
Web of Needs: A Process Overview

Florian Kleedorfer, Soheil Human, Heiko
Friedrich

Research Studio Smart Agent Technologies
Research Studios Austria

Thurngasse 8
A-1090 Wien, Austria

florian.kleedorfer, soheil.human,
heiko.friedrich@researchstudio.at

Christian Huemer
Institute for Software Technology and Interactive

Systems
Vienna University of Technology

Favoritenstrasse 9-11
A-1040 Wien, Austria

huemer@big.tuwien.ac.at

ABSTRACT
The Web of Needs (WoN) is an approach for expressing and
publishing human needs on the Internet as linked data to
allow automatic matching of the expressed needs and com-
munication between users who expressed them. In this paper
we summarize the processes realized by the different archi-
tectural components and explain the decision to use a linked
data based messaging subsystem.

CCS Concepts
•Information systems→World Wide Web; •Human-
centered computing→Collaborative and social com-
puting systems and tools;

Keywords
linked data, electronic marketplaces, messaging

1. INTRODUCTION
This work is an extension to our publication on verifiabil-

ity of the message exchange in the Web of Needs (WoN) [5],
providing details on the application that uses this messaging
approach.

The main idea of WoN is to allow users to publish ob-
jects that indicate intention to interact. These objects are
referred to as needs; they allow users to be informed when
the intended interaction may be possible, and support have
such interactions by facilitating the exchange of messages
between needs. [4]. Using linked data for the description of
the intentions has the advantage that the semantics of the
data is portable across different participants and it creates a
unified, decentralized data view of the whole content on the
Web. However, in the application scenarios we envisage, the
descriptions of needs (intentions) are only one part of the
content; the actual messages that are exchanged are at least
of the same importance because the state of each interaction
is defined by the description of the needs and the set of all
messages that have been exchanged. In order to provide said
unified view not only of the needs, but also of the communi-
cation, a linked data based messaging system was designed
such that messages (payload and metadata) are formulated
in RDF [6] and made available as linked data.

c© 2016 Copyright held by the author/owner(s).
SEMANTICS 2016: Posters and Demos Track
September 13-14, 2016, Leipzig, Germany

The messaging aspect is integrated with the application
in such a way that all interaction with it is realized via mes-
sages - not only, as one might assume, user-to-user com-
munication. All state changes - creation and manipulation
of need objects and the management of their connections
with each other - are all done using linked data messages.
The messages are cryptographically signed by their senders
and all intermediate relays; their signatures are linked in
chains or trees [7], so this approach generates an audit trail
of all state changes and conversations, guarding against the
manipulation of published data and of messages exchanged.
This provenance data is part of the data layer of the system,
which has the advantage that the same tools and methods
can be used to create, analyze, or store the data that are
used for managing the main application content.

2. ARCHITECTURAL OVERVIEW
Figure 1 shows a deployment diagram of the Web of Needs.

It depicts a distributed network that consists of three dif-
ferent types of nodes: WoN nodes, owner applications, and
matching services. WoN nodes, or for short nodes, are the
data services that relay messages and serve linked data.
Needs (intentions), created in the owner applications, are
stored on WoN nodes. Matching services search for pairs of
needs that are suitable for an interaction, and if such a pair
is identified, they send a hint message to each of the needs.

If a user finds the remote need indicated in a hint message
suitable for an interaction, they can open a connection from
their need to the suggested need.

For example, consider a typical classified ads use case:
user Alice is looking for a power drill for some home im-
provement work. User Bob wants to sell a power drill. Both
users can publish their intentions on the WoN. A matching
service suggests that the two connect, which they eventu-
ally do. They organize the transaction by exchanging chat
messages.

Finding matches for a given need is a crucial functionality
of the Web of Needs, and the usefulness of the system de-
pends greatly on the quality of the matches. The matching
task is challenging, in most cases, it is domain specific, and
the idea of developing a single monolithic matching service
that could fulfill all expectations is unrealistic. To allow for
free evolution of good matching, WoN was designed as an
open system to support any number of matching services. In
the demonstrator application1 [2], two matching approaches

1The latest stable version is available at https://www.



matching 

service

matching

service

WoN

node

WoN

node

WoN

node

owner

application

owner

application

Figure 1: Deployment diagram indicating types of
nodes and communication paths.

are implemented:

1. Online Matching. This approach is required for pro-
viding results as fast as possible after a need has been
published. In order to allow for this, WoN nodes offer
updates about needs in the form of publish-subscribe
queues2. Matching services can subscribe to these events
and be updated whenever a new need is created. The
matcher was built using an information retrieval ap-
proach [3] by indexing all encountered needs and query-
ing that index with queries generated for each new
need.

2. Offline Matching. While some use cases require instan-
taneous results, it is acceptable under some circum-
stances that matches are discovered at a later point in
time. Such situations allow a matching service to an-
alyze a larger number of needs in bulk, which is what
is required, for example, for a tensor factorization ap-
proach we applied for detecting new matches [8].

3. PROCESSES IN THE WEB OF NEEDS
In order to provide an overview of the functionality pro-

vided by WoN, we illustrate the main processes using the
Business Process Model and Notation (BPMN) graphical
representation [1] in Figure 2. The process includes three
pools, one for each type of service or application.

1. Owner Application. This denotes a mobile, desktop, or
Web application that offers a graphical user interface
to access the Web of Needs. The pool shown here
represents some of the very basic functions of the owner
application that are related to the matching system:

(a) Manage needs.

matchat.org/
2In the current implementation, these are managed by an
ActiveMQ message broker; however, other messaging sub-
systems that support publish-subscribe can be used as well.

• Create need. When a need is created in the
owner application, a Create message, which
includes the need’s RDF description, is sent
to a WoN node.

• Deactivate need. When a user no longer
wants to receive any messages on behalf of a
need, a Deactivate message is sent to the
WoN node hosting the need.

• Activate need. When a user wants to re-
activate a deactivated need, an Activate mes-
sage is sent to the WoN-node hosting the need.

(b) Manage hints.

• Show hints to user. When matches are
found, and the respective Hint messages are
received from matching services (and forwarded
by the WoN node), the owner application shows
them to the user.

• Send feedback for matchers. Users have
the option to give feedback on the relevance of
the matches in order to improve the matching
system. The owner application constructs a
HintFeedback message and sends it to the
WoN node that holds the need’s data. Feed-
back data is published along with the data
describing the connection between two needs.
It is intended for use by matching services to
improve the matching quality over time.

(c) Manage connections to other needs.

• Connect with remote need. When a hint
is received, the user can decide to establish a
communication channel with the remote need.
This is done by sending a Connect message.

• Accept or deny a remote need’s con-
nection request. When a Connect mes-
sage is received, the user can decide to es-
tablish a communication channel with the re-
mote need. This is done by sending a Con-
nect message. If the communication is not
desired, a Close message is sent.

• Exchange messages. When a connection is
established, ConnectionMessage messages
containing arbitrary RDF graphs as payload
can be exchanged between needs.

• Disconnect from remote need. When no
more communication is desired, a Close mes-
sage is sent to the remote need via the WoN
node.

2. WoN Node The following processes are executed on
the service that holds all the data.

• Create need. When a Create message is re-
ceived from an owner application, the WoN node
extracts the need description and stores it in its
database. Subsequently, a message indicating the
creation of the new need is published and con-
sumed by the clients subscribed to the respective
topic.

• Process a matcher’s hint. When matches are
found, they are sent as Hint messages to the WoN
node hosting the respective need. The node stores



them in its database, creating a new Connection
entry between the need and its matched remote
counterpart. The Hint message is sent to the
owner application to be shown to the user.

• Store feedback for matchers. User feedback
is stored in the database of the node.

• Process and relay messages on behalf of
the needs. When a message is received from an
owner application or a remote node (e.g., a Con-
nect or ConnectionMessage), the message is
stored locally. If, according to the communication
protocol3, the message causes server-side actions,
these are executed (e.g. a state change to a need
or connection). Subsequently, the message is for-
warded to its destination.

3. Matching Service This pool shows the processes typ-
ically performed by the matching service. It consists
of two main modules (represented as lanes): a) node
management b) need management c) hint generation
and sending.

(a) Node Management. The matching service tries
to keep up to date with data in WoN. It does this
by executing the following processes.

• Discover new WoN node. When the match-
ing service discovers a new WoN node, it cre-
ates an entry about it in its database.

• Subscribe to receive updates when needs
are created. The matching service identifies
the message queues for being updated about
new needs and subscribes to them.

• Crawl existing needs. The matching ser-
vice crawls newly discovered WoN nodes.

(b) Need management.

• Discover new need. New needs are dis-
covered either through crawling or as a result
of receiving a message from a WoN node’s
publish-subscribe queue the matching service
is subscribed to. The need data is down-
loaded and stored in an RDF store.

• React to need state changes. Whenever
a state change is detected, the matching ser-
vice updates the RDF data associated with
the need and decides whether to react by cal-
culating new matches.

(c) Hint generation and sending.

• Execute online matcher. Whenever a new
need is encountered, the online matcher is ac-
tivated. In the demonstrator application, the
online matcher is realized using an informa-
tion retrieval approach [3].

• Execute offline matcher. At regular inter-
vals, offline matchers can be started that per-
form bulk calculations and produce hints af-
ter a prolonged period of time. This matcher
reads from the RDF store containing the needs
known by the matching service.

3The basic communication protocol and extensions thereof
are not explained in detail here.

• Store hints. Hints are stored in a database
when they are created. This allows for ag-
gregating hints and for avoiding sending du-
plicate hints or hints of lower relevance than
those that have already been sent.

• Send hints. The hints are sent to the WoN
nodes hosting the respective needs.

These processes and the ontologies used to describe the
application data in RDF4 provide a framework suitable for
many content domains. Domain specific applications are
realized by owner applications and matching services that
can handle the data model (ontologies or vocabularies) used
in the respective domain. To cover the motivating use case
out of the box, the demonstrator application comes with a
basic ontology for the classified ads domain.

4. CONCLUSION
In this work we provide an overview of the functionality

realized based on a linked data messaging architecture in
the Web of Needs. We list the distinct processes executed
by the services that together provide the functionality of
connecting users (or other agents) based on their intentions
and enable interactions between them.

5. ACKNOWLEDGMENTS
This work was supported by the Austrian Research Pro-

motion Agency (FFG) in the COIN project USS WON –
Usability, Scalability and Security on the Web of Needs.

6. REFERENCES
[1] Business process model and notation (BPMN), version

2.0. Object Management Group, January 2011.

[2] Web of Needs on Github.
https://github.com/researchstudio-sat/webofneeds/,
2016.

[3] Renaud Delbru. SIREn: Entity retrieval system for the
web of data. In Proceedings of the 3rd Symposium on
Future Directions in Information Access (FDIA), 2009.

[4] Florian Kleedorfer and Christina Maria Busch. Beyond
data: Building a web of needs. In Proceedings of the
WWW2013 Workshop on Linked Data on the Web
(LDOW 2013), 2013.

[5] Florian Kleedorfer, Yana Panchenko, Christina Maria
Busch, and Christian Huemer. Verifiability and
traceability in a linked data based messaging system. In
Proceedings of the 12th International Conference on
Semantic Systems, Leipzig, Germany, September 2016.
to appear.

[6] Frank Manola and Eric Miller. Rdf primer, 2004. [Last
accessed on 2016/06/06].

[7] Ralph C. Merkle. A digital signature based on a
conventional encryption function. In Advances in
Cryptology - CRYPTO’87, pages 369–378. Springer,
1987.

[8] Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. Factorizing yago: scalable machine learning for
linked data. In Proceedings of the 21st international
conference on World Wide Web, pages 271–280. ACM,
2012.

4See http://purl.org/webofneeds/model and http://purl.
org/webofneeds/message



Figure 2: Main processes in the Web of Needs, organized by service.


