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ABSTRACT
In accessibility tests for digital preservation, over time we
experience drifts of localized and labelled content in statis-
tical models of evolving semantics represented as a vector
field. This articulates the need to detect, measure, interpret
and model outcomes of knowledge dynamics. To this end
we employ a high-performance machine learning algorithm
for the training of extremely large emergent self-organizing
maps for exploratory data analysis. The working hypothe-
sis we present here is that the dynamics of semantic drifts
can be modeled on a relaxed version of Newtonian mechan-
ics called social mechanics. By using term distances as a
measure of semantic relatedness vs. their PageRank values
indicating social importance and applied as variable ‘term
mass’, gravitation as a metaphor to express changes in the
semantic content of a vector field lends a new perspective for
experimentation. From ‘term gravitation’ over time, one can
compute its generating potential whose fluctuations mani-
fest modifications in pairwise term similarity vs. social im-
portance, thereby updating Osgood’s semantic di↵erential.
The dataset examined is the public catalog metadata of Tate
Galleries, London.

CCS Concepts
•Computing methodologies! Lexical semantics; Neu-
ral networks; •Information systems ! Similarity mea-
sures;
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1. INTRODUCTION
The evolving nature of digital collections comes with an

extra di�culty: due to various but constant influences in-
herent in updates, the interpretability of the data keeps on
changing. This manifests itself as concept drift [47] or se-
mantic drift [49, 16], the gradual change of a concept’s se-
mantic value as it is perceived by a community. Despite
terminology di↵erences, the problem is real and with the
increasing scale of digital collections, its importance is ex-
pected to grow [37]. If we add drifts in cultural values as
well, the fallout from their combination brings memory insti-
tutions in a vulnerable position as regards long term digital
preservation. We illustrate this on a museum example, the
subject index of the Tate Galleries, London. In our exam-
ple, semantic drifts lead to limited access by Information Re-
trieval (IR). The methodology we apply to demonstrate our
point is vector field semantics by emergent self-organizing
maps (ESOM) [44], because the interpretation of seman-
tic drift needs a theory of update semantics [46], integrated
with a vector field rather than a vector space representation
of content [50, 49]. Further, given such content dynamics,
we argue that for its modeling, one can fall back on tested
concepts from classical (Newtonian) mechanics and di↵eren-
tial geometry. For such a framework, e.g. similarity between
objects or features can be considered an attractive force, and
changes over time manifest in content drifts have a quasi-
physical explanation. The main contributions of this paper
are the following:

1. A methodology for the detection, measurement and
interpretation of semantic drift;

2. On drift examples, an improved understanding of how
semantic content as a vector field ‘behaves’ over time
by falling back on physics as a metaphor;



3. As a consequence of the above, the concept of semantic
potential as a combined measure of semantic related-
ness and semantic importance.

2. BACKGROUND

2.1 Terminology
Evolving semantics (also often referred to as ‘semantic

change’ [42]) is an active and growing area of research into
language change [5] that observes and measures the phe-
nomenon of changes in the meaning of concepts within knowl-
edge representation models, along with their potential re-
placement by other meanings over time. Therefore it can
have drastic consequences on the use of knowledge represen-
tation models in applications. Semantic change relates to
various lines of research such as ontology change, evolution,
management and versioning [24], but it also entails ambigu-
ous terms of slightly di↵erent meanings, interchanging shifts
with drifts and versioning, and applied to concepts, seman-
tics and topics, always related to the thematic composition
of collections [54, 45, 20]. A related term is semantic decay
as a metric: it has been empirically shown that the more a
concept is reused, the less semantically rich it becomes [27].
Though largely counter-intuitive, this derivation is based on
the fact that frequent usage of terms in diverse domains leads
to relaxing the initially strict semantics related to them. The
opposite would hold if a term was persistently used within
a single domain (or in to a great extent similar domains),
which would lead to its gradual specialization and enrich-
ment of its semantics.

2.2 Related Research
Here we mention four relevant directions, all of them con-

tributors to our understanding of a complex issue in their
overlap.

2.2.1 Temporality and Advanced Access
By advanced access to digital collections we mean the

spectrum of automatic indexing, automatic classification,
IR, and information visualization. All of the aforementioned
can have a temporal aspect: trend analysis, emergence of
concepts or ideas, representation of the past and the future,
network dynamic, shaping and decay of communities, and
in general, any Web research topic where a dynamic under-
standing is superior to a static view, requires integration
of the time dimension. Examples comprise e.g the presen-
tation, organization and exploration of search results [3] in
the context of web dynamics and analytics including the
dynamics of user behaviour [32]; interacting with ephemeral
content of the historical web [1], visualizing the evolution of
image content tags [13], or temporal topic detection with-
out citation analysis [38]. A related but separate research
area for the above is in the overlap of cultural heritage and
IR [22, 11].

2.2.2 Vector Space vs. Vector Field Semantics
For an IR model to be successful, its relationship with at

least one major theory of word meaning has to be demon-
strated. With no such connection, meaning in numbers be-
comes the puzzle of the ghost in the machine. For the vector
space IR model (VSM) - underlying many of today’s com-
petitive IR products and services - such a connection can be
demonstrated; for others like PageRank [7], the link between

graph theory and linear algebra leads to the same interpre-
tation. Namely, in both cases, the theory of word semantics
cross-pollinating numbers with meaning is of a contextual
kind, formalized by the distributional hypothesis [17] which
posits that words occurring in similar contexts tend to have
similar meanings. As a result, the respective models can imi-
tate the field-like continuity of conceptual content. However,
unless we consider the VSM roots of both the probabilistic
relevance model1 and its spino↵s including BM25,2 such a
link is still waiting to be shown between probability and
semantics [15].
Although several attempts exist to this end [41, 31], a

brief overview should be helpful. Looking for a good fit with
some reasonably formalized theory of semantics, two imme-
diate questions emerge. First, can the observed features be
regarded as entries in a vocabulary? If so, distributional
semantics applies and, given more complex representations,
other types may do so as well [52]. The second question is,
do they form sentences? For example, one could regard a
workflow (process) a sentence, in which case compositional
semantics applies [8, 35]. If not, theories of word semantics
should be considered only. Below we shall depart from this
assumption.
Notwithstanding the fact that vector space in its most

basic form is not semantic, its ability to yield results which
make sense goes back to the fact that the context of sen-
tence content is partially preserved even after having elimi-
nated stop-words which are useless for document indexing.
This means that Wittgenstein’s contextual theory of mean-
ing (‘Meaning is use’) holds [53], also pronounced by the dis-
tributional hypothesis. This is exploited by more advanced
vector based indexing and retrieval models such as Latent
Semantic Analysis (LSA) [12] or random indexing [19], as
well as by neural language models, ranging from the Simple
Recurrent Networks, and their very popular flavour, Long
Short-Term Memory [18], or the recently proposed Global
Vector for Word Representation [29], which are currently
considered to be the state-of-the-art approach for text rep-
resentation. However, we should also remember another
approach paraphrased as ‘Meaning is change’, namely the
stimulus-response theory of meaning proposed e.g. by Bloom-
field3 in anthropological linguistics and Morris 4 in behav-
ioral semiotics, plus the biological theory of meaning [43].
These authors stress that the meaning of an action is in its
consequences. Consequently word semantics should be rep-
resented not as a vector space with position vectors only, but
as a dynamic vector field with both position and direction
vectors [50].

2.2.3 Linguistic ‘Forces’
As White suggests, linguistics, like physics, has four bind-

ing forces [48]:

1. The strong nuclear force, which is the strongest ‘glue’
in physics, corresponds to word uninterruptability (bind-
ing morphemes into words);

2. Electromagnetism, which is less strong, corresponds to
grammar and binds words into sentences;

1Because it departs from a ‘binary index descriptions of doc-
uments’, see [34].
2See p. 339 in [33].
3en.wikipedia.org/wiki/Leonard Bloomfield
4en.wikipedia.org/wiki/Charles W. Morris



3. The weak nuclear force, being even less strong, com-
pares to texture or cohesion (also called coherence),
binding sentences into texts;

4. Finally gravity as the weakest force acts like interco-
hesion or intercoherence which binds texts into litera-
tures (i.e. documents into collections or databases).

Mainstream linguistics traditionally deals with Forces 1
and 2, while discourse analysis and text linguistics are par-
ticularly concerned with Force 3. The field most identified
with the study of Force 4 is information science. As the con-
cept of force implies, referring here to attraction, it takes en-
ergy to keep things together, therefore the energy doing so is
stored in agglomerations of observables of di↵erent kinds in
di↵erent magnitudes, and can be released from such struc-
tures. A notable di↵erence between physical and linguis-
tic systems is that extracting work content, i.e. ‘energy’
from symbols by reading or copying them does not annihi-
late symbolic content. Looking now at the same problem
from another angle, in the above and related e↵orts, ‘en-
ergy’ inherent in all four types can be the model of e.g. a
Type 2, i.e. electromagnetism-like attractive-repulsive bind-
ing force such as lexical attraction, also known as syntactic
word a�nity [6] or sentence cohesion, such as by modeling
dependency grammar by mutual information [55]. In a text
categorization and/or IR setting, a similar phenomenon is
term dependence based on their co-occurrence.

2.2.4 Semantic Kernels and ‘Gravity’
A radial basis function (RBF) kernel, being an exponen-

tially decaying feature transformation, has the capacity to
generate a potential surface and hence create the impres-
sion of gravity, providing one with distance-based decay of
interaction strength, plus a scalar scaling factor for the inter-
action, i.e. K(x, x0) = exp(�||x� x

0||2) [25]. We know that
semantic kernels and the metric tensor are related, hence
some kind of a functional equivalent of gravitation shapes
the curvature of classification space [4, 14]. At the same
time, gravitation as a classification paradigm [28] or a clus-
tering principle [2] is considered as a model for certain symp-
toms of content behavior.

3. WORKING HYPOTHESIS & METHOD-
OLOGY

In order to combine semantics from computational lin-
guistics with evolution, we select the theory of semantic
fields [40] and blend it with multivariate statistics plus the
concept of fields in classical mechanics to bring it closer
to Veltman’s update semantics [46], and to enable machine
learning. Our working hypothesis for experiment design is
as follows:

• Semantic drifts can be modeled on an evolving vector
field as suggested by [49, 50];

• To follow up on the analogy from semantic kernels
defining the curvature of classification space and let
this curvature evolve, Newton’s universal law of grav-
itation can be adapted to the idea of the dynamic li-
brary [36]. To this end, we model similarity by F =
Gm1m2/r

2, with term dislocations over epochs stored
in distance matrices. Ignoring G, we shall use the

PageRank value of index terms on their respective hi-
erarchical levels for mass values. Since force is the
negative gradient of potential, i.e. F (x) = �dU/dx,
we can compute this potential surface over the respec-
tive term sets to conceptualize the driving mechanism
of semantic drifts;

• The potential following from the gravity model mani-
fests two kinds of interaction between entries in the in-
dexing vocabulary of a collection. Over time, changes
in collection composition lead to di↵erent proportions
of semantic similarity vs. authenticity between term
pairs, expressed as a cohesive force between features
and/or objects.

3.1 ESOMs and Somoclu

3.1.1 Vector Field Creation by ESOMs
In the various flavours of the VSM, we work with an m⇥n

matrix in which columns are indexed by documents and rows
by terms. We shall focus here on the m term vectors only,
which identify specific locations in the n-dimensional space
spanned by the documents.
A scalar or vector field is defined at all points in space,

so it is insu�cient to have a value at the discrete locations
identified by the term vectors. To assign a vector value to
each point in space, we work on a two-dimensional surface.
All term vectors have a location on this surface. All the other
points on the surface which do not have a vector assigned
to them are interpolated.
The assignment of points on the surface and the term vec-

tors is done by training a self-organizing map, that is, a grid
of artificial neurons. Each node in the grid is associated with
a weight vector of n dimensions, matching the term vectors.
Taking a term vector, we search for the closest weight vector,
and pull it slightly closer to the term vector, repeating the
procedure with the weight vectors of the neighboring neu-
rons, with decreasing weight as we get further away from the
best matching unit. Then we take the next term vector and
repeat this from finding the best matching unit until every
term vector is processed. We call a training round that uses
all term vectors an epoch. We can have subsequent train-
ing epochs with a smaller neighborhood radius and a lower
learning rate. While there is no criterion for a convergence,
we can continue training epochs until the topology of the
network no longer shows major changes. The resulting map
reflects the local topology of the original high-dimensional
space [21].
Since we would like to train large maps to get a meaningful

approximation in the space between term vectors, we turn
to a high-performance implementation called Somoclu5[51].

3.1.2 Drift Detection
The task of drift detection, measurement and interpreta-

tion is carried out in three basic steps as follows:

• Step 1: Somoclu maps the high-dimensional topology
of multivariate data to a low-dimensional (2-d) embed-
ding by ESOM. The algorithm is initialized by LSA,
Principal Component Analysis (PCA), or random in-
dexing, and creates a vector field over a rectangular
grid of nodes of an artificial neural network, adding

5https://peterwittek.github.io/somoclu/



continuity by interpolation among grid nodes. Due to
this interpolation, content is mapped onto those nodes
of the neural network that represent best matching
units (BMUs).

• Step 2: Clustering over this low-dimensional topology
marks up the cluster boundaries to which BMUs be-
long. Their clusters are located within ridges or wa-
tersheds [44, 39, 23]. Content splitting tendencies are
indicated by the ridge wall width and height around
such basins so that the method yields an overlay of two
aligned contour maps in change, i.e. content struc-
ture vs. tension structure. In Somoclu, nine clus-
tering methods are available. Because self-organizing
maps, including ESOM, reproduce the local but not
the global topology of data, the clusters should be
locally meaningful and consistent on a neighborhood
level only.

• Step 3: Evolving cluster interpretation by semantic
consistency check can be measured relative to an an-
chor (non-shifting) term used as the origin of the 2-d
coordinate system, or by distance changes from a clus-
ter centroid, etc. In parallel, to support semiautomatic
evaluation, variable cluster content can be expressed
for comparison by histograms, pie diagrams, or other
visualization methods.

4. DATASET AND EXPERIMENT DESIGN

4.1 Tate Subject Index
Tate holds the national collection of British art from 1500

to the present day and international modern and contempo-
rary art. The collection embraces all media, from painting,
drawing, sculpture and prints to photography, video and
film, installation and performance. The 19th century hold-
ings are dominated by the Turner Bequest with cca 30,000
works of art on paper, including watercolors, drawings and
300 oil paintings. The catalog metadata for the 69,202 art-
works that Tate owns or jointly owns with the National
Galleries of Scotland are available in JSON format as open
data.6 Out of the above, 53,698 records are timestamped.
The artefacts are indexed by Tate’s own hierarchical subject
index which has three levels, from general to specific index
terms.7

4.2 Analysis Framework Description
To study the robust core of a dynamically changing in-

dexing vocabulary, we filtered the dataset for a start. As
statistics for the Tate holdings show two acquisition peaks
in 1796-1844 (33,625 artworks) and 1960-2009 (12,756 art-
works), we focused on these two periods broken down into 10
five-years epochs each, with altogether 46,381 artworks. In
the 19th century period, subject index level 1 had 22 unique
general index terms (21 of them persistent over ten epochs),
level 2 had 203 unique intermediate index terms (142 of them
persistent), and level 3 had 6624 unique specific index terms
(225 of them persistent). In the 20th century period, level
1 had 24 unique terms (22 of them persistent), level 2 used
211 unique terms (177 of them persistent), and level 3 had
7536 unique terms (288 of them persistent over ten epochs).

6github.com/tategallery/collection
7tate.org.uk/art/artworks/turner-self-portrait-n00458

Table 1: Sample index terms describing a Turner self-
portrait

level 1
(general)

level 2
(intermediate)

level 3
(specific)

Objects
Clothing and
personal e↵ects

Cravat

People Adults Man

Named individuals
Turner, Joseph
Mallord William

-

Portraits Self-portraits -
Work and
occupations

Arts and
entertainment

Artist, painter

Table 1 displays a sample entry from the subject index. Fol-
lowing text pre-processing, which included the application
of tokenization and stop-word removal on all three levels of
concepts in the subject index, adjacency matrices and sub-
sequently graphs were created using the co-occurrence of the
terms in the artworks as undirected, weighted edges. These
matrices were then used to extract an importance measure
for each term by employing the PageRank algorithm, and to
create ESOM maps using the Somoclu implementation.
For each of the 80 epochs (2 periods x 4 levels x 10 epochs),

the ESOM’s codebook was first initialized by employing
PCA with randomized SVD, which was then used for map-
ping the high-dimensional co-occurrence data to an ESOM
with a toroid topology. The results were represented on
the two-dimensional projection of the toroid using di↵erent
granularities according to the indexing level (20x12 = level
1, 40x24 = level 2, 50x30 = level 3, 60x40 = all levels to-
gether). Introducing the least displaced term per indexing
level over a period as an anchor against which all term drifts
on that level could be measured, we tracked the tension vs.
content structure of evolving term semantics and evaluated
the resulting term clusters for their semantic consistency.
The input matrices were processed by Somoclu as de-

scribed above and the codebook of each ESOM was clustered
using the a�nity propagation algorithm. The results were
tested for robustness by hierarchical cluster analysis (HCA),
using Euclidean distance as similarity measure and farthest
neighbor (complete) linkage to maximize distance between
clusters, keeping them thereby both distinct and coherent.
The ESOM-based cluster maps expressed the evolving se-
mantics of the collection as a series of 2-dimensional land-
scapes over 10 epochs times two periods.
Term drift detection, measurement and interpretation were

based on these maps. To enable drift measurement, we gen-
erated a parallel set of maps with the term of greatest im-
portance over all periods as its anchor point. Importance
was defined by the Reciprocal Rank Fusion coe�cient [10]
which combined the PageRank values of each term over all
periods. This relative location was used for the computa-
tion of respective term-term distance matrices over every
epoch of each period. Term dislocations over epochs were
logged, recording both the splits of term clusters mapped
onto a single grid node in a previous epoch, or the merger
of two formally independent nodes labelled with di↵erent
terms into a single one. These splits and merges were used
to define the drift rate and subsequently the stability of the
lexical field.
Finally, as per the second point of the working hypothesis,



the gravity and potential surfaces for every epoch were com-
puted. When computing gravity and potential, the property
of mass was expressed via each term’s PageRank score and
the distance by measuring the normalized (sum to 1) Eu-
clidean distance between the corresponding BMU vectors.

5. RESULTS
Index term drift detection, measurement and evaluation

were based on the analysis of ESOM maps, leading to drift
logs on all indexing levels. Parallel to that, covering every
time step of collection development, we also extracted nor-
malized histograms to describe the evolving topical compo-
sition of the collection, and respective pie charts to describe
the thematic composition of the clusters. Further, to check
cluster robustness, HCA dendrograms were computed for
term-term matrices, also compared with those from term-
document matrices. On one hand, these gave us a detailed
overview of semantic drift in the analyzed periods. On the
other hand, the observed dynamics could be modeled on the
gravitational force and its generating potential.

A more detailed report would go beyond the opportuni-
ties of this paper. However, some key indications were the
following.

5.1 Semantic Drifts
Content mapping means that term membership for every

cluster in every time step is recorded and term positions
and dislocations over time with regard to an anchor posi-
tion are computed, thereby recording the evolving distance
structure of indexing terminology. This amounts to drift
detection and its exact measurement. Adding a drift log
results in extracted lists of index terms on all indexing hier-
archy levels plus their percentage contrasted with the totals.
Drifts can be partitioned into splits and merges. In case of a
split, two concept labels that used to be mapped on the same
grid node in one epoch become separated and tag two nodes
in the next phase, while for a merge, the opposite holds.
From an IR perspective splits decrease recall and merges
decrease precision, limiting the quality of access; from the
perspective of long term digital preservation, they indicate
at-risk indexing terminology. Splits and merges were listed
by Somoclu for every epoch over both periods. For instance
a sample semantic drift log file recorded that due to new
entries in the catalog in 1796-1800, by 1800 on subject in-
dex level 2, for drifting words i.e. ‘art’, ‘works’, ‘scientific’,
‘measuring’, ‘monuments’, ‘places’, ‘workspaces’. Therefore,
based on the same subject index terms, anyone using this
tool in 1800 would have been unable to retrieve the same
objects as in 1796. In a vector field, all the terms and their
respective semantic tags are in constant flux due to exter-
nal social pressures, such as e.g. new topics over items in
the collection due to the composition of donations or fash-
ion. Without data about these pressures quasi embedding
and shaping the Tate collection, the correlations between so-
cial factors and semantic composition of the collection could
not be explicitly computed and named. Still, some trends
could be visually recognized over both series of maps, going
back to their relatively constant semantic structure where
temporary content dislocations did not seriously disturb the
relationships between terms, i.e. neighboring labels tended
to stick with one another, such as ‘towns, cities, villages’ vs.
‘inland’ and ‘natural’. In other words, the lexical fields as
locally represented by Somoclu remained relatively stable.

The stability of these fields was measured in terms of
drift rates which were computed by detecting the splits and
merges that happened to the BMUs (e.g. 1). Specifically,
we were not looking at the distance they travelled, rather at
the fact that they formed or joined or moved away from a
cluster (i.e. a BMU) in between epochs.
Overall, in this particular collection, splits between level

1 concepts took place occasionally, whereas both splits and
merges occurred on indexing levels 2-3 on a regular basis.
The drift rate was increasingly high: for level 2 index terms,
it was 19-22 % in the 1796-1845 period vs. 15-27.5 % in
1960-2009, whereas for level 3 terms it was 29-57 % (1796-
1845) vs. 54-61 % (1960-2009). These percentages suggest
that the more specific the subject index becomes, the more
volatile its terminology, especially with regard to modern
art.

5.2 Content vs. Tension Structure
To describe the composition of the social tensions shaping

this collection, one can compare e.g. the level 2 indexing
vocabularies for both periods. In general, this is where one
witnesses the workings of language change, part producing
new concepts, part letting certain index terms decay. E.g.
focus is shifting from a concept to its variant (e.g. ‘nation’ to
‘nationality’), a renaissance of interest in the transcendent
beyond traditional notions of religion and the supernatural
(‘occultism’, ‘magic’, ‘tales’), fascination for the new instead
of the old, or a loss of interest in ‘royalty’ and ‘rank’. Toys
and concepts like ‘tradition’, the ‘world’, ‘culture’, ‘educa-
tion’, ‘films’, ‘games’, ‘electricity’ and ‘appliances’ make a
debut in art. A representation of such tendencies in con-
tent change with manifest tensions is visualized in Figure
1. Here, tendency means a projected possible, but not nec-
essarily continuous, trend - should the composition of the
collection continue to evolve over the next epoch like it used
to develop over the past one, the indicated splits and merges
would be more probable to form new content agglomerations
than random ones.

5.3 Content Dynamics
As we were left with the impression that in a statistically

constructed vector field of term semantics drifts are the norm
and not the exception, to account for such dynamics we com-
puted a series of epoch-specific gravitational fields and their
generating potential for a first overview. With BMU vector
distances between term pairs and their PageRank values for
‘term mass’, both types of surfaces expressed the interplay
between semantic similarity and term importance in a social
perspective (Figure 2).

6. CONCLUSIONS AND FUTURE WORK
In the above test, we resolved semantic drift detection,

drift measurement, and partly resolved drift interpretation
by the automatic evaluation of term cluster consistency. For
the detection task, our detailed and thoroughly documented
findings indicated that in an evolving collection, as could be
expected from the idea of the dynamic library where vector
space update results in displaced cluster centroids [36], drifts
occur on a regular basis and become more frequent with
increasing index term specificity. Apart from surveying the
evolving semantic content structure, Somoclu also mapped
the parallel evolution of classification tension structure, a
precondition to future modeling and anomaly prediction.



(a) 1796-1800 (b) 1801-1805

Figure 1: Excerpt from the tension vs. content structure changes in the level 2 (intermediate) index term landscape in
1796-1805. Blue basins host content, brown ridges indicate tensions. Whereas ‘towns’, ‘cities’, ‘villages’ remain merged over
both epochs, ‘inland’ and ‘natural’ become merged by 1805.

(a)

(b)

Figure 2: (a) Changes in the top [level 1] conceptual layer of the Tate indexing vocabulary in 1796-1845, sampled every
5 years, modeled on a gravitational field. Gravitational force is the negative gradient of the corresponding potential. (b)
Respective changes in the underlying potential field. Extreme values indicate semantically related term pairs with high social
status expressed by PageRank.



Further we computed those evolving epoch-specific po-
tential surfaces whose negative gradient was term similarity
combined with term importance as an attractive force be-
tween feature or object pairs. This potential can be seen as
the conceptual consequence of the semantic di↵erential [26],
a forerunner to modern latent semantic methods. This se-
mantic potential, in turn, suggests that physics as a metaphor
is useful because it yields new, helpful concepts to model the
dynamics of meaning, itself important for knowledge orga-
nization and knowledge management.

Our e↵ort belongs to the field of social mechanics, a 21st
century repercussion of ideas dating back as far as 1769 when
American political theorist James Madison (1751-1836), the
so-called ‘father of the constitution’ and the United States’
fourth president, was said to be studying a primitive form of
it at Princeton. After him and over the centuries to come,
prominent thinkers often tried to understand society’s work-
ings e.g. by means of thermodynamics or mechanics. In our
implementation, social mechanics is a variant of classical me-
chanics because the concept of mass we apply to features in
general and index terms in particular, is a relative (evolv-
ing) one, depending on language use as its social context
and implemented by the distributional hypothesis.

By doing so, the ‘meaning as change’ paradigm receives
experimental support inasmuch as ‘term mass’ corresponds
to work investment during update, with the reconfiguration
of semantic spaces and fields being proportional to it. In or-
der to explore the semantic potential, to connect measures of
semantic relatedness with centrality values such as PageR-
ank for ‘term mass’ will be subject to future research, with
substantial input expected e.g. from [30] or [9].
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S. Schlobach. Detecting and reporting extensional
concept drift in statistical linked data. In 1st
International Workshop on Semantic Statistics
(SemStats 2013), ISWC. CEUR, 2013.

[25] A. Moschitti. Kernel engineering for fast and easy
design of natural language applications. In Proceedings
of the 23rd International Conference on
Computational Linguistics: Kernel Engineering for
Fast and Easy Design of Natural Language
Applications, pages 1–91. Association for
Computational Linguistics, 2010.

[26] C. Osgood, G. Suci, and P. Tannenbaum. The
Measurement of Meaning. University of Illinois Press,
Urbana-Champaign, IL, USA, 1957.

[27] P. Pareti, E. Klein, and A. Barker. A linked data
scalability challenge: Concept reuse leads to semantic
decay. In Proceedings of the ACM Web Science
Conference, page 7. ACM, 2015.

[28] L. Peng, B. Yang, Y. Chen, and A. Abraham. Data
gravitation based classification. Information Sciences,
179(6):809–819, 2009.

[29] J. Pennington, R. Socher, and C. D. Manning. GloVe:
Global vectors for word representation. In EMNLP,
volume 14, pages 1532–43, 2014.

[30] J. Petitot. Morphogenesis of Meaning. European
semiotics. P. Lang, 2004.

[31] S. Pulman. Distributional semantic models. In
C. Heunen, M. Sadrzadeh, and E. Grefenstette,
editors, Quantum Physics and Linguistics: A
Compositional, Diagrammatic Discourse, pages
333–358. Oxford University Press, ISBN
978-0-19-964629-6, 2013.

[32] K. Radinsky, F. Diaz, S. Dumais, M. Shokouhi,
A. Dong, and Y. Chang. Temporal web dynamics and
its application to information retrieval. In Proceedings
of the sixth ACM international conference on Web
search and data mining, pages 781–782. ACM, 2013.

[33] S. Robertson and H. Zaragoza. The probabilistic
relevance framework: BM25 and beyond. Now
Publishers Inc, 2009.

[34] S. E. Robertson and K. S. Jones. Relevance weighting
of search terms. Journal of the American Society for
Information science, 27(3):129–146, 1976.

[35] M. Sadrzadeh and E. Gre↵enstette. A compositional
distributional semantics, two concrete constructions,
and some experimental evaluations. In Proceedings of
QI-11, 5th International Quantum Interaction
Symposium, Aberdeen, UK, June 2011.

[36] G. Salton. Dynamic Information and Library
Processing. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA, 1975.

[37] C. Schlieder. Digital heritage: Semantic challenges of
long-term preservation. Semantic Web,
1(1-2):143–147, 2010.

[38] B. Shaparenko, R. Caruana, J. Gehrke, and
T. Joachims. Identifying temporal patterns and key
players in document collections. In Proceedings of the
IEEE ICDM Workshop on Temporal Data Mining:
Algorithms, Theory and Applications (TDM-05),
pages 165–174, 2005.

[39] A. Tosi, I. Olier, and A. Vellido. Probability ridges

and distortion flows: Visualizing multivariate time
series using a variational Bayesian manifold learning
method. In Advances in Self-Organizing Maps and
Learning Vector Quantization, pages 55–64. Springer,
2014.

[40] J. Trier. Das sprachliche Feld. Neue Jahrbücher für
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Combining word semantics within complex Hilbert
space for information retrieval. In Proceedings of
QI-13, 7th International Quantum Interaction
Symposium, pages 160–171, July 2013.

[53] L. Wittgenstein. Philosophical Investigations.
Blackwell Publishing, Oxford, UK, 1967.

[54] B. Yildiz. Ontology evolution and versioning. Vienna
University of Technology, Karlsplatz, 2006.

[55] D. Yuret. Discovery of linguistic relations using lexical
attraction. arXiv:cmp-lg/9805009, 1998.


