to detect anomalous behavior in the Bitcoin
transaction network [6]. However, algorithms presented in
these works operate on static subsets of the blockchain and
do not allow for interactive real-time analytics.

Therefore, the technical and scientific challenge addressed
in GraphSense lies in the growing volume, velocity and se-
mantically poor nature of digital currency transaction data.
As of May 2016, the Bitcoin address graph consists of 144
million nodes (addresses) and 1 billion edges (transactions)
and expands by roughly 200,000 transactions a day. We
address this challenge by building analytics, semantic en-
richment, and anomaly detection algorithms on horizontally
scalable infrastructures and test their applicability using the
dynamically growing Bitcoin blockchain dataset. Our main
aims (and preliminary contributions) can be summarized as
follows:

• We apply a graph-centric perspective on digital cur-
1https://www.ethereum.org/



rency transactions and implement graph exploration
and analytics procedures on horizontally scalable in-
frastructures with real-time streaming and graph com-
putation capabilities (e.g., Apache Spark).

• We enrich the transaction graph using well-known ad-
dress clustering heuristics and contextually relevant
external knowledge expressed as tags.

• We investigate path and pattern search procedures,
which allow the investigation of currency unit flows
between Bitcoin addresses.

• We use anomaly detection techniques for identifying
nodes that might be of interest to the analyst.

Development and algorithmic design is still in an early
stage and a first public demo release is available and acces-
sible via our project website2. It demonstrates an analyt-
ics infrastructure that supports stakeholders from various
domains (e.g., FinTech, Law Enforcement) in interactively
exploring the Bitcoin blockchain from a graph perspective.

2. BACKGROUND
The blockchain takes a central role in the Bitcoin ecosys-

tem. It represents a complete and timely ordered history of
all transactions ever carried out within the Bitcoin network
and is continuously synchronized by Bitcoin clients over the
Bitcoin P2P network. The core entities in this database are
blocks, transactions, and addresses.

A block in the Bitcoin blockchain aggregates one or more
transactions, provides a header with additional descriptive
metadata (e.g., creation date, sequential id), and also con-
tains a hash-value, which is computed over selected header
fields and a hash over the set of encapsulated transactions.
The hash serves as unique identifier for a block and is also
used to refer to the previous (and next) block, which ensures
that transactions within a block and the block sequence it-
self are non-mutable and therefore tamper-proof.

A Bitcoin transaction can be regarded as a generalization
of regular bank transaction allowing multiple sending ad-
dresses (inputs) and multiple receiving addresses (outputs).
Each transaction input must refer to an output of a previ-
ous transaction and contain a signature verifying ownership
of Satoshis (Bitcoin subunits) associated with that output.
A transaction output comprises the recipient’s Bitcoin ad-
dress and number of Satoshis credited to that address. Since
transactions outputs can only be used once, it is possible to
distinguish between spent and unspent transaction outputs.

An address is a hash over the public key of an asymmetric
key-pair generated by the user. It can be shared publicly
just like a traditional bank account is shared for receiving
payments. However, the corresponding private key must be
kept private in order to unlock and spend Bitcoins associated
with addresses in the public blockchain. Users can use wallet
software (e.g., Bitcoin Core, blockchain.info) to generate an
arbitrary number of public/private key and to keep their
private keys.

A number of different graph-centric perspectives have been
proposed for Bitcoin so far:

2http://graphsense.info
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Figure 1: Bitcoin address graph model.

• Transaction Graph [8]: represents the flow of Bitcoins
between transactions over time. Each vertex repre-
sents a Bitcoin transaction and each directed edge an
output connecting two transactions with each other.
Each edge also includes the transferred Bitcoin value
and a timestamp.

• Address Graph [3]: represents the flow of Bitcoins be-
tween addresses. Each vertex denotes an address and
each directed edge a particular transaction from a source
address to a target address.

• Entity Graph [8, 10, 3]: represents the flow of Bit-
coins between real-world entities over time. Each ver-
tex represents a cluster of addresses possibly belong-
ing to the same entity. A directed edge represents an
input-output pair of a single transaction, where the in-
put and output addresses are part of the source and
target addresses.

3. APPROACH
Existing services, such as blockchain.info, already allow

manual inspection of the main blockchain entities (block,
transaction, address), but do not offer graph-centric explo-
ration and analytics features. Our aim is to provide such
features as well as algorithmic approaches for reducing the
complexity of graphs, enriching graphs with contextual in-
formation, and detecting anomalous nodes.

3.1 Graph-centric transaction perspective
At the moment, GraphSense implements one specific type

of graph-centric perspective: the so called address graph,
which is a property graph model [9] representing the flow
of Bitcoins between addresses over time. As shown in Fig-
ure 1, each vertex represents a Bitcoin address identified by
a 26-35 alphanumeric character string. Each edge represents
a transaction identified by its 32-bit hash and carries addi-
tional properties, such as the transaction time stamp and
transaction value.

The address graph provides a useful abstraction for man-
ually exploring and tracing flows of currency units through
the Bitcoin ecosystem and identifying recurring patterns
in transactions, such as frequently used target addresses.
In combination with address clustering and node enrich-
ment techniques, it can also be used for finding known, de-
anonymized addresses in the digital trace of digital curren-
cies.

Since the volume of Bitcoin transactions already touches
the physical boundaries of single-machine analytics environ-
ments, we implemented our graph construction and analyt-
ics procedures using Apache Spark3, which provides hori-
zontal scalability and streaming capabilities for dynamically
3https://spark.apache.org/
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Figure 2: Transaction graph enrichment.

updating GraphSense internal data representations from raw
blockchain data. With GraphX and the recently announced
GraphFrame API4, Spark also provides a variety of graph
algorithms such as PageRank or computation of connected
components as well as the possibility to implement custom
graph algorithms using the Pregel API.

3.2 Transaction graph enrichment
The original Bitcoin paper [7] states that “a new key pair

should be used for each transaction to keep them from being
linked to a common owner” and many Bitcoin users follow
that recommendation, as can be observed by the monthly
number of newly generated Bitcoin addresses, which is greater
than the monthly number of transactions [4]. Thus, without
enrichment techniques, analysts are confronted with more
than 120 million address nodes without further contextual
information.

We address that problem by a two-step enrichment pro-
cess, which is illustrated in Figure 2: in the first step, we
automatically apply heuristics to group addresses (A) ob-
served in the blockchain into address clusters (C), which are
likely owned by the same real-world entity. In the next step,
we offer the possibility to tag (T ) single addresses — either
manually or via bulk upload — with contextually relevant
information, such as ownership information or appearance
on certain Web sites. From a tag, which is explicitly as-
signed to a single address, we can then infer implicit contex-
tual information for all other addresses in the same address
cluster and consider this information in transaction graph
exploration or search tasks.

Given the presence of roughly 2,000“super-clusters”, which
contain approximately 16% of all addresses and are respon-
sible for 23% of all transaction outputs, those transaction
graph enrichment techniques also reduce complexity for an-
alysts. It has also been shown that address clusters with high
degree centrality often represent major darknet markets,

4https://github.com/graphframes/graphframes

gambling services, exchanges, or mining pools [4], which can
be tagged accordingly.

3.3 Path and graph pattern search
A fundamental requirement often requested by analysts

is the ability to execute path queries. A typical use case is
finding a path between given Bitcoin addresses or addresses
carrying certain tags (e.g., exchange service). Another use
case is to find the subgraph spanning a set of source and
target nodes.

Traversing and finding the shortest path in a graph is a
known and extensively studied problem [11, 5, 2]. How-
ever, in the context of Bitcoins, we are dealing with large
graphs containing millions of nodes with a highly skewed de-
gree distribution and billions of edges possibly partitioned
over a number of physical machines. Therefore, we investi-
gate novel optimized graph traversal algorithms taking into
account Bitcoin specific graph properties such as temporal
order of transactions, node degrees, or cluster membership
of addresses. Furthermore, we aim at implementing those al-
gorithms on top of distributed analytics infrastructures such
as Apache Spark.

For such queries, our initial release implements a bidirec-
tional breath-first search algorithm, which is supported by
a number of statistics computed over the entire blockchain
using Apache Spark.

3.4 Anomaly detection
Anomaly detection refers to the problem of finding pat-

terns in data that do not conform to normal and expected
behavior. Nonconforming patterns are often referred to as
anomalies or outliers and have the common characteristics
that they have real-world relevance and are interesting to
the analyst [1]. In the context of Bitcoin, anomaly detec-
tion algorithms could guide analysts to specific addresses in
a large cluster, which deviate from others by characteristics
such as transaction frequency, node degree, or transaction
volume. On a more macroscopic level, anomaly detection
algorithms could provide insight into the state of the overall
Bitcoin ecosystem and indicate anomalous events, such as
attacks on the Bitcoin peer-to-peer network.

On a technical level, the task of anomaly detection algo-
rithms is to compute and assign continuous anomaly scores
to explicit (address, transaction) and derived (address clus-
ter) nodes in the Bitcoin transaction network and flag those
that exceed a certain threshold. The absence of annotated
training data leaves us with two possible approaches: (i)
parametric statistical techniques, which build a stochastic
model from historical data to determine if a new observa-
tion is anomalous or not, and (ii) unsupervised clustering
techniques, which assume that normal data instances oc-
cur in dense neighborhoods, while anomalies occur far from
their closest neighbor. At the moment, we investigate how
to compute anomalies for addresses in addresses clusters and
compare performance and effectiveness of both technical ap-
proaches.

4. PRELIMINARY RESULTS AND DEMO
Our current implementation (release 0.1) consists of sev-

eral components: a utility for extracting transaction data
from the blockchain, a data transformation pipeline built
on Apache Spark, a data storage backend exposing a REST
API, and an initial Web interface, which supports users in



Figure 3: Address view in web interface.

the following tasks:

• Search transaction graph: using a Google-like search
interface, users can search for Bitcoin blocks and trans-
actions as well as for addresses either by their identifier
or by assigned tags.

• Search path: by entering a source and target address,
users can find and inspect the shortest path between
these nodes.

• Explore and traverse transaction graph: all Bit-
coin entities (blocks, transactions, addresses) are ex-
posed as first class resources identified by a unique
URI. Relationships between entities are represented as
HTTP links.

• Inspect address cluster: each address is assigned to
a cluster, which can be further inspected.

• Explore address graph: for each address, we display
a reduced ego-net graph (see Figure 3), which allows
users to inspect and traverse the address graph.

5. SUMMARY AND FUTURE WORK
GraphSense is a graph-centric analytics solution for dig-

ital currencies and is built on a horizontally scalable data
processing and analytics platform. It allows users to explore
transactions and follow the money flow, facilitates analytics
by semantically enriching the transaction graph, supports
search for paths and graph patterns, and guides analysts to
anomalous data patterns. Its first release already provides a
number of features for exploring, searching, and inspecting
a semantically enriched transaction graph, which originates
from the Bitcoin ecosystem.

Our future work will focus on graph computation scalabil-
ity issues (address cluster, path search), implementation of
known and investigation of novel clustering heuristics, im-
proved user interaction, and abstracting the overall design
to accommodate transactions from other digital currency
systems.
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