
conditions means that no new object net is created and no destroyed after a transition 

firing in the system net. Condition (3) prevents the ability to join two object nets, and 

(4) prevents the splitting of an object net. This is because in reality, complex physical 

entities cannot be cloned at run time. With these restrictions, ERS still retain the abil-

ity to describe nesting of object nets, synchronisation, and mobility, but does not al-

low splitting of the inner marking of an object net or joining the inner marking of 

several object nets. Assuming these inner markings as modelling the inner state of an 

agent, this is a reasonable restriction and ERSs are then well suitable to model physi-

cal entities 

 

Fig. 1. An example of an ERS 

For its behaviour, we introduce the notion of marking for elementary reference-net 

system ERS under reference semantics. Hence in general a marking is given by 

1. a distribution of object nets or black tokens 𝑹: �̂� → ℕ ∪ 𝑀𝑆(Σ) and 

2. The vector 𝑴 = (𝑚1, … ,𝑚𝑘) with the current marking of each 𝑁𝑖  (1 ≤ 𝑖 ≤ 𝑘). 

𝑹 specifies for each system net place �̂� a number of black tokens  or a multiset of 

marked named object nets (if �̂� contain reference(s) to marked named object nets). If 

we abbreviate (𝑚1, … ,𝑚𝑘)  by 𝑴 and the set of all such vectors by ℳ, we obtain the 

following Definition 3.3.  By Π𝑖(𝑴) we denote the 𝑖 − 𝑡ℎ component 𝑚𝑖 of 𝑴 and 

by 𝑴𝒊→𝒎𝒊 the tuple, where the 𝑖 − 𝑡ℎ component is substituted by 𝑚𝑖, 𝑀 ∈ ℕ
𝑘. 

In what follows a marked named object net is referred to as net-token. For a given 

ERS, by ∑ = Σ ∪ {𝑁•}𝑛𝑡  we denote the set of all marked named net-tokens. Only 

when not introduced in the marking! Sometimes by abuse of notation, for a named 

object net (𝑖, 𝑁𝑖 , 𝑚𝑖) in a place �̂� of a marking 𝑹  of the system net we write 𝑹(�̂�) = 𝑖  

Definition 3.3 Given an elementary reference-net system 𝑅𝑆 =

(�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎) we define ℳ ≔ {𝑀|𝑀 = (𝑚1, … ,𝑚𝑘) ∧ 𝑚𝑖 ∈ 𝑀𝑆(𝑃𝑖)}. Then a 

marking of an elementary reference-net system is a pair (𝑅,𝑀) where 𝑀 ∈
ℳand 𝑹: �̂� → 𝑀𝑆(Σ𝑛𝑡). Specifying 𝑀0 by the initial markings of the marked named 

object nets 𝑀0 = (𝑚1
0, … ,𝑚𝑘

0) we obtain the initial marking (𝑹𝟎, 𝑴𝟎) of 𝑅𝑆. The set 

of all markings of 𝑅𝑆 is denoted by ℳr . 

Let �̂� ∈ �̂� be a transition in the system net �̂����� �W�K�H�Q�� �‡�̂� = {�̂�|(�̂�, �̂�) ∈ �̂�}, and �̂�⦁ =

{�̂�|(�̂�, �̂�) ∈ �̂�} are sets of its pre- and post-conditions. We denote by 𝓌(�̂�) ≔

{𝓌(�̂�, �̂�)|(�̂�, �̂�) ∈ �̂�} ∪ {𝓌(�̂�, �̂�)|(�̂�, �̂�) ∈ �̂�} = ⦁�̂� × {�̂�} ∪ {𝑡} × �̂�⦁ the set of all varia-

bles on arcs adjacent to �̂�. A binding 𝛽 specifies which variables are bound to names, 

where 𝛽:𝓌(�̂�) ∪ {•} ⟶ 𝒩 ∪ {𝑁⦁}with 𝒩 = {𝑖|(𝑖, 𝑁𝑖,, 𝑚𝑖) ∈ Σ} satisfying the condi-



tions: for each 𝑥 ∈ 𝓌(�̂�) ∪ {•}, there exist 𝑖 ∈ 𝒩such that 𝛽(𝑥) = 𝑖 𝑎𝑛𝑑 𝑖𝑓 𝑥 =•
𝑡ℎ𝑒𝑛 𝛽(𝑥) =  𝑁•. 

The firing rule will be introduced in three modes.  

Definition 3.4 (synchronisation firing mode) Let(𝑹,𝑴)be a marking of an ele-

mentary reference-net system, �̂� ∈ �̂� a transition of �̂�, and let 𝛽 be a variable binding 

defined for all 𝑥 ∈ 𝓌(�̂�) ∪ {•}. Let 𝛼1, . . . , 𝛼𝑘  ∈  Σ𝑛𝑡 be object nets involved in the 

firing of �̂�. Then �̂�  can fire provided that in each 𝛼𝑖 ∈  Σ𝑛𝑡 for every  𝑖 ∈ {1, … , 𝑘} a 

transition 𝑡𝑖 ∈ 𝑇Σ such that(�̂�, 𝑡1, … , 𝑡𝑘) ∈ ℓ. Then (�̂�, 𝑡1, … , 𝑡𝑘) is enabled in (𝑹,𝑴) 

if:  ∀ �̂� ∈ 𝑃:̂  (𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�)))  ∈ 𝑹(�̂�) and 

∀𝑝 ∈ 𝑃𝑖 ∶  Π𝑖(𝑴) ≥  𝐹𝑖(𝑝, 𝑡𝑖),.                                                                                    (5) 

This is denoted by (𝑹,𝑴)[�̂�, 𝑡𝑖 > Let be 𝑚𝑖[𝑡𝑖 > 𝑚′𝑖  (w.r.t 𝑁𝑖). The successor 

marking (𝑹′,𝑴′) is defined by 

𝑹′(𝑝) = 𝑹(�̂�)\ (𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�))) ∪

(𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(�̂�,�̂�)), 𝑚𝛽(𝓌(𝑡,̂𝑝))) : ∀�̂� ∈ �̂� and 

𝑴′  = 𝑴𝒊→𝒎𝒊 .                                                                                                            (6) 

This is denoted by (𝑅,𝑀)[�̂�, 𝒕𝒊 > (𝑹
′, 𝑴′).  

Definition 3.5(system-autonomous firing mode) Let (𝑹,𝑴) be a marking of an 

elementary reference-net system 𝑅𝑆 = (�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎)and �̂� ∈ �̂� a transition of �̂� 

with a binding 𝛽 such that ∄(�̂�, 𝑥𝑖 , … , 𝑥𝑘) ∈ ℓ ∶  ∃ 𝑖 ∈ {1,… , 𝑘} ∶  𝑥𝑖 ≠ 𝜏. Then �̂� 𝑖𝑠 ac-

tivated in (𝑹,𝑴) if there is a net token such that: 

(𝛽(𝓌(�̂�, �̂�)), 𝑁𝛽(𝓌(𝑝,�̂�)), 𝑚𝛽(𝓌(𝑝,�̂�)))  ∈ 𝑹(�̂�)∀�̂� ∈ 𝑃 ̂.                                              (7) 

Since we use 𝜏, for in action, this is denoted by (𝑹,𝑴)[( �̂�, 𝜏) >.  The successor 

marking (𝑹′, 𝑴′)is defined by 

∀�̂� ∈ �̂� ∶ 𝑹′(�̂�) = 𝑹(�̂�)\(𝛽(𝓌(�̂�, �̂�)),𝑁𝛽(𝓌(�̂�,�̂�)),𝑚𝛽(𝓌(�̂�,�̂�))) ∪ (𝛽(𝓌(�̂�, �̂�)),𝑁𝛽(𝓌(�̂�,�̂�)),𝑚𝛽(𝓌(𝑡,̂�̂�))) 

   𝑴′ = 𝑴 .                                                                                                                  (8) 

This is denoted by (𝑹.𝑴)[(�̂�1, 𝜏) > (𝑹
′, 𝑴′). 

Definition 3.6(object –autonomous firing mode) Let (𝑹,𝑴) be a marking of an 

elementary reference-net system 𝑅𝑆 = (�̂�, Σ𝑛𝑡 , ℓ,𝓌,  𝑹
𝟎)and 𝑡𝑖 ∈ 𝑇𝑖 a transition of a 

net-token 𝑖 = (𝑖, 𝑁𝑖 , 𝑚𝑖) ∈ 𝑹(�̂�) for some �̂� ∈ �̂�, such that ∄(�̂�, 𝑥𝑖 , … , 𝑡𝑖, … , 𝑥𝑘) ∈ ℓ, 

and  𝑡𝑖 is activated in 𝑁𝑖. Then we say that  (�̂�, 𝑡𝑖) is activated in (𝑹,𝑴) (denot-

ed(𝑹,𝑴)[(�̂�, 𝑡𝑖) >]. The successor marking (𝑹′,𝑴′) of RS is defined by 

𝑹′ = 𝑹 and 

𝑴′ = 𝑴1→mi
if 𝑚𝑖[ 𝑡𝑖 > 𝑚′𝑖 for Π𝑖(𝑴) = 𝑚𝒊 .                                                         (9)  



We denote this by (𝑹,𝑴)[(�̂�,  𝑡𝑖) > (𝑹′,𝑴′). 

To introduce the occurrence sequences for 𝐸𝑅𝑆 we assume an 𝐸𝑅𝑆  as defined in 

Definition 3.2. Let 𝑅𝑆 be an 𝐸𝑅𝑆𝑎𝑛𝑑(𝑹,𝑴), (𝑹′, 𝑴′) ∈ ℳ𝑟. 

Definition 3.7 For a new alphabet Γ ≔ (�̂� ∪ {�̂�}) × (𝑇1 ∪ {𝜏}) ×,… , (𝑇𝑘 ∪ {𝜏})\
(�̂�, 𝜏, … , 𝜏)where (�̂�, 𝜏, … , 𝜏) denotes the neutral element of  Γ∗, we define: 

              (𝑹,𝑴)[(�̂�, 𝜏, … , 𝜏) > (𝑹′, 𝑴′) if (𝑹,𝑴) = (𝑹′, 𝑴′) and 

(𝑹,𝑴)[�̆�(�̂�, 𝛼) > (𝑹′, 𝑴′) 𝑖𝑓 ∃(𝑹′′,𝑴′′) ∶ (𝑹,𝑴)[�̆� > (𝑹′′, 𝑴′′) 𝑎𝑛𝑑 

(𝑹′′,𝑴′′)[(�̂�, 𝛼) > (𝑅′,𝑀′) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 �̆� ∈ Γ∗, �̂�, ∈ �̂� ∪ {�̂�} 𝑎𝑛𝑑  𝛼 ∈ ((𝑇1 ∪ {𝜏}) ×  , … , (𝑇𝑘 ∪ {𝜏}).  ( 10)                                                                                

To denote that (𝑹′,𝑴′) is reachable from (𝑹,𝑴) by some occurrence sequence of 

actions we write (𝑹,𝑴)
∗
→ (𝑹′, 𝑴′). 

The set of reachable markings of a reference system RS from a marking (𝑹,𝑴) is 
denoted by 𝑅(𝑅𝑆, (𝑹,𝑴)). 𝑅(𝑅𝑆), is the set of markings reachable from the initial 

marking (𝑹𝟎, 𝑴𝟎). The reachability graph (𝑅𝐺(𝑅𝑆) is obtain as for P/T-net systems, 

which is a digraph whose nodes is the set of reachable markings and edges are the 

tuples ((𝑹,𝑴), (�̂�, 𝛼), (𝑹′, 𝑴′)) ∈ ℳ𝑟 × (�̂�, 𝛼) ×ℳ𝑟 where (𝑹,𝑴)
(�̂�,𝛼)
→  (𝑹′, 𝑴′). 

We now extend the definition of 1-safe P/T-net to ERS.  We introduce two condi-

tions for safeness of ERS as a generalisation of the safeness notion for P/T-nets.  

Definition 3.8 (1-safe ERS) 𝐿𝑒𝑡 𝑅𝑆 = (�̂�, Σ, ℓ,𝓌,  𝑹𝟎)𝑏𝑒 𝑎𝑛 𝐸𝑅𝑆. RS is 1-safe if 

and only if all reachable markings are 1-safe and if and only if in all reachable mark-

ings there is at most one net-token on each system net place and each net-token is 1-

safe i.e.,: 

 ∀(𝑹,𝑴) ∈ 𝑅(𝑅𝑆), ∀�̂� ∈ �̂�: (𝑅(�̂�), ) ≤ 1 and 

 ∀(𝑖, 𝑁𝑖 , 𝑚𝑖) ∈ 𝑹(�̂�):∀𝑝𝑖 ∈ 𝑃𝑖 ∶  ∀�̂� ∈ �̂� (𝑹(�̂�), Π𝑖(𝑴(𝑝𝑖)) > 0 ⟹ Π𝑖(𝑴(𝑝𝑖)) ≤ 1. 

Observation 3.9: Given an ERS if for all reachable markings there is at most one 

token on each system net place and each net-token is 1-safe, then all reachable mark-

ings are 1-safe. 

Theorem 3.10 If an ERS is safe, then its set of reachable markings is finite. The 

proof to this theorem is presented in appendix A. 

4 Transformation of ERS into P/T- nets 

We construct a behaviorally equivalent finite P/T-net model for the entire ERS 

model and show this by strong bisimulation equivalence between states of the two 

models. By doing so, we develop a set of transformation rules that provide the same 

behavioral properties as the original one for formal verification and analysis. 

Related work can be found in (Miyamoto & Horiguchi, 2013; Lomazova & Erma-

kova, 2016). We highlight the similarities and differences between the proposed ap-



proach and these related studies. Miyamoto and Horiguchi present a translation tech-

nique for transforming classical Multi-Agent nets (MANs) into Modular Nets (MNs) 

and show isomorphism of state spaces of both nets including the computational com-

plexity for transforming MAN into MNs. The major similarities between our work 

and that of (Lomazova&Ermakova, 2016) is that they developed a set of rules for 

translating a safe conservative nested Petri net (NP-net) into an equivalent P/T net. 

The main differences are that we established clearly an important relation between the 

isomorphic properties of state space of safe-ERS and a 1-safe P/T net. Among such 

results are the establish Lemmas, and proof of a theorem for the isomorphism. More-

over, we adopt a different way of introducing the procedure for transforming nets-

within-nets into 1-safe P/T net, which consequently give a neater and easier-to-

understand presentation.  

4.1 Transformation Rules 

This subsection gives a set of transformation rules for transforming Elementary 

Reference-net system (Section 3) into P/T-net. There exist five rules and they must be 

applied in sequence from Rule 1 to Rule 5. With these rules ERS can be translated 

into a P/T net system 𝑁∗. 

Let 𝑅𝑆 = (�̂�, Σ, ℓ,𝓌,  𝑹𝟎)be an ERS with a set Σ𝑛𝑡 of all marked named net tokens 

in the initial marking. By ℝ we denote the set of all names used in Σ𝑛𝑡. The net will be 

translated into a P/T-net system 𝑁∗ = (𝑃𝑁∗
∗ , 𝑇𝑁∗

∗ , 𝐹𝑁∗
∗ , 𝑀0

∗)  

Rule 1: Generate the set 𝑃𝑁∗
∗  of places of a P/T-net 𝑁∗. The first, is the set 𝑃′𝑁∗  of 

places from the system net �̂�, and the second the set 𝑃𝑁∗ of all places of each net-

token in the initial marking of the system net. Finally, we take the union of these set as 

the set 𝑃𝑁∗
∗  of a target P/T-net 𝑁∗, with the assumption that 𝑃′𝑁∗ ∩ 𝑃𝑁∗

∗ = ∅. 

𝑃′𝑁∗  is generated by duplicating all places of the system net for each net-token 

name  𝑖 used in the initial marking of the system net and labelled it with a pair (𝑝′, 𝑖) 
where 𝑝′is a place in �̂�. Thus the set is defined as follows: 

                                            𝑃′𝑁∗ ≔ ⋃ {(𝑝′, 𝑖)|𝑖 ∈ ℝ, 𝑖 ≥ 1}𝑝′∈�̂�  .                                 (11) 

𝑃𝑁∗ is generated by taking a copy of each place in the set 𝑃𝑖  for each net-token and 

labelled it with a pair (𝑝𝑖 , 𝑖) where 𝑝𝑖  is a place in 𝑃𝑖 . It is defined as follows: 

    𝑃𝑁∗ ≔ ⋃ {(𝑝𝑖 , 𝑖)|𝑝𝑖 ∈ 𝑃𝑖 ,𝑖∈Σ𝑛𝑡 𝑖 ∈ ℝ, 𝑖 ≥ 1} .                                                         (12) 

Therefore the set 𝑃𝑁∗
∗  of a target P/T-net 𝑁∗ as shown in Fig.2 is the union of these 

set, namely 

        𝑃𝑁∗
∗ ≔ 𝑃′𝑁∗ ∪ 𝑃𝑁∗  .                                                                                             (13) 

Rule 2: Define the initial marking for 𝑁∗. For a P/T-net  𝑁∗ we define an encoding 

of markings on places from the set of places �̂� in an ERS by markings on the generat-

ed places from 𝑃𝑁∗
∗ . If a net-token with name  𝑖 ∈ ℝ𝑖 resides in a place �̂� in an initial 



marking 𝑅0(�̂�) of the system net, then a black token in placed on (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗  as the 

initial marking 𝑀0
∗ of the constructed, namely 

𝑀0
∗(�̂�, 𝑖) = 𝑅0(�̂�).                                                                                                    (14) 

Also, we define an encoding of markings on places from the set of places 𝑃𝑖  on the 

generated places from 𝑃𝑁∗
∗ . If all places (𝑝, 𝑖) for all 𝑝 such that (𝑝, 𝑖) ∈ 𝑃𝑁∗

∗  is 

marked in the initial marking 𝑀0 of the net-token 𝑖 ∈ ℝ𝑖 , then of black token is placed 

on (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗   in 𝑀0

∗ ,namely 

𝑀0
∗(𝑝, 𝑖) = 𝑀0(𝑝).                                                                                                    (15) 

 

      Fig. 2. Set of places of P/T net                                     Fig 3: initial marking 

If a place in the system net is a place that contains a black token, then the unique 

copy corresponding to the place in  𝑁∗ is also marked with a black token. In the given 

ERS, reference to the net-token  𝑁1 resides in �̂�1,  and reference to the net-token re-

sides in �̂�2. Hence, we have tokens in (𝑝′1 , 1)  and(𝑝′2, 2) for 𝑁∗. Likewise, we define 

the markings for places (𝑝1, 1) and (𝑝1, 2). This is illustrated in Fig.3 above. 

 

Rule 3: Generate a family of P/T-net transitions from a system net. We define a set 

𝑇𝑠𝑎𝑡
∗  of transitions of 𝑁∗ obtained from each autonomous transition of the system net 

�̂� by duplicating each autonomous transition for each input arc variable of �̂� that 

may be bound to any of the named  net-token  name in each place adjacent to �̂� with 

appropriate input and output arcs, in 𝑁∗.  

  𝑇𝑠𝑎𝑡
∗ ≔ ⋃ {𝑡′𝛽𝑖(𝑥)|𝑥 ∈ 𝑤(�̂�): �̂� 𝑖𝑠 𝑎 𝑠𝑦𝑠𝑡𝑒𝑚 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛}�̂�∈�̂� .           (16) 

In the example ERS, the set 𝑤(�̂�) of input arc variables that can be bound to a 

named net-token for 𝑡′2 is as follows: 

𝛽(𝑤(𝑡′2)) = {𝛽1 = (𝑧 = 1)      𝛽2 = (𝑧 = 2)} .                                                      (17) 

Where 𝛽1  and 𝛽2 are bound to the input arc variable 𝑧, respectively. Therefore, 

two transitions 𝑡′21 𝑎𝑛𝑑 𝑡′22 are generated for transition  𝑡′2 from Rule 3. 

We define a set 𝐹𝑠𝑎𝑡
∗  of arcs for system autonomous transitions in 𝑁∗as follows: 



𝐹𝑠𝑎𝑡
∗ = ⋃ {(𝑥′�̂�∈�̂� , 𝑦′|(𝑥, 𝑦) = 𝓌(�̂�), 𝑥′ ∈ 𝑃′𝑁∗(𝑥) ∪ 𝑇𝑠𝑎𝑡

∗ (𝑥), 𝑦′ ∈ 𝑃′𝑁∗(𝑦) ∪
𝑇𝑠𝑎𝑡
∗ (𝑦)} .                                                                                                                   (18) 

Rule 4: Generate a family of transitions representing autonomous transitions in 

each net-token. For a set 𝑇𝑛𝑎𝑡
∗  of transitions of 𝑁∗ we define a set of similar autono-

mous transitions as follows. 

 

Fig. 4. Transitions and arcs from Rule 3           Fig. 5, Transitions and arcs after Rule 4 

 𝑇𝑛𝑎𝑡
∗ ≔ ⋃ {𝑡|𝑡𝑖 ∈ 𝑇𝑖 ∧𝑖∈Σ𝑛𝑡  𝑡𝑖𝑖𝑠 𝑎𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 𝑎𝑢𝑡𝑜𝑛𝑜𝑚𝑜𝑢𝑠 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛} .                 (19) 

We define a set 𝐹𝑛𝑎𝑡
∗  of arcs of net-token autonomous transitions in 𝑁∗as follows: 

 𝐹𝑛𝑎𝑡
∗ = {(𝑝, 𝑖), 𝑡) ∈ 𝑃𝑁∗ × 𝑇𝑛𝑎𝑡

∗ |(𝑝, 𝑡) ∈ 𝐹𝑖 > 0} ∪ 

             {(𝑡, (𝑝. 𝑖) ∈ 𝑇𝑛𝑎𝑡
∗ × 𝑃𝑁∗|(𝑡, 𝑝) ∈ 𝐹𝑖 > 0} .                                                    (20)     

 This is depicted in Fig.5. 

Rule 5: Generate a family of transitions representing synchronisation transitions 

obtained from the system net and net-tokens. An occurrence of a synchronous firing 

presumes simultaneous occurrence of a transition �̂� ∈ �̂� with a set of transitions given 

by a binding 𝛽 in system net, and some net-tokens transitions(𝑡1, … , 𝑡𝑘)  ∈ ℓ. This can 

be viewed as a combination of Rule 3 and Rule 4 with the condition that all involved 

transitions must be elements in the transition relation ℓ of an ERS.  

Transitions (𝑡1, … , 𝑡𝑘) occur simultaneously with �̂� ∈ �̂� of a system net, 

if (�̂�, (𝑡𝑖, … , 𝑡𝑘)) ∈ 𝓵. We generate synchronisation transitions from an ERS in a P/T-

net 𝑁∗ accordingly. This implies that we will have |ℓ| such transitions in 𝑁∗. Each of 

these transitions is composed of a system net transition �̂� ∈ �̂�, and some transitions of 

net-tokens that participate in synchronous firing of �̂�. They are defined as follows. 

 𝑇𝑠𝑦𝑛𝑐𝑖
∗ ≔ ⋃ {𝑡𝑖.𝛽𝑖(𝑥) = {�̂�, 𝑡1, … , 𝑡𝑘}|𝑥 ∈ 𝑤(�̂�), �̂� ∈ �̂�, 𝑡1 ∈ 𝑇1, … , 𝑡𝑘 ∈ 𝑇𝑘} .

𝑘
𝑖=1       (21) 

In our example two places �̂�1 𝑎𝑛𝑑 �̂�2 are marked with one net-token each in the in-

itial marking. We add two transitions 𝑡1 = {{�̂�1, 𝑡21, 𝜏} and   𝑡2 = {�̂�1, 𝜏, 𝑡22} annotated 

with @1 and @2, which is shown in Fig.6. The result of transforming ERS into P/T-

net is shown in Fig. 7. 



 

   Fig. 6. Synchronous firing transitions and arcs       Fig. 7. Result of transforming ERS  

5 Isomorphic Properties of the State Spaces 

We establish an isomorphism between the states of an ERS and the generated 1-

safe P/T-net. Recall that in Rule 2 we defined two separate initial markings for the 

P/T-net N∗: M0
∗(p̂, i) and M0

∗(p, i). The former is an encoding of markings from the set 

of places P̂ of the system net in an ERS and the latter is an encoding of markings from 

the set of places  Pi of a net-token i. Likewise, we defined three sets of transitions: 

Tsat
∗ , Tnat

∗ , and Tsynci
∗  from Rule 3, Rule 4 and Rule 5 respectively in  N∗. In the fol-

lowing, we define some mappings from the P/T-net to and ERS. 

Definition 5.1 A mapping 𝑓 maps a marking 𝑀∗ of a P/T-net  𝑁∗ from the set of 

places �̂� to markings 𝑅 of a system net of an ERS as follows: 

𝑓(𝑀∗)(�̂�, 𝑖) = 𝑅(�̂�) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (�̂�, 𝑖) ∈ 𝑃𝑁∗
∗ : �̂� ∈ �̂�: 𝑖 ∈ ℝ .                                     (22) 

Definition 5.2   A mapping 𝑓 maps a marking 𝑀∗ of a P/T-net  𝑁∗ from the set of 

places  𝑃𝑖  of net-token 𝑖 of ERS to a marking 𝑀 of a net-token of ERS as follows: 

𝑓(𝑀∗)(𝑝, 𝑖) = 𝑀(𝑝) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 (𝑝, 𝑖) ∈ 𝑃𝑁∗
∗ : 𝑝 ∈ 𝑃𝑖 : 𝑖 ∈ ℝ .                                   (23) 

    Definition 5.3   �̂�  is a mapping that maps a transition 𝑡′𝛽𝑖(𝑥) ∈  𝑇𝑠𝑎𝑡
∗  of P/T-net 𝑁∗ 

to a system-autonomous firing mode (�̂�, 𝜏) ∉ 𝑑𝑜𝑚(ℓ) of an ERS as follows:  

�̂�(𝑡′𝛽𝑖(𝑥)) = (�̂�, 𝜏) .                                                                                                   (24)  

 𝑤ℎ𝑒𝑟𝑒 𝛽𝑖(𝑥) is a binding function that binds a variable 𝑥 ∈ 𝑤(�̂�) on arcs adjacent 

to 𝑡 ̂to an object net name.  

Definition 5.4     𝑔 is a function that maps a transition 𝑡 ∈  𝑇𝑛𝑎𝑡
∗  of P/T-net 𝑁∗ to 

an object-autonomous firing mode (𝜏, 𝑡𝑖) ∉ 𝑑𝑜𝑚(ℓ) of an ERS as follows: 

𝑔(𝑡) = (𝜏, 𝑡𝑖) .                                                                                                        (25)        

Definition 5.5  𝑔𝑠 is a mapping function that maps a transition 𝑡𝑖.𝛽𝑖(𝑥) ∈ 𝑇𝑠𝑦𝑛𝑐𝑖
∗  of 

P/T-net 𝑁∗ to a synchronisation firing mode (�̂�, 𝑡1, … , 𝑡𝑘) ∈ ℓ of an ERS as follows: 



 𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) = {(�̂�, 𝑡1, … , 𝑡𝑘)} .                                                                               (26) 

The following lemmas related to �̂� and 𝑁∗constructed by Rules 1 to 5, hold. 

Lemma 5.6 For the initial marking at �̂�  level, the following equality holds: 

  𝑅0(�̂�) = 𝑓(𝑀0
∗)(�̂�, 𝑖) .                                                                                     (27) 

Lemma 5.7 Suppose that 𝑅 =  𝑓(𝑀∗) and(�̂�, 𝜏) = �̂�(𝑡′𝛽𝑖(𝑥)). The following propo-

sition holds:                          

 𝑀∗[𝑡′𝛽𝑖(𝑥) > ⇔ 𝑅[(�̂�, 𝜏) > .                                                                             (28)                

Lemma 5.8 Suppose that 𝑅1 = 𝑓(𝑀1
∗), 𝑀1

∗[𝑡′𝛽𝑖(𝑥) > 𝑀2
∗, and 𝑅1[�̂�(𝑡

′
𝛽𝑖(𝑥)

) > 𝑅2. 

The following equality holds:  𝑅2 = 𝑓(𝑀2
∗) .                                                         (29)                                                      

Lemma 5.9 For the initial marking of the object net, the following holds: 

𝑀0(𝑝) = 𝑓(𝑀0
∗)(𝑝, 𝑖) .                                                                                          (30) 

Lemma 5.10 Suppose that 𝑀 =  𝑓(𝑀∗) and(𝜏, 𝑡𝑖) = 𝑔(𝑡). The following proposi-

tion holds: 

𝑀∗[𝑔(𝑡) > ⇔ 𝑀[((𝜏, 𝑡𝑖)) > .                                                                               (31) 

Lemma 5.11 Suppose that 𝑀1 = 𝑓(𝑀1
∗), 𝑀1

∗[𝑡 > 𝑀2
∗, and 𝑀1[𝑔(𝑡) > 𝑀2. The fol-

lowing equality holds: 

 𝑀2 = 𝑓(𝑀2
∗) .                                                                                                         (32) 

Lemma 5.12 Suppose that (𝑅1,𝑀1) = 𝑓𝑠(𝑀1
∗) and 𝑡𝑠 = 𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)). The following 

proposition holds: 

  𝑀1
∗[𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) > ⇔ (𝑅1, 𝑀1)[𝑡𝑠 > .                                                                    (33) 

Lemma 5.13 Suppose(𝑅1,𝑀1) = 𝑓𝑠(𝑀1
∗), 𝑀1

∗[𝑡𝑖.𝛽𝑖(𝑥) > 𝑀2
∗ and (𝑅1,𝑀1)[𝑔𝑠(𝑡𝑖.𝛽𝑖(𝑥)) > (𝑅2,𝑀2) .  

The following equality holds: 

(𝑅2,𝑀2) = 𝑓𝑠(𝑀2
∗) .                                                                                                (34)      

From the above Lemmas, the following theorem holds. 

Theorem 5.14 Let RS be a 1-safe ERS. Let also N∗be a 1-safe P/T-net obtained 

from RS by the set of transformation Rules 1 to 5 above. Then state spaces of RS and 

N∗ are isomorphic. 

Proof: Lemmas5.6 and 5.9 defines a one-to-one mapping between the initial mark-

ings of the 1-safe P/T-net  𝑁∗and the initial marking in RS. From Lemma 5.7 a sys-

tem-autonomous firing mode (�̂�, 𝜏) is enabled in a marking (𝑅,𝑀) if, and only if, the 

corresponding transition 𝑡′𝛽𝑖(𝑥) is enabled in the corresponding marking 𝑀∗. Also 

from Lemma 5.10 an object-autonomous firing mode (𝜏, 𝑡𝑖) is enabled in a marking 



(𝑅,𝑀) if, and only if, the corresponding transition 𝑡 is enabled in the corresponding 

marking 𝑀∗. Again, from Lemma 5.12 a synchronous firing mode (�̂�, 𝑡1, … , 𝑡𝑘) is 

enabled in a marking (𝑅,𝑀) if, and only if, the corresponding transition 𝑡𝑖.𝛽𝑖(𝑥) is 

enabled in the corresponding 𝑀∗. Finally from Lemmas 5.8, 5.11 and 5.13, the gener-

ated markings in the 1-safe P/T-net can be mapped to the generated markings in the 

RS.                                                                                                                               □ 

Thus we have shown that every ERS can be transformed to behaviourally equiva-

lent 1-safe P/T-net. Hence the standard analysis techniques for 1-safe P/T-net can be 

applied for ERS.  

6 Conclusion 

While general elementary object systems (EOS) come with some constraints that 

limit their expressiveness for automatic verification purposes, in this paper a modifi-

cation that relaxes these constraints was given: elementary reference-net systems, 

ERS. Also, we proposed a set of rules for transforming ERS to behaviourally equiva-

lent 1-safe P/T nest.  Furthermore, we established an important relationship between 

the isomorphic properties of state spaces of 1-safe ERS and 1-safe P/T net. Among 

such results are the established Lemmas, and the proof of a theorem which relates the 

state space of 1-safe P/T nets 1-safe ERS. The definition of elementary reference-net 

system, ERS, targets practical relevance and the use of a partial order (unfolding) 

approach for dynamic analysis of EOS. In future work, we aim to compare an unfold-

ing of the transformed 1-safe P/T to a direct unfolding of a 1-safe ERS without com-

puting an intermediate expansion. 
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Appendix A: Proof of Theorem 3.10 

Proof. Let RS be a safe ERS. Let𝑚 ∶= |�̂�|and  𝑛 ∶= 𝑚𝑎𝑥{|𝑃𝑖| |(𝑖, (𝑃𝑖 . 𝑇𝑖 , 𝐹𝑖),𝑚𝑖) ∈
𝒩} be the number of system net places and the maximum number of places present in 

an object net, respectively. 

By definition of safe ERS each net token is 1-safe and hence there are at most 2𝑛 

different markings a net-token may have. By definition of safe ERS each system net 

place is either marked or unmarked with a net-token with one of these markings, thus 

there are up to  (1 + 2𝑛)𝑚 different markings of RS, i.e.  |𝑅(𝑅𝑆)| ≤ (1 + 2𝑛)𝑚.     □ 

Appendix B: Proof of Lemma 5.6 

Proof: An initial marking of a system net in an ERS can be expressed by 𝑅0 =
𝑅0(�̂�), ∀�̂� ∈ �̂�. By Rule 2, (�̂�, 𝑖) ∈  𝑃𝑁∗

∗  in the P/T-net has one token in the corre-

sponding initial marking 𝑀0
∗(�̂�, 𝑖), therefore 𝑀0

∗(�̂�, 𝑖) = 𝑅0(�̂�). 

From Def. 5.1, 𝑓(𝑀0
∗)(�̂�, 𝑖)  becomes 𝑓(𝑀0

∗)(�̂�, 𝑖) = 𝑅0(�̂�) = 𝑅0(�̂�)                   □ 

Appendix C: Proof of Lemma 5.7 

Proof: (⇒) Suppose that  𝑡′𝛽𝑖(𝑥) ∈  𝑇𝑠𝑎𝑡
∗  is a transition that represents an autono-

mous transition in the P/T- net then (�̂�, 𝜏) ∈ �̂�  is a corresponding transition in the 

system net. From 𝑀∗[𝑡′𝛽𝑖(𝑥) > and Def. 2.3, each place has at least  

𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) tokens namely for each place (�̂�, 𝑖) ∈ 𝑃𝑁∗

∗ , the following inequality 

holds: 

𝑀∗((�̂�, 𝑖)) ≥  𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) .                                                                          (35) 

Since 𝑅 =  𝑓(𝑀∗), the number of token in place (�̂�, 𝑖) equals the number of tokens 

in place �̂� ∈ �̂� of a system net �̂�:  

𝑀∗((�̂�, 𝑖)) = 𝑅(�̂�) .                                                                                                  (36) 

From Rule 3, the weight of the arc from (�̂�, 𝑖) to 𝑡′𝛽𝑖(𝑥) equals number of variables 

on the arc from �̂� to �̂� under the binding 𝛽: 

𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) = 𝛽(𝑤(�̂�, �̂�)) .                                                                         (37) 

 From (35), (36) & (37), for each place �̂� ∈ �̂� the following holds: 

𝑅(�̂�) ≥ 𝛽(𝑤(�̂�, �̂�)) .                                                                                                 (38)                                                                                                                      

From Def. 3.5,  𝑅[( �̂�, 𝜏) >. 

(⟸)(38) holds since 𝑅[( �̂�, 𝜏) >; (36) & (37) also hold. Therefore, (35) holds. 

From Def. 2.3,  𝑀∗[𝑡′𝛽𝑖(𝑥) > 

 



Appendix D: Proof of Lemma 5.8 

Proof: From Def.  2.3, the number of tokens in place (�̂�, 𝑖) in a successor marking 

𝑀2
∗ is expressed as follows: 

 𝑀2
∗(�̂�, 𝑖) = 𝑀1

∗(�̂�, 𝑖) − 𝑊𝑠𝑎𝑡
∗ ((�̂�, 𝑖), 𝑡′𝛽𝑖(𝑥)) +𝑊𝑠𝑎𝑡

∗ (𝑡′𝛽𝑖(𝑥), (�̂�, 𝑖)) .                       (39) 

Since  𝑅1 = 𝑓(𝑀1
∗), (30) holds. Similarly to (31), it holds that    

 𝑊𝑠𝑎𝑡
∗ (𝑡′𝛽𝑖(𝑥), (�̂�, 𝑖)) =  𝛽(𝑤(�̂�, �̂�)) .                                                                        (40) 

Therefore:𝑀2
∗(�̂�, 𝑖) = 𝑅1(�̂�) − 𝛽(𝑤(�̂�, �̂�)) + 𝛽(𝑤(�̂�, �̂�)) . (See Def. 3.5& 36) (41) 

Finally it holds that 𝑅2 = 𝑓(𝑀2
∗) because (41) holds for each place.                        □ 

Appendix E: Proof of Lemma 5.9 

Proof: An initial marking of an object net in an ERS can be expressed by 𝑀0 =
𝑀0(𝑝), ∀𝑝 ∈ 𝑃𝑖 , 𝑖 ∈ ℝ hold. Rule 2 says that place (𝑝, 𝑖) ∈  𝑃𝑁∗

∗  in the P/T-net has 

one token in the corresponding initial marking 𝑀0
∗(𝑝, 𝑖), therefore 𝑀0

∗(𝑝, 𝑖) = 𝑀0(𝑝). 

From Def. 5.2, 𝑓(𝑀0
∗)(𝑝, 𝑖)  becomes 𝑓(𝑀0

∗)(𝑝, 𝑖) = 𝑀0(𝑝)                            □ 

Appendix F: Proof of Lemma 5.10 

Proof: (⇒) Suppose that  𝑡 ∈  𝑇𝑛𝑎𝑡
∗  is a transition that represents an autonomous 

transition in the P/T- net then (𝜏, 𝑡𝑖) ∈ 𝑇𝑖  is a corresponding transition in the object 

net. From 𝑀∗[𝑡 > and the Def. 2.3, each place has at least  𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) tokens 

namely for each place (𝑝, 𝑖) ∈ 𝑃𝑁∗
∗ , the following inequality holds: 

 𝑀∗((𝑝, 𝑖)) ≥  𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) .                                                                                 (42) 

Since 𝑀 =  𝑓(𝑀∗), the number of tokens in(𝑝, 𝑖) equals the number of tokens in 

𝑝 ∈ 𝑃𝑖 of an object net 𝑁𝑖:  

𝑀∗((𝑝, 𝑖)) = 𝑀(𝑝) .                                                                                                 (43) 

From Rule 4, the weight of the arc from (𝑝, 𝑖) to 𝑡 equals the weight of the arc from 

𝑝𝑖  to 𝑡𝑖 

𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) = 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                                   (44) 

From (40) and (41), for each place 𝑝 ∈ 𝑃𝑖 the following inequality holds: 

𝑀(𝑝) ≥ 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                                                   (45) 

From Def. 4.6,  𝑀[(𝜏, 𝑡𝑖) >. 

(⟸)(45) holds since 𝑀[(𝜏, 𝑡𝑖) >; (43) & (44) also hold. Therefore, (42) holds. 

From Def.2.3, 𝑀∗[𝑡 > .                                                                                           □ 



Appendix G: Proof of Lemma 5.11 

Proof: From Def. 2.3.2, the number of tokens in place (𝑝, 𝑖) in a successor marking 

𝑀2
∗ is expressed as follows: 

𝑀2
∗(𝑝, 𝑖) = 𝑀1

∗(𝑝, 𝑖) −𝑊𝑛𝑎𝑡
∗ ((𝑝, 𝑖), 𝑡) + 𝑊𝑛𝑎𝑡

∗ (𝑡, (𝑝, 𝑖)) .                                  (46) 

Since 𝑀1 = 𝑓(𝑀1
∗), (43) holds. Similarly to (44), it holds that  

 𝑊𝑛𝑎𝑡
∗ (𝑡, (𝑝, 𝑖)) = 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                              (47) 

Therefore, the following equation holds: 

𝑀2
∗(𝑝, 𝑖) = 𝑀1(𝑝𝑖) −𝑊𝑖(𝑝𝑖 , 𝑡𝑖 +𝑊𝑖(𝑡𝑖 , 𝑝𝑖) = 𝑀2

∗(𝑝, 𝑖)  (See Def. 3.6)             (48) 

Finally it holds that 𝑀2 = 𝑓(𝑀2
∗) because (46) holds for each place.             □ 

Appendix H: Proof of Lemma 5.12 

Proof: (⇒) For �̂�, it can be proved in a similar way to Lemma 5.7 that  

∀�̂� ∈ ⦁�̂�: 𝑅(�̂�) ≥ 𝛽(𝑤(�̂�, �̂�)) .                                                                            (49) 

For (𝑡1, … , 𝑡𝑘) it can be proven in a similar to Lemma 5.10 for each net-token 

transition 𝑡𝑖 ∈ 𝑇𝑖 that  

∀𝑝𝑖 ∈ ⦁𝑡𝑖: 𝑀1(𝑝𝑖) ≥ 𝑊𝑖(𝑝𝑖 , 𝑡𝑖) .                                                                        (50)   

From Rule 5, and equations (48) and (49) it holds that (𝑅1, 𝑀1)[𝑡𝑠 >. 

(⟸) For 𝑡𝑖.𝛽𝑖(𝑥) ∈ 𝑇𝑠𝑦𝑛𝑐𝑖
∗  which is added in Rule 5, it can be shown that in a simi-

lar way to Lemma 5.7 that 

∀(�̂�, 𝑖) ∈ 𝑃′𝑁∗: 𝑀1
∗((�̂�, 𝑖)) ≥ 𝑊∗((�̂�, 𝑖), �̂�) .                                                      (51) 

Similarly, it can be shown from Lemma 5.10 for 𝑡𝑖 ∈ 𝑇𝑖  that participate in 𝑡𝑖.𝛽𝑖(𝑥) ∈

𝑇𝑠𝑦𝑛𝑐𝑖
∗  that  

∀(𝑝𝑖 , 𝑖) ∈ 𝑃𝑁∗: 𝑀1
∗(𝑝𝑖 , 𝑖) ≥ 𝑊𝑛𝑎𝑡

∗ (𝑝𝑖 , 𝑡𝑖).                                                           (52) 

     The action (�̂�, 𝑡1, … , 𝑡𝑘) share no input places by assumption in Rule 1. From 

Def. 2.3, (51) & (52): 𝑀1
∗[𝑡𝑖.𝛽𝑖(𝑥) > .                                                                   □ 

Appendix I: Proof of Lemma 5.13 

Proof: It can be proved in a similar way to Lemma 5.8 and 5.11 by Def.  2.3, and 

Rules 3 & 4.                                                                                                          □ 


